Bayesian learning of sparse factor loadings

Magnus Rattray School of Computer Science, University of Manchester

Bayesian Research Kitchen, Ambleside, September 6th 2008

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Brief overview of popular sparsity priors
- Example application: sparse Bayesian factor analysis for network inference
- Theory for average-case performance with mixture prior
- Theory and MCMC results for different data distributions
- Comparison with L1 prior
- Discussion

・ロト ・ 同ト ・ ヨト ・ ヨト

Popular sparsity priors

Sparsity priors tend to be convenient rather than realistic, e.g.

イロン イヨン イヨン イヨン

Popular sparsity priors

Sparsity priors tend to be convenient rather than realistic, e.g. L1 $p(w_i) = \frac{\lambda}{2} e^{-\lambda |w_i|}$

・ロト ・四ト ・ヨト ・ヨト

Popular sparsity priors

Sparsity priors tend to be convenient rather than realistic, e.g. ▶ L1 ١

$$p(w_i) = \frac{\lambda}{2} e^{-\lambda |w_i|}$$

$$p(w_i) = \mathcal{N}(w_i|0, \lambda_i^{-1})$$

イロン イヨン イヨン イヨン

Popular sparsity priors

Sparsity priors tend to be convenient rather than realistic, e.g. L1 $p(w_i) = \frac{\lambda}{2} e^{-\lambda |w_i|}$

$$p(w_i) = \mathcal{N}(w_i|0,\lambda_i^{-1})$$

Mixture

$$p(w_i) = (1 - C)\delta(w_i) + C\mathcal{N}(w_i|0,\lambda^{-1})$$

・ロト ・四ト ・ヨト ・ヨト

Popular sparsity priors

Sparsity priors tend to be convenient rather than realistic, e.g. L1 $p(w_i) = \frac{\lambda}{2} e^{-\lambda |w_i|}$

$$p(w_i) = \mathcal{N}(w_i|0,\lambda_i^{-1})$$

Mixture

$$p(w_i) = (1 - C)\delta(w_i) + C\mathcal{N}(w_i|0,\lambda^{-1})$$

Is it OK to not worry about whether these actually fit the data?

Bayesian learning of sparse factor loadings

臣

Regulatory network inference Gibbs sampler

Example application: factor analysis for network inference

 $\mathsf{Y} \sim \mathcal{N}(\mathsf{WZ} + oldsymbol{\mu}, oldsymbol{\Psi})$

- $\mathbf{Y} = [y_{in}]$ log-expression of gene *i* in sample *n*
- $Z = [z_{jn}]$ log-concentration (or "activity") of TF j in sample n
- $\mathbf{W} = [w_{ij}]$ factor loading is "effect" of TF j on gene i
 - Model Z as latent variable, since mRNA data may not capture TF protein level/activity, or TFs too weakly expressed
 - For e.g. yeast W roughly 6000×200
 - Various methods for inferring sparse W from Y (reviewed by Pournara and Wernisch, BMC Bioinformatics 2007).

→ ★ E → ★ E → E

Regulatory network inference Gibbs sampler

Factor analysis for network inference

$$\mathsf{Y} \sim \mathcal{N}(\mathsf{WZ} + oldsymbol{\mu}, oldsymbol{\Psi})$$

Mixture prior leads to tractable Gibbs sampler

$$p(w_{ij}) = (1 - C_{ij})\delta(w_{ij}) + C_{ij}\mathcal{N}(w_{ij}|0,\lambda^{-1})$$

• Hyper-parameters $C_{ij} \in [0, 1]$ can be obtained from e.g.

- ChIP-chip data
- DNA motifs (Sabatti and James, Bioinformatics 2006)

Or we can estimate (grouped) hyper-parameters by MCMC

Regulatory network inference Gibbs sampler

Gibbs sampler

Write $w_{ij} = x_{ij} b_{ij}$ where $x_{ij} \in \{0,1\}$ and $b_{ij} \sim \mathcal{N}(0,\lambda^{-1})$

$$\begin{array}{rcl} x_{\cdot j} &\sim & p(x_{\cdot j} | \mathbf{X} \setminus x_{\cdot j}, \mathbf{Z}, \mathbf{Y}) & (1) \\ \mathbf{B} &\sim & p(\mathbf{B} | \mathbf{X}, \mathbf{Z}, \mathbf{Y}) & (2) \\ \mathbf{Z} &\sim & p(\mathbf{Z} | \mathbf{X}, \mathbf{B}, \mathbf{Y}) & (3) \end{array}$$

イロト イヨト イヨト イヨト

æ

Regulatory network inference Gibbs sampler

Gibbs sampler

Write $w_{ij} = x_{ij}b_{ij}$ where $x_{ij} \in \{0,1\}$ and $b_{ij} \sim \mathcal{N}(0,\lambda^{-1})$

$$\begin{array}{rcl} x_{\cdot j} & \sim & p(x_{\cdot j} | \mathbf{X} \setminus x_{\cdot j}, \mathbf{Z}, \mathbf{Y}) & (1) \\ \mathbf{B} & \sim & p(\mathbf{B} | \mathbf{X}, \mathbf{Z}, \mathbf{Y}) & (2) \\ \mathbf{Z} & \sim & p(\mathbf{Z} | \mathbf{X}, \mathbf{B}, \mathbf{Y}) & (3) \end{array}$$

- Integrate out B before sampling X
- ▶ (2,3) more efficient when X is typically sparse
- Can also sample hyper-parameters C_{ij} and λ if required

Average case theory for sparse Bayesian PCA

$$\mathbf{y}_{n} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I} + \mathbf{w}\mathbf{w}^{T})$$

$$p(\mathbf{w}|C, \lambda) = \prod_{i=1}^{N} \left[(1-C)\delta(w_{i}) + C\mathcal{N}(w_{i}|0, \lambda^{-1}) \right]$$

イロン イヨン イヨン イヨン

æ

Average case theory for sparse Bayesian PCA

$$\mathbf{y}_{n} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I} + \mathbf{w}\mathbf{w}^{T})$$
$$p(\mathbf{w}|C, \lambda) = \prod_{i=1}^{N} \left[(1-C)\delta(w_{i}) + C\mathcal{N}(w_{i}|0, \lambda^{-1}) \right]$$

• We study average behaviour over datasets $D = \{y_1, y_2, \dots, y_M\}$ produced by a teacher distribution

Average case theory for sparse Bayesian PCA

$$\mathbf{y}_{n} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I} + \mathbf{w}\mathbf{w}^{T})$$
$$p(\mathbf{w}|C, \lambda) = \prod_{i=1}^{N} \left[(1-C)\delta(w_{i}) + C\mathcal{N}(w_{i}|0, \lambda^{-1}) \right]$$

- We study average behaviour over datasets
 D = {y₁, y₂, ..., y_M} produced by a teacher distribution
 The teacher is identical except for a different factorized
- parameter distribution. We consider two cases:

Average case theory for sparse Bayesian PCA

$$\mathbf{y}_{n} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I} + \mathbf{w}\mathbf{w}^{T})$$
$$p(\mathbf{w}|C, \lambda) = \prod_{i=1}^{N} \left[(1-C)\delta(w_{i}) + C\mathcal{N}(w_{i}|0, \lambda^{-1}) \right]$$

- We study average behaviour over datasets
 D = {y₁, y₂, ..., y_M} produced by a teacher distribution
 The teacher is identical except for a different factorized
- parameter distribution. We consider two cases:

(1) Same form: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t|0, \lambda_t^{-1})$

(日) (同) (三) (三)

Average case theory for sparse Bayesian PCA

$$\mathbf{y}_{n} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I} + \mathbf{w}\mathbf{w}^{T})$$
$$p(\mathbf{w}|C, \lambda) = \prod_{i=1}^{N} \left[(1-C)\delta(w_{i}) + C\mathcal{N}(w_{i}|0, \lambda^{-1}) \right]$$

- We study average behaviour over datasets
 D = {y₁, y₂, ..., y_M} produced by a teacher distribution
 The teacher is identical except for a different factorized
- The teacher is identical except for a different factorized parameter distribution. We consider two cases:

(1) Same form: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t|0, \lambda_t^{-1})$ (2) Different form: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t\delta(w_i^t - \lambda_t^{-1/2})$

Average case theory for sparse Bayesian PCA

Compute marginal likelihood (log p(D|C, λ))_D in limit N → ∞ with α = M/N held constant using replica method

Average case theory for sparse Bayesian PCA

- Compute marginal likelihood (log p(D|C, λ))_D in limit N → ∞ with α = M/N held constant using replica method
- Compute functions of the mean posterior parameter $w^*(D)$

$$\rho(\boldsymbol{w}^*) = \frac{\boldsymbol{w}^* \cdot \boldsymbol{w}^t}{||\boldsymbol{w}^*||||\boldsymbol{w}^t||}$$

$$\mathcal{L}(\boldsymbol{w}^*) = \langle \log p(\boldsymbol{y} | \boldsymbol{w}^*, \boldsymbol{C}, \boldsymbol{\lambda}) \rangle_{\boldsymbol{y} | \boldsymbol{w}^t}$$

イロト イポト イヨト イヨト

Average case theory for sparse Bayesian PCA

- Compute marginal likelihood (log p(D|C, λ))_D in limit N → ∞ with α = M/N held constant using replica method
- Compute functions of the mean posterior parameter $w^*(D)$

$$\rho(\mathbf{w}^*) = \frac{\mathbf{w}^* \cdot \mathbf{w}^t}{||\mathbf{w}^*||||\mathbf{w}^t||}$$

$$\mathcal{L}(\mathbf{w}^*) = \langle \log p(\mathbf{y}|\mathbf{w}^*, C, \lambda) \rangle_{\mathbf{y}|\mathbf{w}^*}$$

 Good agreement with simulations for most relevant case of small α (so-called large N small p regime)

Average case theory for sparse Bayesian PCA

- Compute marginal likelihood (log p(D|C, λ))_D in limit N → ∞ with α = M/N held constant using replica method
- Compute functions of the mean posterior parameter $w^*(D)$

$$\rho(\mathbf{w}^*) = \frac{\mathbf{w}^* \cdot \mathbf{w}^t}{||\mathbf{w}^*||||\mathbf{w}^t||}$$

$$\mathcal{L}(\mathbf{w}^*) = \langle \log p(\mathbf{y}|\mathbf{w}^*, C, \lambda) \rangle_{\mathbf{y}|\mathbf{w}^*}$$

 Good agreement with simulations for most relevant case of small α (so-called large N small p regime)

Average case theory for sparse Bayesian PCA

 Similar replica calculation to Uda and Kabashima (J. Phys. Soc. Japan 74, 2005)

$$Z(D) = p(D|C,\lambda) = \int \mathrm{d}\boldsymbol{w} p(\boldsymbol{w}|C,\lambda) \prod_{n=1}^{N} p(\boldsymbol{y}_n|\boldsymbol{w})$$

$$\frac{1}{N} \langle \log Z(D) \rangle_{D, \boldsymbol{w}^{t}} = \frac{1}{N} \lim_{n \to 0} \frac{\partial}{\partial n} \langle Z^{n}(D) \rangle_{D, \boldsymbol{w}^{t}} \\ = \alpha \langle \log p(\boldsymbol{y} | \boldsymbol{w}^{*}(D), C, \lambda) \rangle_{\boldsymbol{y}, D, \boldsymbol{w}^{t}} + \text{entropic terms}$$

э

Average case theory for sparse Bayesian PCA

 Similar replica calculation to Uda and Kabashima (J. Phys. Soc. Japan 74, 2005)

$$Z(D) = p(D|C,\lambda) = \int \mathrm{d}\boldsymbol{w} p(\boldsymbol{w}|C,\lambda) \prod_{n=1}^{N} p(\boldsymbol{y}_n|\boldsymbol{w})$$

$$\frac{1}{N} \langle \log Z(D) \rangle_{D, \boldsymbol{w}^{t}} = \frac{1}{N} \lim_{n \to 0} \frac{\partial}{\partial n} \langle Z^{n}(D) \rangle_{D, \boldsymbol{w}^{t}} \\ = \alpha \langle \log p(\boldsymbol{y} | \boldsymbol{w}^{*}(D), C, \lambda) \rangle_{\boldsymbol{y}, D, \boldsymbol{w}^{t}} + \text{entropic terms}$$

Average case becomes typical for large N due to self-averaging

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Standard PCA result (C=1)

Learning exhibits phase transitions, e.g. (for lpha>1)

$$\rho(w^*) = \theta(\alpha - T^{-2}) \theta\left(\alpha - \frac{\lambda}{NT}\right) \sqrt{\frac{\alpha - T^{-2}}{\alpha + T^{-1}}}$$

where $\theta(x)$ is the step function and

$$T = ||w_t||_{N \to \infty}^2 = NC_t \lambda_t^{-1}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Standard PCA result (C=1)

Learning exhibits phase transitions, e.g. (for lpha>1)

$$\rho(w^*) = \theta(\alpha - T^{-2}) \theta\left(\alpha - \frac{\lambda}{NT}\right) \sqrt{\frac{\alpha - T^{-2}}{\alpha + T^{-1}}}$$

where $\theta(x)$ is the step function and

$$T = ||w_t||_{N \to \infty}^2 = NC_t \lambda_t^{-1}$$

• Consistent with result for Bayesian PCA with spherical prior $p(w) \propto \delta(||w|| - 1)$ (Riemann et al. J. Phys. A 1996)

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Standard PCA result (C=1)

Learning exhibits phase transitions, e.g. (for lpha>1)

$$\rho(w^*) = \theta(\alpha - T^{-2}) \theta\left(\alpha - \frac{\lambda}{NT}\right) \sqrt{\frac{\alpha - T^{-2}}{\alpha + T^{-1}}}$$

where $\theta(x)$ is the step function and

$$T = ||w_t||_{N \to \infty}^2 = NC_t \lambda_t^{-1}$$

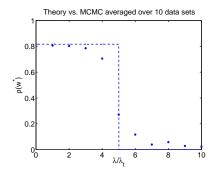
- Consistent with result for Bayesian PCA with spherical prior $p(w) \propto \delta(||w|| 1)$ (Riemann et al. J. Phys. A 1996)
- \blacktriangleright Only new feature is 1st-order transition with increasing λ

Standard PCA result

Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Standard PCA result (C=1)

 $\lambda_t = N, N = 5000, M = 20000 \ (\alpha = 5)$

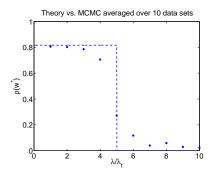


Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data

L1 prior

Standard PCA result (C=1)

 $\lambda_t = N, N = 5000, M = 20000 (\alpha = 5)$



Here we will only consider learning away from phase transitions

Bayesian learning of sparse factor loadings

(D) (A) (A)

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for sparse PCA (C<1)

▶ We consider two types of data set distribution:

Bayesian learning of sparse factor loadings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for sparse PCA (C<1)

▶ We consider two types of data set distribution:

(1) Same form as prior: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t|0, \lambda_t^{-1})$

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for sparse PCA (C<1)

▶ We consider two types of data set distribution:

(1) Same form as prior: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t|0, \lambda_t^{-1})$ (2) Different form: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t\delta(w_i^t - \lambda_t^{-1/2})$

イロト イポト イヨト イヨト

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for sparse PCA (C<1)

- ▶ We consider two types of data set distribution:
- (1) Same form as prior: $p(w_i^t) = (1 C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t | 0, \lambda_t^{-1})$ (2) Different form: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t\delta(w_i^t - \lambda_t^{-1/2})$

Both give identical performance for standard PCA

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

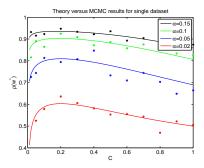
Results for sparse PCA (C<1)

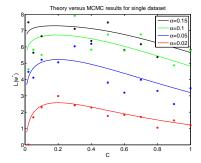
- ▶ We consider two types of data set distribution:
- (1) Same form as prior: $p(w_i^t) = (1 C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t|0, \lambda_t^{-1})$ (2) Different form: $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \delta(w_i^t - \lambda_t^{-1/2})$
 - Both give identical performance for standard PCA
 - Both give identical performance if sparsity is known

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for data distribution (1): $ho(w^*)$ and $\mathcal{L}(w^*)$

 $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t | 0, \lambda_t^{-1})$ $C_t = 0.2, \lambda = \lambda_t = N/100, M = 200, N = M/\alpha$





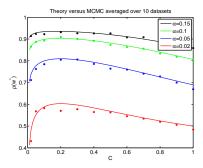
(D) (A) (A)

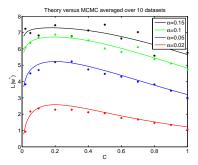
Bayesian learning of sparse factor loadings

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for data distribution (1): $ho(w^*)$ and $\mathcal{L}(w^*)$

 $p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t \mathcal{N}(w_i^t | 0, \lambda_t^{-1})$ $C_t = 0.2, \lambda = \lambda_t = N/100, M = 200, N = M/\alpha$



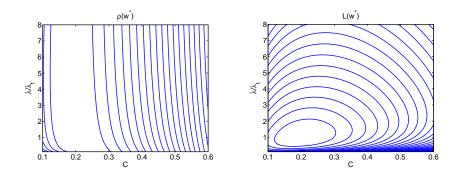


(D) (A) (A)

Bayesian learning of sparse factor loadings

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

 $C_t = 0.2, \lambda_t = 20, M = 200, N = 2000 (\alpha = 0.1)$



Bayesian learning of sparse factor loadings

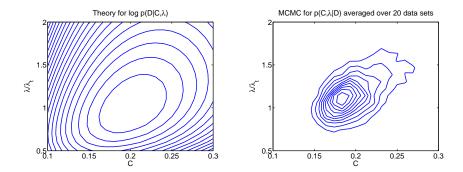
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

Results for data distribution (1): $p(D|C,\lambda)$

 $C_t = 0.2, \lambda_t = 20, M = 200, N = 2000 (\alpha = 0.1)$



Bayesian learning of sparse factor loadings

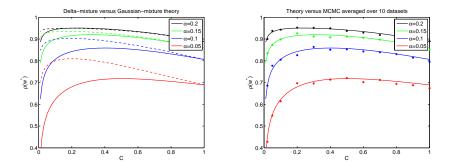
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data **Results for unmatched data** L1 prior

Results for data distribution (2):
$$\rho(w^*)$$

$$p(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t\delta(w_i^t - \lambda_t^{-1/2}) C_t = 0.2, \lambda = \lambda_t = N/100, M = 200, N = M/\alpha$$

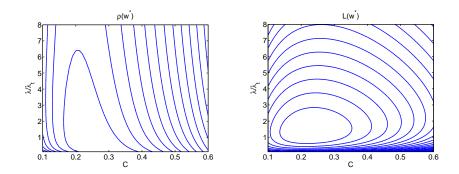


Bayesian learning of sparse factor loadings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data Results for unmatched data L1 prior

 $C_t = 0.2, \lambda_t = 10, M = 200, N = 1000 (\alpha = 0.2)$



Bayesian learning of sparse factor loadings

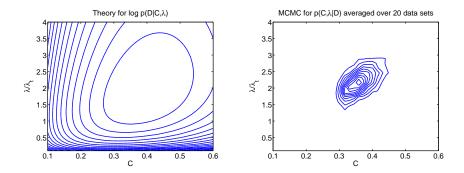
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Standard PCA result Results for sparse PCA (C<1) Results for well-matched data **Results for unmatched data** L1 prior

Results for data distribution (2): $p(D|C,\lambda)$

 $C_t = 0.2, \lambda_t = 10, M = 200, N = 1000 (\alpha = 0.2)$



Bayesian learning of sparse factor loadings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Is this problem specific to the mixture prior?

Bayesian learning of sparse factor loadings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Popular sparsity priors	Standard PCA result
Sparse Bayesian factor analysis	Results for sparse PCA (C<1)
Average case theory	Results for well-matched data
Results	Results for unmatched data
Discussion	L1 prior

Other priors?

- Is this problem specific to the mixture prior?
- Consider the L1 prior (with an additional L2 term),

$$p(w_i) \propto e^{-rac{\lambda_2 w_i^2}{2} - \lambda_1 |w_i|}$$

• • = •

Popular sparsity priors	Standard PCA result
Sparse Bayesian factor analysis	Results for sparse PCA (C<1)
Average case theory	Results for well-matched data
Results	Results for unmatched data
Discussion	L1 prior

Other priors?

- Is this problem specific to the mixture prior?
- Consider the L1 prior (with an additional L2 term),

$$p(w_i) \propto e^{-rac{\lambda_2 w_i^2}{2} - \lambda_1 |w_i|}$$

Data distribution (2)

$$\rho(w_i^t) = (1 - C_t)\delta(w_i^t) + C_t\delta(w_i^t - \lambda_t^{-1/2})$$

• • = • •

L1 prior results: $\rho(w^*)$

$$C_t = 0.2, \lambda_t = N/100, \alpha = M/N$$

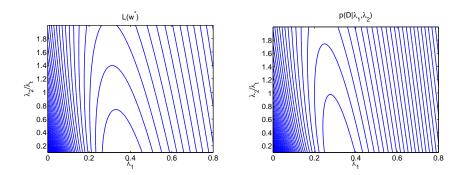


Bayesian learning of sparse factor loadings

イロト イヨト イヨト イヨト

L1 prior results:
$$ho(D|\lambda_1,\lambda_2)$$
 versus $\mathcal{L}(w^*)$ and $ho(w^*)$

 $C_t = 0.2, \lambda_t = N/100, \alpha = 0.2$

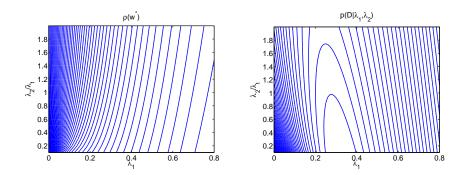


Bayesian learning of sparse factor loadings

イロン イヨン イヨン イヨン

L1 prior results:
$$ho(D|\lambda_1,\lambda_2)$$
 versus $\mathcal{L}(w^*)$ and $ho(w^*)$

 $C_t = 0.2, \lambda_t = N/100, \alpha = 0.2$



Bayesian learning of sparse factor loadings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Mixture prior works as expected when well-matched to data

イロン イヨン イヨン イヨン

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading

臣

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading
- Marginal likelihood seems more effective for L1 prior

(D) (A) (A)

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading
- Marginal likelihood seems more effective for L1 prior
- ...although L1 didn't really perform well (preliminary)

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading
- Marginal likelihood seems more effective for L1 prior
- ...although L1 didn't really perform well (preliminary)
- Future work should look at multiple factors

Discussion

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading
- Marginal likelihood seems more effective for L1 prior
- ...although L1 didn't really perform well (preliminary)
- Future work should look at multiple factors
- Assessment of metrics using the full posterior

・ロト ・ 同ト ・ ヨト ・ ヨト

Discussion

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading
- Marginal likelihood seems more effective for L1 prior
- ...although L1 didn't really perform well (preliminary)
- Future work should look at multiple factors
- Assessment of metrics using the full posterior
- Comparison with MAP and ML approaches

・ロト ・ 同ト ・ ヨト ・ ヨト

Discussion

- Mixture prior works as expected when well-matched to data
- Marginal likelihood for mixture prior can be misleading
- Marginal likelihood seems more effective for L1 prior
- ...although L1 didn't really perform well (preliminary)
- Future work should look at multiple factors
- Assessment of metrics using the full posterior
- Comparison with MAP and ML approaches
- And better priors!

(ロ) (同) (三) (三)