GP regression on random graphs: Covariance functions and Bayes errors

P Sollich¹ and Camille Coti^{1,2}

¹ King's College London
² Laboratoire de Recherche en Informatique,
Université Paris-Sud

Outline

- Motivation
- Covariance functions on graphs
 - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters
- Summary and outlook

Motivation

- GP regression over continuous spaces relatively well understood [e.g. Opper & Malzahn]
- Discrete spaces occur in many applications: sequences, strings etc
- What can we say about GP learning on these?
- Focus on random graphs with finite connectivity as a paradigmatic case

Outline

- Motivation
- 2 Covariance functions on graphs
 - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters
- 4 Summary and outlook

Graph Laplacian

- Easiest to define from graph Laplacian [Smola & Kondor 2003]
- Adjacency matrix $A_{ij} = 0$ or 1 depending on whether nodes iand j are connected
- For a graph with V nodes, A is a $V \times V$ matrix
- Consider undirected links $(A_{ij} = A_{ji})$, and no self-loops $(A_{ii} = 0)$
- Degree of node i: $d_i = \sum_{i=1}^{V} A_{ij}$
- Set $D = diag(d_1, \dots, d_V)$; then graph Laplacian is def'd as

$$L = 1 - D^{-1/2}AD^{-1/2}$$

• Spectral graph theory: L has eigenvalues in 0...2

Graph covariance functions Definition

- From graph Laplacian, can define covariance "functions" (really $V \times V$ matrices)
- Random walk kernel, $a \ge 2$:

$$C \propto (a - L)^p \propto \left[(a - 1) \mathbf{1} + D^{-1/2} A D^{-1/2} \right]^p$$

Diffusion kernel:

$$oldsymbol{C} \propto \exp\left(-rac{\sigma^2}{2}oldsymbol{L}
ight) \propto \exp\left(rac{\sigma^2}{2}oldsymbol{D}^{-1/2}oldsymbol{A}oldsymbol{D}^{-1/2}
ight)$$

• Useful to normalize so that $(1/V) \sum_{i} C_{ii} = 1$

Graph covariance functions Interpretation

- Random walk on graph has transition probability matrix $A_{ij}d_i^{-1}$ for transition $j \to i$
- After s steps, get $(AD^{-1})^s = D^{1/2}(D^{-1/2}AD^{-1/2})^sD^{-1/2}$
- Compare this with

$$C \propto \sum_{s=0}^{p} {p \choose s} (1/a)^s (1-1/a)^{p-s} (\mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2})^s$$

• So $D^{1/2}CD^{-1/2}$ is a random walk transition matrix, averaged over distribution of number of steps:

$$s \sim \text{Binomial}(p,1/a)$$
 or $s \sim \text{Poisson}(\sigma^2/2)$

• Diffusion kernel is limit $p, a \to \infty$ at constant $p/a = \sigma^2/2$

- Motivation
- 2 Covariance functions on graphs
 - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- 3 Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters
- 4 Summary and outlook

Random regular graphs

- Regular graphs: Every node has same degree d
- ullet Random graph ensemble: all graphs with given V and dare assigned the same probability
- Typical loops are then long $(\propto \ln V)$ if V is large
- So locally these graphs are tree-like
- How do graph covariance functions then behave?
- Expect that after many random walk steps $(p \to \infty)$, kernel becomes uniform: $C_{ij} = 1$, all nodes fully correlated

- On regular trees, all nodes are equivalent (except for boundary effects)
- So kernel C_{ij} is a function only of distance ℓ measured along the graph (number of links between i and j)
- Can calculate recursively over p: $C_{\ell,p=0}=\delta_{\ell,0}$ and

$$C_{0,p+1} = \left(1 - \frac{1}{a}\right) C_{0,p} + \frac{d}{ad} C_{1,p}$$

$$C_{\ell,p+1} = \frac{1}{ad} C_{\ell-1,p} + \left(1 - \frac{1}{a}\right) C_{\ell,p} + \frac{d-1}{ad} C_{\ell+1,p}$$

- Normalize afterwards for each p so that $C_{0,p} = 1$
- Let's see what happens for d=3, a=2 and increasing p

Effect of increasing p

Kernel does not become uniform even for $p \to \infty$

What is going on? Mapping to biased random walk

 Gather all the (equal) random walk probabilities over the shell of nodes at distance ℓ :

$$S_{0,p} = C_{0,p}, \qquad S_{\ell,p} = d(d-1)^{\ell-1}C_{\ell,p}$$

• Then recursion $S_{\ell,p} \to S_{\ell,p+1}$ represents a biased random walk in one dimension, with reflecting barrier at origin:

Random walk propagation Plots of $\ln S_{\ell,p}$ versus ℓ for d=3, a=2

 $\ell \to \ell + 1$ with prob. (d-1)/(ad), $\ell \to \ell - 1$ with prob. 1/(ad), so $S_{\ell,p}$ has peak at $\ell = (p/a)[(d-2)/d]$

Converting back to $C_{\ell,p} \propto S_{\ell,p}/(d-1)^{\ell-1}$

Covariance function determined by tail of $S_{\ell,p}$ near origin Can be used to calculate $C_{\ell,p\to\infty}=[1+\ell(d-1)/d](d-1)^{-\ell/2}$

Outline

- Motivation
- 2 Covariance functions on graphs
 - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters
- 4 Summary and outlook

Effect of loops

- Eventually, approximation of ignoring loops must fail
- Estimate when this happens: tree of depth ℓ has $V = 1 + d(d-1)^{\ell-1}$ nodes
- So a regular graph can be tree-like at most out to $\ell \approx \ln(V) / \ln(d-1)$
- Random walk on graph typically takes p/a steps, so expect loop effects to appear in covariance function around

$$\frac{p}{a} \approx \frac{\ln(V)}{\ln(d-1)}$$

• Check by measuring average of $K_1 = C_{ij} / \sqrt{C_{ii}C_{jj}}$ (i, j nearest neighbours) on randomly generated graphs

Covariance function for neighbouring nodes

 K_1 starts to get larger than for tree approximation $(V \to \infty)$ Results depend only on p/a for large p as expected

Outline

- - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters

Bayes errors and learning curves

- Generalization error ϵ of GP regression can be expressed in terms of covariance function for any given dataset
- Assume we have the correct prior (matched case)
- Then ϵ is the Bayes error (loss = squared difference)
- Average over datasets of given size n gives learning curve $\epsilon(n)$
- Take distribution of inputs to be uniform across graph
- How does this depend on n, V, d(=3 here), a, p, and noise variance σ^2 ?

Some simulation results for orientation

Two different regimes: $\epsilon > \sigma^2$ and $\epsilon < \sigma^2$

Theory: Learning curve approximation

 Approximations for the learning curve are based on kernel eigenvalues

$$\langle C_{ij}\phi_j\rangle = \lambda\phi_i$$

where $\langle ... \rangle$ is over input distribution across nodes

Try simple but often accurate approximation

$$\epsilon = g\left(\frac{n}{\epsilon + \sigma^2}\right), \qquad g(h) = \sum_{\mu=1}^{V} (\lambda_{\mu}^{-1} + h)^{-1}$$

 Has to be solved self-consistently; note that $g(0) = \sum_{\mu} \lambda_{\mu} = \langle C_{ij} \rangle = 1$

Theory: Limit of large V

- For large V, tree approximation should be accurate
- Tree Laplacian eigenvalue density is known:

$$\rho_L(\lambda) = \frac{\sqrt{\frac{4(d-1)}{d^2} - (\lambda - 1)^2}}{2\pi d\lambda (2 - \lambda)}$$

- Eigenvalues of covariance function are then $\propto V^{-1}(a-\lambda)^p$
- Use this to evaluate approximate learning curves; they depend on n and V only through $\nu = n/V$

Eigenvalue spectra

Tree approximation quite accurate

Comparison with simulations

Accurate initially and for $\epsilon < \sigma^2$, less so in crossover

Scaling with n/V

Works well throughout

Outline

- - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters

Effect of loops for large p

- Tree approximation must break down as p increases, when loops become important
- Eventually, when covariance function is uniform, need to learn only one function value so expect

$$\epsilon = \frac{1}{1 + n/\sigma^2}$$

- Consider a case with V = 500, p = 200, a = 2, d = 3
- Compare to naive estimate and approximation based on true kernel eigenvalues

Simulations vs theory for large p

Naive estimate poor even though $\lambda_1 \approx 0.994$ Theory works well; tail is $\propto (\sigma^2/n) \ln(n)$

Outline

- - Definition from graph Laplacian
 - Analysis on regular graphs: tree approximation
 - Effect of loops
- Bayes errors and learning curves
 - Approximations
 - Effect of loops
 - Effect of kernel parameters

Effect of increasing p

Theory becomes more accurate

(Approximate) predictions for large p

- Comparison with simulation shows that theory becomes more accurate
- For large p, find that learning curve tail ($\epsilon \ll \sigma^2$) decays as

$$\epsilon \sim \frac{c\sigma^2}{\nu} \ln^{3/2} \left(\frac{\nu}{c\sigma^2}\right), \qquad c \sim (p/a)^{-3/2}$$

- So density ν to reach a certain ϵ decays $\sim c \sim p^{-3/2}$
- Even though kernel $C_{\ell,n}$ at fixed graph distance becomes p-independent for large p, learning still gets faster
- Presumably an effect of kernel values for large $\ell \sim p$?

Effect of increasing a

Theory becomes less accurate

Effect of increasing a: Limit $a \to \infty$

- Increasing a means typical number of steps in random walk, p/a, decreases
- Extreme limit $a \to \infty$ gives $C_{ij} = \delta_{ij}$: all nodes uncorrelated
- Approximation then predicts

$$\epsilon = \frac{1}{2}(1 - \nu - \sigma^2) + \sqrt{\frac{1}{4}(1 - \nu - \sigma^2)^2 + \sigma^2}$$

Compare exact result:

$$\epsilon = \langle (1 + n_i/\sigma^2)^{-1} \rangle, \qquad n_i = \mathsf{Binomial}(n, 1/V)$$

• In low-noise limit $\sigma^2 \to 0$ these become (for large V)

$$\epsilon = 1 - \nu$$
 vs. $\epsilon = \exp(-\nu)$

so approximation gives an underestimate

Limit $a \to \infty$

Same "shape" of deviation as before for larger finite \boldsymbol{a}

Summary and outlook

- Kernels on graphs have some counter-intuitive properties
- Function values on different nodes only become fully correlated due to loop effects
- Nontrivial limiting kernel shape $(p \to \infty)$ on regular trees, can be obtained from biased random walk
- For not-too-large p, learning curves scale with $\nu = n/V$
- For large p, loops give fully-correlated limit, but with significant corrections
- Simple approximation works well except for small p/a, in crossover region ($\epsilon \approx \sigma^2$)
- Future work: Prior mismatch?
- Other graph structures? Poisson, small-world, etc?

