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Scaling Gaussian Processes to Large Data Sets

Two orthogonal approaches

§ Sparse Gaussian processes
Use (smart) subset of data.

§ Distributed Gaussian processes
Use full data set, distribute computations
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Sparse Gaussian Processes

§ Sparse approximations typically approximate a GP with N data
points by a model with M ! N data points

§ Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

§ Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

§ Computational complexity: OpM3q or OpNM2q for training

§ Practical limit of the data set size is N P Op106q
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Distributed Gaussian Processes

−1

−1 −1
−1
−1
−1

=

Standard GP

Data set Kernel
matrix

Distributed GP

GP GP GP GP

O(N 3)

O(MP 3)

§ Randomly split the full data set into M chunks of size P

§ Place M independent GP experts on these small chunks

§ Block-diagonal approximation of kernel matrix K (sim. to PIC)

§ Combine independent computations to an overall result
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Training the Distributed GP

§ Randomly split data set of size N into M chunks of size P

§ Independence of experts Factorization of marginal likelihood:

log ppy|X, θq «
ÿM

k“1
log pkpypkq|Xpkq, θq

§ Distributed optimization and training straightforward

§ No inducing/variational parameters Easy optimization

§ Computational complexity: OpMP3q [instead of OpN3q]

§ Memory footprint: OpMP2 ` NDq [instead of OpN2 ` NDq],
potentially distributed across M computing nodes
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Scaling
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Computation time (DGP)

Computation time (Full GP)

Computation time (FITC)

Number of GP experts (DGP)

§ NLML is proportional to training time

§ Full GP (16K training points) « sparse GP (32K training points)
« distributed GP (16M training points)

Push practical limit by order(s) of magnitude
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Predictions with the Distributed GP

µ, σ

§ Prediction of each GP expert is Gaussian N
`

µi, σ2
i

˘

§ How to combine them to an overall prediction N
`

µ, σ2
˘

?

Product-of-GP-experts

§ PoE (product of experts) (Ng & Deisenroth, 2014)

§ gPoE (generalized product of experts) (Cao & Fleet, 2014)

§ BCM (Bayesian Committee Machine) (Tresp, 2000)

§ rBCM (robust BCM) (Deisenroth & Ng, 2015)

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 7



Predictions with the Distributed GP

µ, σ

§ Prediction of each GP expert is Gaussian N
`

µi, σ2
i

˘

§ How to combine them to an overall prediction N
`

µ, σ2
˘

?

Product-of-GP-experts

§ PoE (product of experts) (Ng & Deisenroth, 2014)

§ gPoE (generalized product of experts) (Cao & Fleet, 2014)

§ BCM (Bayesian Committee Machine) (Tresp, 2000)

§ rBCM (robust BCM) (Deisenroth & Ng, 2015)
Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 7



Objectives

µ, σ µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Figure: Two computational graphs

§ Scale to large data sets 3

§ Good approximation of full GP (“ground truth”)

§ Predictions independent of computational graph
Heterogeneous computing infrastructures (laptop, cluster, ...)

§ Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 8



Objectives

µ, σ µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Figure: Two computational graphs

§ Scale to large data sets 3

§ Good approximation of full GP (“ground truth”)

§ Predictions independent of computational graph
Heterogeneous computing infrastructures (laptop, cluster, ...)

§ Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 8



Objectives

µ, σ µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Figure: Two computational graphs

§ Scale to large data sets 3

§ Good approximation of full GP (“ground truth”)

§ Predictions independent of computational graph
Heterogeneous computing infrastructures (laptop, cluster, ...)

§ Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 8



Objectives

µ, σ µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Figure: Two computational graphs

§ Scale to large data sets 3

§ Good approximation of full GP (“ground truth”)

§ Predictions independent of computational graph
Heterogeneous computing infrastructures (laptop, cluster, ...)

§ Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 8



Running Example

Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions
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Product of GP Experts

§ Prediction model (independent predictors):

pp f˚|x˚,Dq “
M
ź

k“1

pkp f˚|x˚,Dpkqq ,

pkp f˚|x˚,Dpkqq “ N
`

f˚ | µkpx˚q, σ2
k px˚q

˘

§ Predictive precision and mean:

pσ
poe
˚ q´2 “

ÿ

k
σ´2

k px˚q

µ
poe
˚ “ pσ

poe
˚ q2

ÿ

k
σ´2

k px˚qµkpx˚q
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Computational Graph

GP Experts

PoE

PoE

Prediction:

pp f˚|x˚,Dq “
M
ź

k“1

pkp f˚|x˚,Dpkqq

Multiplication is associative: a ˚ b ˚ c ˚ d “ pa ˚ bq ˚ pc ˚ dq

M
ź

k“1

pkp f˚|Dpkqq “
L
ź

k“1

Lk
ź

i“1

pkip f˚|Dpkiqq ,
ÿ

k

Lk “ M

Independent of computational graph 3
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Product of GP Experts

§ Unreasonable variances for M ą 1:

pσ
poe
˚ q´2 “

ÿ

k
σ´2

k px˚q

§ The more experts the more certain the prediction, even if every
expert itself is very uncertain 7 Cannot fall back to the prior
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Generalized Product of GP Experts (Cao & Fleet, 2014)

§ Weight the responsiblity of each expert in PoE with βk

§ Prediction model (independent predictors):

pp f˚|x˚,Dq “
M
ź

k“1

p
βk

k p f˚|x˚,Dpkqq

pkp f˚|x˚,Dpkqq “ N
`

f˚ | µkpx˚q, σ2
k px˚q

˘

§ Predictive precision and mean:

pσ
gpoe
˚ q´2 “

ÿ

k
βkσ´2

k px˚q

µ
gpoe
˚ “ pσ

gpoe
˚ q2

ÿ

k
βkσ´2

k px˚q µkpx˚q

§ With
ř

k βk “ 1, the model can fall back to the prior 3

Log-opinion pool model (e.g., Heskes, 1998)
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Computational Graph

GP Experts

gPoE

PoE

PoE

Prediction:

pp f˚|x˚,Dq “
M
ź

k“1

p
βk

k p f˚|x˚,Dpkqq “
L
ź

k“1

Lk
ź

i“1

p
βki

ki
p f˚|Dpkiqq ,

ÿ

k,i

βki “ 1

§ Independent of computational graph if
ř

k,i βki “ 1 3

§ A priori setting of βki required 7

βki “ 1{M a priori (3)
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Generalized Product of GP Experts

§ Same mean as PoE
§ Model no longer overconfident and falls back to prior 3

§ Very conservative variances 7
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Bayesian Committee Machine (Tresp, 2000)

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (conditional independence: Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior

§ Guaranteed to fall back to the prior outside data regime 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16



Bayesian Committee Machine (Tresp, 2000)

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (conditional independence: Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior

§ Guaranteed to fall back to the prior outside data regime 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16



Bayesian Committee Machine (Tresp, 2000)

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (conditional independence: Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior

§ Guaranteed to fall back to the prior outside data regime 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16



Bayesian Committee Machine (Tresp, 2000)

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (conditional independence: Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior

§ Guaranteed to fall back to the prior outside data regime 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16



Bayesian Committee Machine (Tresp, 2000)

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (conditional independence: Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior

§ Guaranteed to fall back to the prior outside data regime 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 16



Computational Graph

GP Experts

PoE

PoE

Prior

Prediction:

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

śM
k“1 pkp f˚|Dpkqq

pM´1p f˚q
“

śL
k“1

śLk
i“1 pkip f˚|Dpkiqq

pM´1p f˚q

Independent of computational graph 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 17



Computational Graph

GP Experts

PoE

PoE

Prior

Prediction:

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

śM
k“1 pkp f˚|Dpkqq

pM´1p f˚q
“

śL
k“1

śLk
i“1 pkip f˚|Dpkiqq

pM´1p f˚q

Independent of computational graph 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 17



Computational Graph

GP Experts

PoE

PoE

Prior

Prediction:

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

śM
k“1 pkp f˚|Dpkqq

pM´1p f˚q
“

śL
k“1

śLk
i“1 pkip f˚|Dpkiqq

pM´1p f˚q

Independent of computational graph 3

Distributed Gaussian Processes Marc Deisenroth @Copenhagen, 21 May 2015 17



Bayesian Committee Machine

§ Independent of computational graph 3

§ Variance estimates are about right 3

§ When leaving the data regime, the BCM can produce junk 7

Robustify
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Robust Bayesian Committee Machine

§ Combine gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

§ Prediction model (conditional independence Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 p
βk

k p f˚|x˚,Dpkqq
p
ř

k βk´1p f˚q

§ Predictive precision and mean:

pσrbcm
˚ q´2 “

ÿM

k“1
βkσ´2

k px˚q `p1´
řM

k“1 βkqσ
´2
˚˚ ,

µrbcm
˚ “ pσrbcm

˚ q2
ÿ

k
βkσ´2

k px˚q µkpx˚q
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Computational Graph
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Robust Bayesian Committee Machine

§ Does not break down in case of weak experts Robustified 3

§ Robust version of BCM Reasonable predictions 3

§ Independent of computational graph (for all choices of βk) 3
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Empirical Approximation Error
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#Gradient time in sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
E

rBCM

BCM

gPoE

PoE

SOD

GP

39 156 625 2500 10000
#Points/Expert

§ Simulated robot arm data (10K training, 30K test)
§ All models use hyper-parameters of ground-truth full GP
§ RMSE as a function of the training time
§ Sparse GP (SOD) performs worse than any distributed GP
§ rBCM performs best with “weak” GP experts
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Empirical Approximation Error (2)
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§ NLPD as a function of the training time Mean and variance
§ BCM and PoE are not robust to weak experts
§ gPoE suffers from too conservative variances
§ rBCM consistently outperforms other methods
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Large Data

§ Predict US Airline Delays (01/2008–04/2008) of commercial
flights

§ Inputs: age of aircraft, flight distance, departure/arrival time,
airtime, day of week, day of month, month,

§ Training data: 700K, 2M, 5M. Test data: 100K
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Training Data: 700K — RMSE

rBCM BCM gPoE PoE Dist-VGPSVI-GP SOD
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M
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E

25

26

27

28

29
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31

32

33

34

35
Airline Delay, 700K

§ (r)BCM and (g)PoE with
4096 GP experts

§ Gradient time: 13 seconds
(12 cores)

§ Inducing inputs:
Dist-VGP (Gal et al., 2014),
SVI-GP (Hensman et al.,
2013)

§ rBCM performs best

§ (g)PoE and BCM performs not worse sparse GPs
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Training Data: 700K — NLPD

rBCM BCM gPoE PoE SOD

N
LP

D

5

10

15

20
Airline Delay, 700K

§ (r)BCM and (g)PoE with
4096 GP experts

§ Gradient time: 13 seconds
(12 cores)

§ No results reported for
inducing input methods
(Gal et al., 2014; Hensman
et al., 2013)

§ gPoE performs best, just ahead of rBCM
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Training Data: 2M — RMSE

rBCM BCM gPoE PoE Dist-VGP SOD

R
M
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E

25

30

35

40
Airline Delay, 2M

§ (r)BCM and (g)PoE with
8192 GP experts

§ Gradient time: 39 seconds
(12 cores)

§ Inducing inputs:
Dist-VGP (Gal et al., 2014)

§ rBCM performs best
§ (g)PoE as good as best results reported for sparse methods
§ BCM suffers from weak experts
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Training Data: 2M — NLPD

rBCM BCM gPoE PoE SOD

N
LP

D

5

10

15

20
Airline Delay, 2M

§ (r)BCM and (g)PoE with
8192 GP experts

§ Gradient time: 39 sec (12
cores)

§ Inducing inputs: no
results reported

§ rBCM and gPoE perform best
§ BCM suffers from weak experts
§ PoE suffers from under-estimation of variances
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Training Data: 5M — RMSE

rBCM BCM gPoE PoE SOD

R
M
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E

25

30

35

40
Airline Delay, 5M

§ (r)BCM and (g)PoE with
32768 GP experts

§ Gradient time: 90 sec (12
cores)

§ rBCM performs best
§ (g)PoE produce good results
§ BCM off the chart suffers from weak experts
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Training Data: 5M — NLPD

rBCM BCM gPoE PoE SOD

N
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20
Airline Delay, 5M

§ (r)BCM and (g)PoE with
32768 GP experts

§ Gradient time: 90 sec (12
cores)

§ rBCM and gPoE perform best

§ PoE and BCM significantly worse
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Overview Airline Delays

§ RMSE: rBCM consistently performs best

§ NLPD: rBCM and gPoE approximately the same
gPoE recovers because of conservative variance estimates

§ BCM suffers from “wrong means”, PoE suffers from
overconfident estimates

§ All models: Training time is acceptable

§ All experiments (DGP) run on a laptop
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Summary

� Distributed product-of-experts approaches to scaling Gaussian
processes to large data sets

� Robust Bayesian Committee Machine

� Model conceptually straightforward and easy to train
Only kernel hyper-parameters need to be optimized

� Independent of computational graph

� Scales to arbitrarily large data sets (in principle)

m.deisenroth@imperial.ac.uk

Thank you for your attention
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