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Motivation

GP regression over continuous spaces relatively well
understood [e.g. Opper & Malzahn]

Discrete spaces occur in many applications:
sequences, strings etc

What can we say about GP learning on these?

Focus on random graphs with finite connectivity as a
paradigmatic case
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Graph Laplacian

Easiest to define from graph Laplacian [Smola & Kondor 2003]

Adjacency matrix Aij = 0 or 1 depending on whether nodes i
and j are connected

For a graph with V nodes, A is a V × V matrix

Consider undirected links (Aij = Aji),
and no self-loops (Aii = 0)

Degree of node i: di =
∑V

j=1 Aij

Set D = diag(d1, . . . , dV ); then graph Laplacian is def’d as

L = 1−D−1/2AD−1/2

Spectral graph theory: L has eigenvalues in 0 . . . 2
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Graph covariance functions
Definition

From graph Laplacian, can define covariance “functions”
(really V × V matrices)

Random walk kernel, a ≥ 2:

C ∝ (a−L)p ∝
[
(a− 1)1 + D−1/2AD−1/2

]P

Diffusion kernel:

C ∝ exp
(
−σ2

2
L

)
∝ exp

(
σ2

2
D−1/2AD−1/2

)
Useful to normalize so that (1/V )

∑
i Cii = 1
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Graph covariance functions
Interpretation

Random walk on graph has transition probability matrix
Aijd

−1
j for transition j → i

After s steps, get (AD−1)s = D1/2(D−1/2AD−1/2)sD−1/2

Compare this with

C ∝
p∑

s=0

( p
s )(1/a)s(1− 1/a)p−s(D−1/2AD−1/2)s

So D1/2CD−1/2 is a random walk transition matrix,
averaged over distribution of number of steps:

s ∼ Binomial(p,1/a) or s ∼ Poisson(σ2/2)

Diffusion kernel is limit p, a→∞ at constant p/a = σ2/2
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Random regular graphs

Regular graphs: Every node has same degree d

Random graph ensemble: all graphs with given V and d
are assigned the same probability

Typical loops are then long (∝ lnV ) if V is large

So locally these graphs are tree-like

How do graph covariance functions then behave?

Expect that after many random walk steps (p→∞), kernel
becomes uniform: Cij = 1, all nodes fully correlated
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Covariance functions on regular trees

On regular trees, all nodes are equivalent
(except for boundary effects)

So kernel Cij is a function only of distance ` measured along
the graph (number of links between i and j)

Can calculate recursively over p: C`,p=0 = δ`,0 and

C0,p+1 =
(

1− 1
a

)
C0,p +

d

ad
C1,p

C`,p+1 =
1
ad

C`−1,p +
(

1− 1
a

)
C`,p +

d− 1
ad

C`+1,p

Normalize afterwards for each p so that C0,p = 1
Let’s see what happens for d = 3, a = 2 and increasing p
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Effect of increasing p

0 5 10 15
l

0

0.2

0.4

0.6

0.8

1

K
l p=1

p=2
p=3
p=4
p=5
p=10
p=20
p=50
p=100
p=200
p=500
p=infty

a=2, d=3

Kernel does not become uniform even for p→∞
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What is going on?
Mapping to biased random walk

Gather all the (equal) random walk probabilities over the shell
of nodes at distance `:

S0,p = C0,p, S`,p = d(d− 1)`−1C`,p

Then recursion S`,p → S`,p+1 represents a biased random walk
in one dimension, with reflecting barrier at origin:

1− 1
a

1
a 1− 1

a
d−1
ad 1− 1

a
d−1
ad 1− 1

a
x −→ x −→ x −→ x

0 ←− 1 ←− 2 ←− 3
1
ad

1
ad

1
ad
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Random walk propagation
Plots of ln S`,p versus ` for d = 3, a = 2
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`→ ` + 1 with prob. (d− 1)/(ad), `→ `− 1 with prob. 1/(ad),
so S`,p has peak at ` = (p/a)[(d− 2)/d]
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Converting back to C`,p ∝ S`,p/(d− 1)`−1
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Covariance function determined by tail of S`,p near origin
Can be used to calculate C`,p→∞ = [1 + `(d− 1)/d](d− 1)−`/2
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Effect of loops

Eventually, approximation of ignoring loops must fail

Estimate when this happens: tree of depth ` has
V = 1 + d(d− 1)`−1 nodes

So a regular graph can be tree-like at most out to
` ≈ ln(V )/ ln(d− 1)
Random walk on graph typically takes p/a steps, so expect
loop effects to appear in covariance function around

p

a
≈ ln(V )

ln(d− 1)

Check by measuring average of K1 = Cij/
√

CiiCjj

(i, j nearest neighbours) on randomly generated graphs
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Covariance function for neighbouring nodes
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K1 starts to get larger than for tree approximation (V →∞)
Results depend only on p/a for large p as expected
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Bayes errors and learning curves

Generalization error ε of GP regression can be expressed in
terms of covariance function for any given dataset

Assume we have the correct prior (matched case)

Then ε is the Bayes error (loss = squared difference)

Average over datasets of given size n gives learning curve ε(n)
Take distribution of inputs to be uniform across graph

How does this depend on n, V , d(=3 here), a, p,
and noise variance σ2?
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Some simulation results for orientation
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V=500, d=3, a=2, p=10

Two different regimes: ε > σ2 and ε < σ2
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Theory: Learning curve approximation

Approximations for the learning curve are based on
kernel eigenvalues

〈Cijφj〉 = λφi

where 〈. . .〉 is over input distribution across nodes

Try simple but often accurate approximation

ε = g

(
n

ε + σ2

)
, g(h) =

V∑
µ=1

(λ−1
µ + h)−1

Has to be solved self-consistently; note that
g(0) =

∑
µ λµ = 〈Cjj〉 = 1
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Theory: Limit of large V

For large V , tree approximation should be accurate

Tree Laplacian eigenvalue density is known:

ρL(λ) =

√
4(d−1)

d2 − (λ− 1)2

2πdλ(2− λ)

Eigenvalues of covariance function are then ∝ V −1(a− λ)p

Use this to evaluate approximate learning curves; they depend
on n and V only through ν = n/V
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Eigenvalue spectra
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Eigenvalue spectrum for d=3, a=2, p=1  (2-L)

Tree approximation quite accurate
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Comparison with simulations
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Accurate initially and for ε < σ2, less so in crossover
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Scaling with n/V
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V=500 (filled) & 1000 (empty), d=3, a=2, p=10

Works well throughout
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Effect of loops for large p

Tree approximation must break down as p increases,
when loops become important

Eventually, when covariance function is uniform,
need to learn only one function value so expect

ε =
1

1 + n/σ2

Consider a case with V = 500, p = 200, a = 2, d = 3
Compare to naive estimate and approximation
based on true kernel eigenvalues
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Simulations vs theory for large p
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V=500, d=3, a=2, p=200, σ2
=0.1

Naive estimate poor even though λ1 ≈ 0.994
Theory works well; tail is ∝ (σ2/n) ln(n)
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Effect of increasing p

0.1 1 10
ν = n / V

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ε

σ2
 = 0.1

σ2
 = 0.01

σ2
 = 0.001

σ2
 = 0.0001

σ2 = 0

V=500, d=3, a=2, p=20

Theory becomes more accurate
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(Approximate) predictions for large p

Comparison with simulation shows that theory becomes more
accurate

For large p, find that learning curve tail (ε� σ2) decays as

ε ∼ cσ2

ν
ln3/2

( ν

cσ2

)
, c ∼ (p/a)−3/2

So density ν to reach a certain ε decays ∼ c ∼ p−3/2

Even though kernel C`,p at fixed graph distance becomes
p-independent for large p, learning still gets faster

Presumably an effect of kernel values for large ` ∼ p?

Peter Sollich & Camille Coti GP regression on random graphs



Motivation Covariance functions Bayes errors Summary Approximations Effect of loops Kernel parameters

Effect of increasing a
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Theory becomes less accurate
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Effect of increasing a: Limit a→∞

Increasing a means typical number of steps
in random walk, p/a, decreases

Extreme limit a→∞ gives Cij = δij : all nodes uncorrelated

Approximation then predicts

ε = 1
2(1− ν − σ2) +

√
1
4(1− ν − σ2)2 + σ2

Compare exact result:

ε =
〈
(1 + ni/σ2)−1

〉
, ni = Binomial(n, 1/V )

In low-noise limit σ2 → 0 these become (for large V )

ε = 1− ν vs. ε = exp(−ν)

so approximation gives an underestimate
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Limit a→∞
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a = ∞, σ2
 = 0.0001

Same “shape” of deviation as before for larger finite a
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Summary and outlook

Kernels on graphs have some counter-intuitive properties

Function values on different nodes only become fully
correlated due to loop effects

Nontrivial limiting kernel shape (p→∞) on regular trees,
can be obtained from biased random walk

For not-too-large p, learning curves scale with ν = n/V

For large p, loops give fully-correlated limit,
but with significant corrections

Simple approximation works well except for small p/a,
in crossover region (ε ≈ σ2)

Future work: Prior mismatch?

Other graph structures? Poisson, small-world, etc?
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