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Numerical Integration

Approximate inference is a problem of numerical integration.

Notation:
» prior: po(x) = exp {0T¢ } for z € R?
> likelihood terms: ti( ) = p(yilz) = exp {6 ¢,(x)}, fori=1,...,n
> posterior: p(z|y1, ..., Yn) = %po(x) I ti(z)
> key object of interest:
Z = /pg(aj) ﬁti(az)daz = /exp {0T¢ + ZHT% }
i=1

» (note: an intractable exponential family)



Expectation Propagation (loosely)

» Approximates Oth, 1st, and 2nd moments of an intractable family.

» Typical presentation: minimize K L(p||q) for some tractable family ¢:

T

exp 0+ Z)\j ¢(z) p = arg ;Té% KL(pllqg)
j=1

q(z) = Zor

» But this is again intractable. Instead, iterate one term at a time:

£ — arg min KT (¢ti]1qV'%)
t; eN

-
where ¢\it; x exp <9 + Z&) ¢(z) + 0 (x);
J#

» ... and hope it all works out.



Typical EP Example: Bayesian Probit Regression

v

po(z) = N(z;m, K) is the prior on weights = € R%.
ti(z) = p(yilz) = @ (z (c;y5)), i = 1,...,n. (normal cdf)

v

clarification:

v

» x are the shape parameters of the hyperplane
» ¢; € R? are the inputs to the probit regression, the query points along
the latent hyperplane defined by z.

v

given data D = {¢;,yi }i=1,..n:
» inference: p(z|D)
» model selection: arg max,, x p(D)

v

Critical points for GP approx workshop:
» GP classification is a special case
> there are n rank-one factors, and n # d
» EP updates are still typical unidmensional normal-probit integrals



Some relevant literature

» EP works very well for GP Classification
[Kuss and Rasmussen (2005) JMLR]
[Rasmussen and Williams (2006) MIT Press]

» EP can be improved with perturbative corrections
[Opper, Paquet, Winther (2009) NIPS]
[Paquet, Opper, Winther (2009) JMLR]
[Opper, Paquet, Winther (2013) JMLR]

» EP with step functions can be accurate...
[Cunningham, Hennig, Lacoste-Julien (2011) arXiv]
[Opper, Paquet, Winther (2013) JMLR]

» EP with n > d is worth considering (and can be correct?)
[Dehaene and Barthelme (2015) arXiv]
[Gelman, Vehtari, et al (2014) arXiv]
[Xu et al (2014) NIPS]

[Hernandez-Lobato and Hernandez-Lobato (today)]
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Limit of Bayesian Probit Regression

> ti(z) = p(yilz) = @ (2 (c;y5)), i = 1,...,n. (standard normal cdf)

» Now let ||¢;]| — oo

» t; are Heaviside step functions oriented in the the direction of y;c;

> p(D) = [po(z) []; ti(z)dz = [, po(z)dz

» where A is the polyhedron defined by the factors ;.

//\/ [ it
7=
7z

\po_/

L

to



Empirical Performance

» EP works generally quite well for these integrals Z = [, po(z)dz.
> Note: hyperrectangular regions, n = d.
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Empirical Performance

Normalized error in logZ

» EP works generally quite well for these integrals Z = [, po(z)dz.
» Note: hyperrectangular regions, n = d.
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Empirical Performance

> ...EP still works well for these integrals Z = [, po(x)d.
> Note: polyhedral regions, n # d.
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Empirical Performance

» Errors are increasing in the number of constraints c;...
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EP redundant factorization in BPR/GPC

» Redundant factorization n > d can erode quality of EP estimates.
» True of probit regression generally, not just the limiting case.

probit probit
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» (very unusual property of EP, unlike mean field, Laplace, etc.)
(but see [Hensman, ZwieBle, Lawrence (2014) AISTATS])
> (generally agrees with Ole's comment log R = log Z%p > 0)



Not quite an upper bound

» A few contrived examples:
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Not quite an upper bound

]

L
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> tractable: spherical prior with

t1(z) = 1z € [-1,1]?}.
» No redundant factors:
/po(x)tl(x)dx

min K L(pot1||pot1)

log Z

EP becomes:

» « redundant factors:

/po(x)tl(x)o‘dx

min Dé (pot1||pot1)

log Z

EP becomes:



Not quite an upper bound

» Why this happens:
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Pause... is this contradictory?

» Key differences vs. many GP classification examples:
» GP Classification considers the n = d regime
» Axis aligned factors reduce redundancy ( ¢;(z) = t(x;) )
» Sample points are typically close to origin — “weak” non-gaussianity
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Expectation Propagation (precisely)

» Recall for exponential families ﬁ exp {HTqﬁ(x)}:

» mean parameters u = Eg(¢(z)) = Vg log Z(6)
» natural parameters 0(u) =V, A* (1)
» conjugate dual A*(u) = —H (pg(,)) (conditions apply)

» Our intractable exponential family distribution:

n

p(r) = o) [T 1) = exp {e%(:c) £ @(az)} .
=1

=1

» A variational representation of our object of interest:

1 Z — GT é—l— (1 - H = .
og M{Egi\{/l { 1% + ; i Mg + (p9(u,u))}

> (side note: this is a minimization of K L(q||p), not K L(p||q)).
[Wainwright and Jordan (2008) FTML]



The EP entropy approximation

log Z = ;2%{9 M+;9 M1+H(p9(ﬂﬂ))}

» Also intractable, so EP solves a relaxation to this variational problem:

n
log Z =~ max {GTN + Z@;ﬂi + Hep (1, u)} ,

€
ol i=1

> where Hep, (11, i) = H(qp(u)) + 3721 (H (o)) — H(do()))-
» Results in the moment matchlng of ¢\'t; and ¢\'%;, yielding

H(p) ~ +Z( q\iti) — H(q"'%))



Why the EP entropy approximation is interesting

» The entropy form offers a key hint as to why EP can go wrong...

H(p) ~ Hy = +Z( H(q"E;)

= H(q)— ZKL(q\itin\ifi)

=1

(¢\'t; and ¢\'; are moment matched, not entropy matched!)

» Of course, errors in our problem could come from:
> the entropy approximation itself H(p) ~ H,,
» the relaxed constraint set M € M’
» the optimization routine (e.g. no fixed point, etc.)



log Z errors and H(p) ~ H,,

» Return to the errors in log Z...
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log Z errors and H(p) ~ H,,

» Consider the step function case:
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log Z errors and H(p) ~ H,,

» Consider other cases:
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log Z errors and H(p) ~ H,,

» Consider other cases:

weak probit
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log Z errors and H(p) ~ H,,

> At least in the Bayesian Probit Regression case, much of the EP error
from redundant factors is due to entropy approximation.
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Correcting EP errors via the entropy connection

Normalized error in logZ
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» Remove bias via sampling-type entropy approximation
> feels like cheating...

» Change approximation to remove negative bias
» connecting back to a-EP



EP redundancy with entropy corrections

» For completeness...

Before correction...
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Correcting bias in the EP entropy approximation

» EP entropy approximation:
H(p) ~ Heyp = H(@)+) (H(q\iti) - H(q\%))
i=1

= H(q) - Y _KL(q"t|q %),

i=1

£ H(g)~ 3~ DelaVtllgVh).

i=1 "

> so one can heuristically choose «; to remove the bias...
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Takeaways for Discussion

v

EP is unusual in its dependence on the number of factors.
EP is very useful for normal probabilities, GPC, BPR.

v

v

Factorization can lead to significant problems, especially n > d.
» More work is needed to understand the conditions of these errors.

v

The entropy approximation gives a handle on the inherent bias...

» ...and potential for improvements.

Thanks...

» People: Alp Kuckelbir, Philipp Hennig, Simon Lacoste-Julien
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