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Scaling Gaussian Processes to Large Data Sets

Two orthogonal approaches

» Sparse Gaussian processes
» Use (smart) subset of data.

» Distributed Gaussian processes
» Use full data set, distribute computations

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015



Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points
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Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training
» Practical limit of the data set size is N € (O(10°)
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Distributed Gaussian Processes

: Standard GP
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» Randomly split the full data set into M chunks of size P

Distributed Gaussian Processes
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Distributed Gaussian Processes

: Standard GP
—_—
Distributed GP

Kernel O(N3)

matrix

ﬁq = [ By ooee)

» Randomly split the full data set into M chunks of size P

» Place M independent GP experts on these small chunks

Distributed Gaussian Processes
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Distributed Gaussian Processes

Standard GP —1
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» Randomly split the full data set into M chunks of size P

» Place M independent GP experts on these small chunks

» Block-diagonal approximation of kernel matrix K (sim. to PIC)
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Distributed Gaussian Processes

Standard GP —1

; — | Kemdl O(N?)
Distributed GP 1 .

i z I; E — E = | o P

» Randomly split the full data set into M chunks of size P

v

Place M independent GP experts on these small chunks

v

Block-diagonal approximation of kernel matrix K (sim. to PIC)

» Combine independent computations to an overall result
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Training the Distributed GP

» Randomly split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)
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Training the Distributed GP

v

Randomly split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|Xr 6) ] Zk:l log pk(y(k) ‘X(k)/ 6)

v

Distributed optimization and training straightforward

» No inducing/variational parameters » Easy optimization
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Training the Distributed GP

v

Randomly split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|Xr 6) ] Zk:l log pk(y(k) ‘X(k)/ 6)

» Distributed optimization and training straightforward
» No inducing/variational parameters » Easy optimization
» Computational complexity: O(MP?) [instead of O(N?)]

» Memory footprint: O(MP? + ND) [instead of O(N? + ND)],
potentially distributed across M computing nodes
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Scaling
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Training data set size
» NLML is proportional to training time

» Full GP (16K training points) ~ sparse GP (32K training points)
~ distributed GP (16M training points)

» Push practical limit by order(s) of magnitude
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Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?
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Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

» Product-of-GP-experts
» PoE (product of experts) M (Ng & Deisenroth, 2014)
» gPoE (generalized product of experts) » (Cao & Fleet, 2014)
» BCM (Bayesian Committee Machine) M (Tresp, 2000)
» rBCM (robust BCM) » (Deisenroth & Ng, 2015)
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» Scale to large data sets v/
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Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Heterogeneous computing infrastructures (laptop, cluster, ...)
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Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Heterogeneous computing infrastructures (laptop, cluster, ...)

» Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015



Running Example

Full GP

-5 0 5 10 15

» Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions
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Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D) = [ | pe(fulxe, DY),
k=1

pr(felee, DY) = N (fi | (), 07 (x4))
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Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D) = [ | pe(fulxe, DY),
k=1

pr(felee, DY) = N (fi | (), 07 (x4))

» Predictive precision and mean:

poe Ek

HE = () Ek 0 2(x e (xs)
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Computational Graph

aun

Prediction:

PN

‘e

‘e

M
p(flx, D) = | | pr(fulx., DY)
k=1

Distributed Gaussian Processes

Marc Deisenroth

@Copenhagen, 21 May 2015

11



Computational Graph

aun

Prediction:

PN

‘e

‘e

M
p(flx, D) = | | pr(fulx., DY)
k=1

Multiplication is associative: a xbscsd = (a*b) = (c xd)
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Computational Graph

aun

Prediction:

PN

‘e

‘e

M
p(flx, D) = | | pr(fulx., DY)
k=1

Multiplication is associative: a xbscsd = (a*b) = (c xd)

M
[ [ pi(felD®
k=1

Distributed Gaussian Processes

L Ly

Marc Deisenroth
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Computational Graph

aun

Prediction:

M
p(flx, D) = | | pr(fulx., DY)
k=1

PN

‘e

‘e

[ PoE |

Multiplication is associative: a xbscsd = (a*b) = (c d)

M
[ [ pefelD®
k=1

L L

» Independent of computational graph v/

Distributed Gaussian Processes

Marc Deisenroth
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Product of GP Experts

Full GP
-—PoE

» Unreasonable variances for M > 1:

oey -2 -2
(cP%) 72 = Zk 0 (%)
» The more experts the more certain the prediction, even if every
expert itself is very uncertain X " Cannot fall back to the prior

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 12



Generalized Product of GP Experts (Cao & Fleet, 2014)

» Weight the responsiblity of each expert in PoE with By
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» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(felxe D) = [ [ pp " (Fulxs, D)
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Generalized Product of GP Experts (Cao & Fleet, 2014)

v

Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(felxe D) = [ [ pp " (Fulxs, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

Predictive precision and mean:

(o8 Poe Z ﬁkak (%)
UBPOC _ (BP0 Z Bro2 () ()

With ), Bx = 1, the model can fall back to the prior v/
» Log-opinion pool model (e.g., Heskes, 1998)

v

v

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Computational Graph

Pug
lﬁl ﬂ ﬂ :
gPoE
Prediction:
M L L L
p(felxe, D) = [ (felxs, D HH f*lD N, DBk =1
k=1 k=1i=1 ki
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Computational Graph

PoE

Po
gPoE

Prediction:

L L

M
p(fuben D) = [ [p (Rles, D9) = [T [ Tt (F1D®), 3 =1
k=1 ki

k=1i=1

» Independent of computational graph if > ; B, = 1/
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Computational Graph

gPoE

Prediction:

L L

M
p(falre D) = [T 1" (fulre, D HH Y ID®), S =1
k=1

k=1i=1 k,i

» Independent of computational graph if > ; B, = 1/

» A priori setting of By, required X
» By, = 1/M a priori (V)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Generalized Product of GP Experts

Full GP

» Same mean as PoE
» Model no longer overconfident and falls back to prior v/
» Very conservative variances X

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)
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Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

_ Hllcvi1 Pi(f |2, D(k))
M1 (fe)

p(f«lxs, D)
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Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

) I Pl DY)
pM ()

p (f * ‘x*/ D
» Predictive precision and mean:
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Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

) I Pl DY)
pM ()

p (f * ‘x*/ D
» Predictive precision and mean:

_ M _
(obem)=2 = Zk 02 () = (M= 1)e;?
'ugcm _ bcm Zk ) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior
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Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (conditional independence: D) 1L DO f):

) I Pl DY)
pM ()

p (f * ‘x*/ D
» Predictive precision and mean:

_ M _
(obem)=2 = Zk 02 () = (M= 1)e;?
'ugcm _ bcm Zk ) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior
» Guaranteed to fall back to the prior outside data regime v/
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Computational Graph

]

cuEu dush

Prediction:

— Hllcvil pi(f|xs, DW)
pM—l (f*)

p(f«lxs, D)
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Computational Graph

]

wun

‘e

‘e

Prediction:

p(f«lxs, D)

_ TTM, pr(fel2, DO

pM(fe)

[T, pe(FelD®) Tl TTiy pis (f[ D&

pM(fe)

Distributed Gaussian Processes

pM(fe)
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Computational Graph

]

PoE
l%l ﬁ ﬂ e
GP Experts

Prediction:

— Hljcvil pi(f|xs, DW)
pM—l (f*)

p(f«lxs, D)

[T, pe(FelD®) Tl TTiy pis (f[ D&
PM(f) PM(f)

» Independent of computational graph v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Bayesian Committee Machine

6

4

2
>
0

» Independent of computational graph v

» Variance estimates are about right v/

» When leaving the data regime, the BCM can produce junk X
» Robustify

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Robust Bayesian Committee Machine

» Combine gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Robust Bayesian Committee Machine

» Combine gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

» Prediction model (conditional independence D) 1. D®)|f,):

I (e, DY)
PZ" Pl(f.)

p(f«lxs, D)
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Robust Bayesian Committee Machine

» Combine gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

» Prediction model (conditional independence D) )] fi):

Hk 1Pk (f*\x*/ ®))
PZ"ﬂk Y(fe)

p(filxs, D) =
» Predictive precision and mean:

()2 = S B ) +(1— M B0
‘ul;bcm: U,ibcm Zk ﬁko'k (x*)]/lk(x*)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 19



Computational Graph

=t
CHEN s

Hk 1Pk (f*‘x*,j)k)) Hk 11_[1 1pk

" (fu D

i))

p(felxs, D) =

p Pl (f) pReP1(fy)
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Computational Graph

Prior
PoE

[ PoE |
gPoE

Prediction:

H}I{\/il Py ‘ (f*‘x*,j)(k)) Hk 11_[1 1 Pk (f*‘D

(ki))

p(felxa, D) = pZeBi1(£,) pRePl(f)

» Independent of computational graph, even with arbitrary By v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Robust Bayesian Committee Machine

6
N Full GP
4-——-\‘ / \ -— gBCM=~
2 1
>
0
-2

» Does not break down in case of weak experts M Robustified v/
» Robust version of BCM M Reasonable predictions v/
» Independent of computational graph (for all choices of Bi) v/

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Empirical Approximation Error

#Points/Expert

0.2?9 1§6 6?5 2500 10000

0.71 e—e rBCM|

0.6 =—a BCM |
w 0.5k — gPoE-
2 o4f *-% POE 1
@ 0.3} SOD

0.2+ - E

Offpmmmmmmmmmmemccac s

00 10° 10° 102 10°

#Gradient time in sec
Simulated robot arm data (10K training, 30K test)
» All models use hyper-parameters of ground-truth full GP

v

» RMSE as a function of the training time
» Sparse GP (SOD) performs worse than any distributed GP
» rBCM performs best with “weak” GP experts

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Empirical Approximation Error (2)

#Points/Expert
39 156 625 2500

NLPD

#Gradient time in sec

» NLPD as a function of the training time M Mean and variance
» BCM and PoE are not robust to weak experts
» gPoE suffers from too conservative variances

» rBCM consistently outperforms other methods

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Large Data

» Predict US Airline Delays (01/2008-04/2008) of commercial
flights

» Inputs: age of aircraft, flight distance, departure/arrival time,
airtime, day of week, day of month, month,

» Training data: 700K, 2M, 5M. Test data: 100K

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Training Data: 700K — RMSE

Airline Delay, 700K

1 » (r)BCM and (g)PoE with
4096 GP experts

| » Gradient time: 13 seconds
(12 cores)

| » Inducing inputs:

| Dist-VGP (Gal et al., 2014),
SVI-GP (Hensman et al.,
2013)

rBCM BCM ¢PoE PoE Dist-VGPSVI-GP SOD

» rBCM performs best
» (g)PoE and BCM performs not worse sparse GPs

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 25



20

NLPD

10

15

Training Data: 700K — NLPD

Airline Delay, 700K

rBCM BCM gPoE PoE SOD

» (r)BCM and (g)PoE with
4096 GP experts

| » Gradient time: 13 seconds

(12 cores)

| » No results reported for

inducing input methods
(Gal et al., 2014; Hensman
etal., 2013)

» gPoE performs best, just ahead of rBCM

Distributed Gaussian Processes

Marc Deisenroth @Copenhagen, 21 May 2015 26



Training Data: 2M — RMSE

40

35

RMSE

30

25

Airline Delay, 2M

» (r)BCM and (g)PoE with
8192 GP experts

» Gradient time: 39 seconds
(12 cores)

» Inducing inputs:
Dist-VGP (Gal et al., 2014)

rBCM BCM  gPoE PoE Dist-VGP SOD

» rBCM performs best

» (g)PoE as good as best results reported for sparse methods

» BCM suffers from weak experts

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 27



Training Data: 2M — NLPD

20

15

NLPD

10

Airline Delay, 2M

» (r)BCM and (g)PoE with
8192 GP experts

» Gradient time: 39 sec (12
cores)

» Inducing inputs: no
results reported

rBCM BCM gPoE PoE SOD

» tBCM and gPoE perform best

» BCM suffers from weak experts

» PoE suffers from under-estimation of variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 28



Training Data: 5M — RMSE

Airline Delay, 5M
40 i T T

351

| » (r)BCM and (g)PoE with
32768 GP experts

| » Gradient time: 90 sec (12
cores)

RMSE

30 [

25

rBCM BCM gPoE PoE SOD

» rBCM performs best
» (g)PoE produce good results
» BCM off the chart ™ suffers from weak experts

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 29



Training Data: 5SM — NLPD

Airline Delay, 5M
20 T T

| » (r)BCM and (g)PoE with
32768 GP experts

| » Gradient time: 90 sec (12
cores)

NLPD

rBCM BCM gPoE PoE SOD

» rBCM and gPoE perform best
» PoE and BCM significantly worse

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 30



Overview Airline Delays

v

RMSE: rBCM consistently performs best

v

NLPD: rBCM and gPoE approximately the same
» gPoE recovers because of conservative variance estimates

v

BCM suffers from “wrong means”, PoE suffers from

overconfident estimates

v

All models: Training time is acceptable

» All experiments (DGP) run on a laptop

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015
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Summary

B Distributed product-of-experts approaches to scaling Gaussian
processes to large data sets

B Robust Bayesian Committee Machine

B Model conceptually straightforward and easy to train
» Only kernel hyper-parameters need to be optimized

B Independent of computational graph

B Scales to arbitrarily large data sets (in principle)

m.deisenroth@imperial.ac.uk

Thank you for your attention
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