Imperial College
London

Distributed Gaussian Processes for
Large-Scale Probabilistic Regression

Marc Deisenroth

Department of Computing
Imperial College London

http://wp.doc.ic.ac.uk/sml/marc-deisenroth
Joint work with Jun Wei Ng

Workshop on Gaussian Process Approximations
Copenhagen, 21 May 2015

http://wp.doc.ic.ac.uk/sml/marc-deisenroth

Scaling Gaussian Processes to Large Data Sets

Two orthogonal approaches

» Sparse Gaussian processes
» Use (smart) subset of data.

» Distributed Gaussian processes
» Use full data set, distribute computations

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve

non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training
» Practical limit of the data set size is N € (O(10°)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Distributed Gaussian Processes

: Standard GP
E—

Distributed Gaussian Processes

Kernel
matrix

Marc Deisenroth

@Copenhagen, 21 May 2015

Distributed Gaussian Processes

: Standard GP
—_—
Distributed GP

—1
S O(N?)
1 P
“:t" = | om1PY)

» Randomly split the full data set into M chunks of size P

Distributed Gaussian Processes

Marc Deisenroth @Copenhagen, 21 May 2015

Distributed Gaussian Processes

: Standard GP
—_—
Distributed GP

Kernel O(N3)

matrix

ﬁq = [By ooee)

» Randomly split the full data set into M chunks of size P

» Place M independent GP experts on these small chunks

Distributed Gaussian Processes

Marc Deisenroth @Copenhagen, 21 May 2015

Distributed Gaussian Processes

Standard GP —1

; — | Kemdl O(N?)
Distributed GP 1 .

i z I; E — E = | o P

» Randomly split the full data set into M chunks of size P

» Place M independent GP experts on these small chunks

» Block-diagonal approximation of kernel matrix K (sim. to PIC)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Distributed Gaussian Processes

Standard GP —1

; — | Kemdl O(N?)
Distributed GP 1 .

i z I; E — E = | o P

» Randomly split the full data set into M chunks of size P

v

Place M independent GP experts on these small chunks

v

Block-diagonal approximation of kernel matrix K (sim. to PIC)

» Combine independent computations to an overall result

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Training the Distributed GP

» Randomly split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Training the Distributed GP

v

Randomly split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|Xr 6)] Zk:l log pk(y(k) ‘X(k)/ 6)

v

Distributed optimization and training straightforward

» No inducing/variational parameters » Easy optimization

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Training the Distributed GP

v

Randomly split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|Xr 6)] Zk:l log pk(y(k) ‘X(k)/ 6)

» Distributed optimization and training straightforward
» No inducing/variational parameters » Easy optimization
» Computational complexity: O(MP?) [instead of O(N?)]

» Memory footprint: O(MP? + ND) [instead of O(N? + ND)],
potentially distributed across M computing nodes

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Scaling

10° 10’

410°

410*

Number of GP experts (DGP)

Computation time of NLML and its gradients (s)

{10°
-1
107 F / H - - B Computation time (DGP) 1102
- B - - B Computation time (Full GP)
’ B - - m Computation time (FITC)
, ’/ ® — @ Number of GP experts (DGP) .
10° 0
10° 10* 10° 10° 10’ 10°

Training data set size
» NLML is proportional to training time

» Full GP (16K training points) ~ sparse GP (32K training points)
~ distributed GP (16M training points)

» Push practical limit by order(s) of magnitude

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

» Product-of-GP-experts
» PoE (product of experts) M (Ng & Deisenroth, 2014)
» gPoE (generalized product of experts) » (Cao & Fleet, 2014)
» BCM (Bayesian Committee Machine) M (Tresp, 2000)
» rBCM (robust BCM) » (Deisenroth & Ng, 2015)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Objectives

» Scale to large data sets v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Objectives

» Scale to large data sets v/

» Good approximation of full GP (“ground truth”)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Heterogeneous computing infrastructures (laptop, cluster, ...)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Heterogeneous computing infrastructures (laptop, cluster, ...)

» Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Running Example

Full GP

-5 0 5 10 15

» Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D) = [| pe(fulxe, DY),
k=1

pr(felee, DY) = N (fi | (), 07 (x4))

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

10

Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D) = [| pe(fulxe, DY),
k=1

pr(felee, DY) = N (fi | (), 07 (x4))

» Predictive precision and mean:

poe Ek

HE = () Ek 0 2(x e (xs)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 10

Computational Graph

aun

Prediction:

PN

‘e

‘e

M
p(flx, D) = | | pr(fulx., DY)
k=1

Distributed Gaussian Processes

Marc Deisenroth

@Copenhagen, 21 May 2015

11

Computational Graph

aun

Prediction:

PN

‘e

‘e

M
p(flx, D) = | | pr(fulx., DY)
k=1

Multiplication is associative: a xbscsd = (a*b) = (c xd)

Distributed Gaussian Processes

Marc Deisenroth @Copenhagen, 21 May 2015

11

Computational Graph

aun

Prediction:

PN

‘e

‘e

M
p(flx, D) = | | pr(fulx., DY)
k=1

Multiplication is associative: a xbscsd = (a*b) = (c xd)

M
[[pi(felD®
k=1

Distributed Gaussian Processes

L Ly

Marc Deisenroth

) =TIl [P (D), Y Le=M

k=1i=1

k

@Copenhagen, 21 May 2015

11

Computational Graph

aun

Prediction:

M
p(flx, D) = | | pr(fulx., DY)
k=1

PN

‘e

‘e

[PoE |

Multiplication is associative: a xbscsd = (a*b) = (c d)

M
[[pefelD®
k=1

L L

» Independent of computational graph v/

Distributed Gaussian Processes

Marc Deisenroth

) =TIl [P (D), Y Le=M

k=1i=1

@Copenhagen, 21 May 2015

Product of GP Experts

Full GP
-—PoE

» Unreasonable variances for M > 1:

oey -2 -2
(cP%) 72 = Zk 0 (%)
» The more experts the more certain the prediction, even if every
expert itself is very uncertain X " Cannot fall back to the prior

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 12

Generalized Product of GP Experts (Cao & Fleet, 2014)

» Weight the responsiblity of each expert in PoE with By

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

13

Generalized Product of GP Experts (Cao & Fleet, 2014)

» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(felxe D) = [[pp " (Fulxs, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 13

Generalized Product of GP Experts (Cao & Fleet, 2014)

» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(felxe D) = [[pp " (Fulxs, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

» Predictive precision and mean:

(o8 Poe Z ﬁkak (%)
UBPOC _ (BP0 Z Bro2 () ()

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Generalized Product of GP Experts (Cao & Fleet, 2014)

v

Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(felxe D) = [[pp " (Fulxs, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

Predictive precision and mean:

(o8 Poe Z ﬁkak (%)
UBPOC _ (BP0 Z Bro2 () ()

With), Bx = 1, the model can fall back to the prior v/
» Log-opinion pool model (e.g., Heskes, 1998)

v

v

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

13

Computational Graph

Pug
lﬁl ﬂ ﬂ :
gPoE
Prediction:
M L L L
p(felxe, D) = [(felxs, D HH f*lD N, DBk =1
k=1 k=1i=1 ki

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

Computational Graph

PoE

Po
gPoE

Prediction:

L L

M
p(fuben D) = [[p (Rles, D9) = [T [Tt (F1D®), 3 =1
k=1 ki

k=1i=1

» Independent of computational graph if > ; B, = 1/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

14

Computational Graph

gPoE

Prediction:

L L

M
p(falre D) = [T 1" (fulre, D HH Y ID®), S =1
k=1

k=1i=1 k,i

» Independent of computational graph if > ; B, = 1/

» A priori setting of By, required X
» By, = 1/M a priori (V)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

14

Generalized Product of GP Experts

Full GP

» Same mean as PoE
» Model no longer overconfident and falls back to prior v/
» Very conservative variances X

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

15

Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

16

Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

_ Hllcvi1 Pi(f |2, D(k))
M1 (fe)

p(f«lxs, D)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16

Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

) I Pl DY)
pM ()

p (f * ‘x*/ D
» Predictive precision and mean:

_ M _
(obem)=2 = Zk 02 () = (M= 1)e;?
Vgcm _ bcm Zk) x* ,uk x*)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16

Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

) I Pl DY)
pM ()

p (f * ‘x*/ D
» Predictive precision and mean:

_ M _
(obem)=2 = Zk 02 () = (M= 1)e;?
'ugcm _ bcm Zk) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

16

Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

) I Pl DY)
pM ()

p (f * ‘x*/ D
» Predictive precision and mean:

_ M _
(obem)=2 = Zk 02 () = (M= 1)e;?
'ugcm _ bcm Zk) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior
» Guaranteed to fall back to the prior outside data regime v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16

Computational Graph

]

cuEu dush

Prediction:

— Hllcvil pi(f|xs, DW)
pM—l (f*)

p(f«lxs, D)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

17

Computational Graph

]

wun

‘e

‘e

Prediction:

p(f«lxs, D)

_ TTM, pr(fel2, DO

pM(fe)

[T, pe(FelD®) Tl TTiy pis (f[D&

pM(fe)

Distributed Gaussian Processes

pM(fe)

Marc Deisenroth

@Copenhagen, 21 May 2015

17

Computational Graph

]

PoE
l%l ﬁ ﬂ e
GP Experts

Prediction:

— Hljcvil pi(f|xs, DW)
pM—l (f*)

p(f«lxs, D)

[T, pe(FelD®) Tl TTiy pis (f[D&
PM(f) PM(f)

» Independent of computational graph v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

17

Bayesian Committee Machine

6

4

2
>
0

» Independent of computational graph v

» Variance estimates are about right v/

» When leaving the data regime, the BCM can produce junk X
» Robustify

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

18

Robust Bayesian Committee Machine

» Combine gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

19

Robust Bayesian Committee Machine

» Combine gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

» Prediction model (conditional independence D) 1. D®)|f,):

I (e, DY)
PZ" Pl(f.)

p(f«lxs, D)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 19

Robust Bayesian Committee Machine

» Combine gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

» Prediction model (conditional independence D))] fi):

Hk 1Pk (f*\x*/ ®))
PZ"ﬂk Y(fe)

p(filxs, D) =
» Predictive precision and mean:

()2 = S B) +(1— M B0
‘ul;bcm: U,ibcm Zk ﬁko'k (x*)]/lk(x*)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 19

Computational Graph

=t
CHEN s

Hk 1Pk (f*‘x*,j)k)) Hk 11_[1 1pk

" (fu D

i))

p(felxs, D) =

p Pl (f) pReP1(fy)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

20

Computational Graph

Prior
PoE

[PoE |
gPoE

Prediction:

H}I{\/il Py ‘ (f*‘x*,j)(k)) Hk 11_[1 1 Pk (f*‘D

(ki))

p(felxa, D) = pZeBi1(£,) pRePl(f)

» Independent of computational graph, even with arbitrary By v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

20

Robust Bayesian Committee Machine

6
N Full GP
4-——-\‘ / \ -— gBCM=~
2 1
>
0
-2

» Does not break down in case of weak experts M Robustified v/
» Robust version of BCM M Reasonable predictions v/
» Independent of computational graph (for all choices of Bi) v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

21

Empirical Approximation Error

#Points/Expert

0.2?9 1§6 6?5 2500 10000

0.71 e—e rBCM|

0.6 =—a BCM |
w 0.5k — gPoE-
2 o4f *-% POE 1
@ 0.3} SOD

0.2+ - E

Offpmmmmmmmmmmemccac s

00 10° 10° 102 10°

#Gradient time in sec
Simulated robot arm data (10K training, 30K test)
» All models use hyper-parameters of ground-truth full GP

v

» RMSE as a function of the training time
» Sparse GP (SOD) performs worse than any distributed GP
» rBCM performs best with “weak” GP experts

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

22

Empirical Approximation Error (2)

#Points/Expert
39 156 625 2500

NLPD

#Gradient time in sec

» NLPD as a function of the training time M Mean and variance
» BCM and PoE are not robust to weak experts
» gPoE suffers from too conservative variances

» rBCM consistently outperforms other methods

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

23

Large Data

» Predict US Airline Delays (01/2008-04/2008) of commercial
flights

» Inputs: age of aircraft, flight distance, departure/arrival time,
airtime, day of week, day of month, month,

» Training data: 700K, 2M, 5M. Test data: 100K

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

24

Training Data: 700K — RMSE

Airline Delay, 700K

1 » (r)BCM and (g)PoE with
4096 GP experts

| » Gradient time: 13 seconds
(12 cores)

| » Inducing inputs:

| Dist-VGP (Gal et al., 2014),
SVI-GP (Hensman et al.,
2013)

rBCM BCM ¢PoE PoE Dist-VGPSVI-GP SOD

» rBCM performs best
» (g)PoE and BCM performs not worse sparse GPs

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 25

20

NLPD

10

15

Training Data: 700K — NLPD

Airline Delay, 700K

rBCM BCM gPoE PoE SOD

» (r)BCM and (g)PoE with
4096 GP experts

| » Gradient time: 13 seconds

(12 cores)

| » No results reported for

inducing input methods
(Gal et al., 2014; Hensman
etal., 2013)

» gPoE performs best, just ahead of rBCM

Distributed Gaussian Processes

Marc Deisenroth @Copenhagen, 21 May 2015 26

Training Data: 2M — RMSE

40

35

RMSE

30

25

Airline Delay, 2M

» (r)BCM and (g)PoE with
8192 GP experts

» Gradient time: 39 seconds
(12 cores)

» Inducing inputs:
Dist-VGP (Gal et al., 2014)

rBCM BCM gPoE PoE Dist-VGP SOD

» rBCM performs best

» (g)PoE as good as best results reported for sparse methods

» BCM suffers from weak experts

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 27

Training Data: 2M — NLPD

20

15

NLPD

10

Airline Delay, 2M

» (r)BCM and (g)PoE with
8192 GP experts

» Gradient time: 39 sec (12
cores)

» Inducing inputs: no
results reported

rBCM BCM gPoE PoE SOD

» tBCM and gPoE perform best

» BCM suffers from weak experts

» PoE suffers from under-estimation of variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 28

Training Data: 5M — RMSE

Airline Delay, 5M
40 i T T

351

| » (r)BCM and (g)PoE with
32768 GP experts

| » Gradient time: 90 sec (12
cores)

RMSE

30 [

25

rBCM BCM gPoE PoE SOD

» rBCM performs best
» (g)PoE produce good results
» BCM off the chart ™ suffers from weak experts

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 29

Training Data: 5SM — NLPD

Airline Delay, 5M
20 T T

| » (r)BCM and (g)PoE with
32768 GP experts

| » Gradient time: 90 sec (12
cores)

NLPD

rBCM BCM gPoE PoE SOD

» rBCM and gPoE perform best
» PoE and BCM significantly worse

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 30

Overview Airline Delays

v

RMSE: rBCM consistently performs best

v

NLPD: rBCM and gPoE approximately the same
» gPoE recovers because of conservative variance estimates

v

BCM suffers from “wrong means”, PoE suffers from

overconfident estimates

v

All models: Training time is acceptable

» All experiments (DGP) run on a laptop

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

31

Summary

B Distributed product-of-experts approaches to scaling Gaussian
processes to large data sets

B Robust Bayesian Committee Machine

B Model conceptually straightforward and easy to train
» Only kernel hyper-parameters need to be optimized

B Independent of computational graph

B Scales to arbitrarily large data sets (in principle)

m.deisenroth@imperial.ac.uk

Thank you for your attention

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 32

m.deisenroth@imperial.ac.uk

References

(1

[21

131

[4]

151

(6

71

181

[9]

[10]

[11]

Y. Cao and D. J. Fleet. Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process
Predictions. http://arxiv.org/abs/1410.7827, October 2014.

K. Chalupka, C. K. I. Williams, and I. Murray. A Framework for Evaluating Approximate Methods for Gaussian Process
Regression. Journal of Machine Learning Research, 14:333-350, February 2013.

M. P. Deisenroth and J. Ng. Distributed Gaussian Processes. In Proceedings of the International Conference on Machine
Learning, 2015.

Y. Gal, M. van der Wilk, and C. E. Rasmussen. Distributed Variational Inference in Sparse Gaussian Process Regression
and Latent Variable Models. In Advances in Neural Information Processing Systems. 2014.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian Processes for Big Data. In A. Nicholson and P. Smyth, editors,
Proceedings of the Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2013.

T. Heskes. Selecting Weighting Factors in Logarithmic Opinion Pools. In Advances in Neural Information Processing Systems,
pages 266-272. Morgan Kaufman, 1998.

J. Ng and M. P. Deisenroth. Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression.
http://arxiv.org/abs/1412.3078, December 2014.

J. Quifionero-Candela and C. E. Rasmussen. A Unifying View of Sparse Approximate Gaussian Process Regression.
Journal of Machine Learning Research, 6(2):1939-1960, 2005.

E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-inputs. In Y. Weiss, B. Scholkopf, and J. C. Platt,
editors, Advances in Neural Information Processing Systems 18, pages 1257-1264. The MIT Press, Cambridge, MA, USA, 2006.

M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 2009.

V. Tresp. A Bayesian Committee Machine. Neural Computation, 12(11):2719-2741, 2000.

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015

3B

http://arxiv.org/abs/1410.7827
http://arxiv.org/abs/1412.3078

