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Talk Outline

I Brief overview of popular sparsity priors

I Example application: sparse Bayesian factor analysis for
network inference

I Theory for average-case performance with mixture prior

I Theory and MCMC results for di�erent data distributions

I Comparison with L1 prior

I Discussion
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Popular sparsity priors

Sparsity priors tend to be convenient rather than realistic, e.g.

I L1

p(wi ) =
λ

2
e−λ|wi |

I ARD
p(wi ) = N (wi |0, λ−1i )

I Mixture

p(wi ) = (1− C )δ(wi ) + CN (wi |0, λ−1)

Is it OK to not worry about whether these actually �t the data?
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Regulatory network inference
Gibbs sampler

Example application: factor analysis for network inference

Y ∼ N (WZ+ µ,Ψ)

Y = [yin] log-expression of gene i in sample n

Z = [zjn] log-concentration (or "activity") of TF j in sample n

W = [wij ] factor loading is �e�ect� of TF j on gene i

I Model Z as latent variable, since mRNA data may not capture
TF protein level/activity, or TFs too weakly expressed

I For e.g. yeast W roughly 6000× 200

I Various methods for inferring sparse W from Y (reviewed by
Pournara and Wernisch, BMC Bioinformatics 2007).
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Gibbs sampler

Factor analysis for network inference

Y ∼ N (WZ+ µ,Ψ)

I Mixture prior leads to tractable Gibbs sampler

p(wij) = (1− Cij)δ(wij) + CijN (wij |0, λ−1)

I Hyper-parameters Cij ∈ [0, 1] can be obtained from e.g.

I ChIP-chip data
I DNA motifs (Sabatti and James, Bioinformatics 2006)

I Or we can estimate (grouped) hyper-parameters by MCMC
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Gibbs sampler

Write wij = xijbij where xij ∈ {0, 1} and bij ∼ N (0, λ−1)

x·j ∼ p(x·j |X \ x·j ,Z,Y) (1)

B ∼ p(B|X,Z,Y) (2)

Z ∼ p(Z|X,B,Y) (3)

I Integrate out B before sampling X

I (2,3) more e�cient when X is typically sparse

I Can also sample hyper-parameters Cij and λ if required
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Average case theory for sparse Bayesian PCA

yn ∼ N (0, σ2I +wwT )

p(w |C , λ) =
N∏
i=1

[
(1− C )δ(wi ) + CN (wi |0, λ−1)

]

I We study average behaviour over datasets
D = {y1, y2, . . . , yM} produced by a teacher distribution

I The teacher is identical except for a di�erent factorized
parameter distribution. We consider two cases:

(1) Same form: p(w t
i ) = (1− Ct)δ(w

t
i ) + CtN (w t

i |0, λ−1t )

(2) Di�erent form: p(w t
i ) = (1− Ct)δ(w

t
i ) + Ctδ(w

t
i − λ

−1/2
t )
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Average case theory for sparse Bayesian PCA

I Compute marginal likelihood 〈log p(D|C , λ)〉D in limit N →∞
with α = M/N held constant using replica method

I Compute functions of the mean posterior parameter w∗(D)

ρ(w∗) =
w∗ ·w t

||w∗||||w t ||
L(w∗) = 〈log p(y |w∗,C , λ)〉y |w t

I Good agreement with simulations for most relevant case of
small α (so-called large N small p regime)
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Average case theory for sparse Bayesian PCA

I Similar replica calculation to Uda and Kabashima (J. Phys.
Soc. Japan 74, 2005)

Z (D) = p(D|C , λ) =

∫
dwp(w |C , λ)

N∏
n=1

p(yn|w)

1

N
〈logZ (D)〉D,w t =

1

N
limn→0

∂

∂n
〈Zn(D)〉D,w t

= α〈log p(y |w∗(D),C , λ)〉y ,D,w t + entropic terms

I Average case becomes typical for large N due to self-averaging

Bayesian learning of sparse factor loadings



Popular sparsity priors
Sparse Bayesian factor analysis

Average case theory
Results

Discussion

Average case theory for sparse Bayesian PCA

I Similar replica calculation to Uda and Kabashima (J. Phys.
Soc. Japan 74, 2005)

Z (D) = p(D|C , λ) =

∫
dwp(w |C , λ)

N∏
n=1

p(yn|w)

1

N
〈logZ (D)〉D,w t =

1

N
limn→0

∂

∂n
〈Zn(D)〉D,w t

= α〈log p(y |w∗(D),C , λ)〉y ,D,w t + entropic terms

I Average case becomes typical for large N due to self-averaging

Bayesian learning of sparse factor loadings



Popular sparsity priors
Sparse Bayesian factor analysis

Average case theory
Results

Discussion

Standard PCA result
Results for sparse PCA (C<1)
Results for well-matched data
Results for unmatched data
L1 prior

Standard PCA result (C=1)

Learning exhibits phase transitions, e.g. (for α > 1)

ρ(w∗) = θ(α− T−2) θ

(
α− λ

NT

)√
α− T−2

α+ T−1

where θ(x) is the step function and

T = ||wt ||2N→∞ = NCtλ
−1
t .

I Consistent with result for Bayesian PCA with spherical prior
p(w) ∝ δ(||w || − 1) (Riemann et al. J. Phys. A 1996)

I Only new feature is 1st-order transition with increasing λ
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λt = N,N = 5000,M = 20000 (α = 5)
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Theory vs. MCMC averaged over 10 data sets

Here we will only consider learning away from phase transitions
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Results for sparse PCA (C<1)

I We consider two types of data set distribution:

(1) Same form as prior: p(w t
i ) = (1− Ct)δ(w

t
i ) + CtN (w t

i |0, λ−1t )

(2) Di�erent form: p(w t
i ) = (1− Ct)δ(w

t
i ) + Ctδ(w

t
i − λ

−1/2
t )

I Both give identical performance for standard PCA

I Both give identical performance if sparsity is known
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Results for data distribution (1): ρ(w ∗) and L(w ∗)

p(w t
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t
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i |0, λ
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t )
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Results for data distribution (2): p(D|C , λ)

Ct = 0.2, λt = 10,M = 200,N = 1000 (α = 0.2)
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I Is this problem speci�c to the mixture prior?
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L1 prior results: ρ(w ∗)

Ct = 0.2, λt = N/100, α = M/N
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L1 prior results: p(D|λ1, λ2) versus L(w ∗) and ρ(w ∗)

Ct = 0.2, λt = N/100, α = 0.2
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Discussion

I Mixture prior works as expected when well-matched to data

I Marginal likelihood for mixture prior can be misleading

I Marginal likelihood seems more e�ective for L1 prior

I . . . although L1 didn't really perform well (preliminary)

I Future work should look at multiple factors

I Assessment of metrics using the full posterior

I Comparison with MAP and ML approaches

I And better priors!
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