
Scalable Gaussian Process Classification via
Expectation Propagation

Daniel Hernández–Lobato1,

May 21, 2015

joint work with

José Miguel Hernández-Lobato2

1Universidad Autónoma de Madrid.
2Harvard University.

1 / 17

Introduction
Under binary Gaussian Process classification one assumes that
yi = sign(f(xi) + εi), where εi ∼ N (0, σ2) and yi ∈ {1,−1}.

f(·) ∼ GP(0, k(·, ·)), for some covariance function k.

Learning uses Bayes rule:

p(f |y) =
p(y|f)p(f)

p(y)
.

Intractable in general!

Approximated in practice by VB,

EP or Laplace’s method.

−1.0 −0.5 0.0 0.5 1.0
−1

.0
−0

.5
0.

0
0.

5
1.

0

0.1

0.1

0.1

0.2
0.2

0.2

0.3 0.3
0.4

0.4
0.5

0.5 0.6 0.6
0.7

0.7

0.8

0.8

0.9

0.9 ·
·

····
·

··
·

·· ··· ···

···

·
· ·

··
·

· ·
· ·

·
· ·
·

Requires inverting a matrix of size n× n and scales like O(n3).

(Rasmussen & Williams, 2006)
2 / 17

Sparse Gaussian Process Classification

Reduces the training time to O(nm2), where m� n.

A popular approach introduces m pseudoinputs with associated

values that are marginalized (Naish-Guzman & Holden, 2008).

Given X pseudoinputs, let f be the associated functional values:

p(f) =

∫
p(f |f ,X)p(f |X)df

≈
∫ [m∏

i=1

p(f(xi)|f ,X)

]
p(f |X)df

=pFITC(f |X)

(Quiñonero Candela & Rasmussen, 2005)

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

0.1

0.1

0.2

0.2

0.2

0.3

0.3
0.4

0.4 0.5 0.5 0.6 0.6

0.7

0.7

0.7

0.8

0.8

0.9

0.9 ·
·

····
·

··
·

·· ··· ···

···

·
· ·

··
·

· ·
· ·

·
· ·
·· ·

·
·

·
·

The covariance matrix of the FITC prior has a low-rank form which

allows to handle datasets with a few thousand instances.

3 / 17

Scalable Variational Gaussian Process Classification

Allows to handle datasets with millions of data instances.

Combines ideas from sparse variational Gaussian processes (Titsias,

2009) and stochastic variational inference (Hoffman et al., 2013).

The key is not marginalize the values f of the pseudoinputs.

The approximation to p(f |y) is set to be q(f) =
∫
p(f |f)q(f)df , were

q(f) is an inferred Gaussian distribution that approximates p(f |y).

The parameters of q(f) are found in practice by maximizing:

log p(y) ≥
n∑

i=1

Eq(fi) [log p(yi|fi)]−KL(q(f)||p(f |X))

whose gradient has a sum over the instances (Hensman et al., 2015).

The cost in training time is O(m3), but requires quadratures.

4 / 17

Scalable Gaussian Process Classification via EP I

We compute q(f) by approximately minimizing KL(p(f |y)|q(f))

instead of KL(q(f)|p(f |y)) using expectation propagation (EP).

We also assume that p(f |y) ≈
∫
p(f |f)q(f)df . The exact posterior is:

p(f |y) =

∫
p(y|f)p(f |f)dfp(f |X)

p(y)
≈
[∏n

i=1

∫
p(yi|fi)p(fi|f)dfi

]
p(f |X)

p(y)

where we have used the FITC approximation (Qi et al., 2010)3.

The only non-Gaussian factors are those of the likelihood.

Exact Factor φi(f)︷ ︸︸ ︷∫
p(yi|fi)p(fi|f)dfi

Approximate Gaussian Factor φ̃i(f)︷ ︸︸ ︷
s̃i exp

{
− ν̃i

2
f
T
υ̃iυ̃

T
i f + µ̃if

T
υ̃i

}
where υ̃i = K−1

f ,f
Kf ,fi

, i.e., only O(m) parameters are stored.

3The variational approach can also be derived in this way.
5 / 17

Scalable Gaussian Process Classification via EP II

q(f) =
1

Zq

n∏
i=1

φ̃i(f)p(f |X) .

Let q\i ∝ q/φ̃i. Each approximate factor φ̃i is updated to
minimize KL(Z−1i φiq

\i||q), which involves matching moments.

Zi can be computed in closed form. Moments obtained from
its derivatives with respect to the natural parameters or q\i.

After convergence, Zq ≈ p(y) and its gradients w.r.t. ξj are:

logZq = Φ(θ)− Φ(θprior) +

n∑
i=1

log s̃i , log s̃i = logZi + Φ(θ\i)− Φ(θ) ,

∂ logZq

∂ξj
= ηT

∂θprior
∂ξj

− ηTprior
∂θprior
∂ξj

+

n∑
i=1

∂ logZi

∂ξj

with θ, θprior and θ\i the natural parameters of q, p(f |X) and q\i,

and η, ηprior the corresponding expected sufficient statistics.

Extends the results of (Seeger, 2006). 6 / 17

Speeding Up Hyper-parameter Estimation in EP

Waiting until EP converges is a waste of time!

We update all hyper-parameters ξj after a parallel update of each φ̃i.

Intuitive interpretation:

1. At convergence we obtain a stationary point of Zq (Minka, 2001).

2. The EP updates can be understood as natural gradient descent
in Zq assuming all other φ̃i remain fixed (Heskes & Zoeter, 2002).

3. An inner update of each ξj using gradient ascent, assuming each

φ̃i is fixed, is also expected to be effective for maximizing Zq.

0 200 400 600

−3
80

−3
40

−3
00

Training Time in Seconds

lo
g

Zq

Update after EP has converged
Update inside EP

7 / 17

Distributed EP updates and Gradient Computation

Use ideas from (Gelman et al., 2014) to run EP in a distributed way.

1. We split the data across K nodes.

2. A master node sends q to each other node.

3. At each node we compute at once each q\i

and each approximate factor φ̃i.

4. Each node returns the approximation of
the corresponding part of the likelihood.

5. The master node recomputes q by
combining the messages received with the
prior.

The result is the same as in EP but the cost is O(m3) +O(n/Km2).

Very big gains in the case that n� m.

The computation of the gradient can be distributed in a similar way.

8 / 17

EP Algorithm with Stochastic Gradients

The gradient of logZq contains a sum over the data instances:

∂ logZq

∂ξj
≈ ηT ∂θprior

∂ξj
− ηTprior

∂θprior
∂ξj

+
n

|Mk|
∑

i∈Mk

∂ logZi

∂ξj

where Mk is a mini-batch. Allows for more frequent updates!

We update hyper-parameters after processing each mini-batch!

Detailed EP algorithm:

1. Process mini-batch Mk by updating each φ̃i so that i ∈Mk.

2. Reconstruct the posterior approximation q.

3. Compute a noisy estimate of the gradient of logZq w.r.t. each ξj .

4. Update all model hyper-parameters ξj .

5. Reconstruct the posterior approximation q.

If |Mk| ≤ m the cost is O(m3) in time and O(nm) in memory.

9 / 17

Experiments on Datasets from the UCI Repository

Methods compared: scalable expectation propagation (SEP), the

generalized FITC approx. and scalable variational inference (SVI).

Average negative test log likelihood across 20 splits of the data.

m = 15% m = 25% m = 50%

Problem FITC SEP SVI FITC SEP SVI FITC SEP SVI

australian 0.678 0.694 0.627 0.683 0.666 0.626 0.673 0.637 0.627
breast 0.101 0.110 0.102 0.111 0.113 0.103 0.106 0.113 0.101
crabs 0.066 0.062 0.068 0.063 0.064 0.073 0.061 0.062 0.090
heart 0.427 0.402 0.394 0.421 0.407 0.395 0.416 0.406 0.396
ionosphere 0.298 0.264 0.260 0.292 0.272 0.273 0.302 0.270 0.257
pima 0.535 0.524 0.492 0.533 0.509 0.496 0.528 0.499 0.491
sonar 0.354 0.331 0.401 0.348 0.318 0.404 0.349 0.290 0.345

Average training time in seconds.

m = 15% m = 25% m = 50%

FITC SEP SVI FITC SEP SVI FITC SEP SVI

Time 58.6 17.3 39.7 132.6 37.1 64.6 493.6 129.6 194.6

All methods are batch (trained for 250 iterations) (FITC and SVI use L-BFGS).
10 / 17

Performance as a Function of Time

Image dataset which contains 2,310 instances.

−1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Time in seconds in a log10 scale

Av
er

ag
e

N
eg

at
ive

 T
es

t L
og

 L
ike

lih
oo

d

FITC m = 4
FITC m = 50
FITC m = 200
SEP m = 4
SEP m = 50
SEP m = 200
SVI m = 4
SVI m = 50
SVI m = 200

All methods are batch (trained for 250 iterations) (FITC and SVI use L-BFGS).

11 / 17

Computational Time w.r.t the Number of Nodes

MNIST: 60,000 training instances. Odd vs even digits. m = 200.

2 4 6 8 10 12

50
00

15
00

0
25

00
0

35
00

0

Number of Nodes

Tr
ai

ni
ng

 T
im

e
in

 S
ec

on
ds

SEP
SVI

Parallelization via doMC R package. After 6 nodes there is no improvement.

Processes synchronization becomes a bottle-neck. All methods are batch (trained

for 250 iterations) (SVI uses L-BFGS).
12 / 17

Stochastic Gradient Optimization I

MNIST: 60,000 instances. Odd vs even digits. m = 200. |Mk| = 200.

0 1 2 3 4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Training Time in Seconds in a log10 Scale

A
vg

. N
eg

. T
es

t L
og

 L
ik

el
ih

oo
d

SEP Batch
SEP Stochastic
SVI Batch
SVI Stochastic

Stochastic methods provide good results before batch methods take a single step.

Learning rates are estimated using the ADADELTA method (Zeiler, 2012).

13 / 17

Stochastic Gradient Optimization II
Airline dataset: 2,127,068 instances (flights between Jan, 2008 and

April, 2008). Predict if there is delay using 8 attributes. m = |Mk| = 200.

1 2 3 4

0.
34

0.
38

0.
42

0.
46

Training Time in Seconds in a log10 Scale

Te
st

 E
rro

r

SEP Stochastic
SVI Stochastic
Linear Model

1 2 3 4

0.
60

0.
64

0.
68

0.
72

Training Time in Seconds in a log10 Scale

Av
g.

 N
eg

. T
es

t L
og

 L
ike

lih
oo

d

SEP Stochastic
SVI Stochastic
Linear Model

Instances with missing values are not considered. 14 / 17

Conclusions

I We have shown that expectation propagation (EP) can be
used to efficiently train Gaussian Process Classifiers.

I The proposed method can be used for distributed training
and for computing a stochastic estimate of the gradient.

I The proposed method is competitive with related methods
based on variational inference (Hensman et al., 2015).

I All updates have a closed form and quadrature techniques
are not needed in practice, unlike in the SVI method.

I The training cost of the method is O(m3). However, a
disadvantage is that the memory requirements are O(nm).

15 / 17

Thank you for your attention!

16 / 17

References
Gelman, Andrew, Vehtari, Aki, Jylänki, Pasi, Robert, Christian, Chopin, Nicolas, and

Cunningham, John P. Expectation propagation as a way of life. ArXiv e-prints, 2014.
arXiv:1412.4869.

Hensman, James, Matthews, Alexander, and Ghahramani, Zoubin. Scalable variational
gaussian process classification. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, 2015.

Heskes, Tom and Zoeter, Onno. Expectation propagation for approximate inference in dynamic
Bayesian networks. In Proceedings of the 18th Annual Conference on Uncertainty in Artificial
Intelligence, pp. 216–223, 2002.

Hoffman, Matthew D., Blei, David M., Wang, Chong, and Paisley, John. Stochastic variational
inference. Journal of Machine Learning Research, 14:1303–1347, 2013.

Minka, T. Expectation propagation for approximate Bayesian inference. In Annual Conference
on Uncertainty in Artificial Intelligence, pp. 362–36, 2001.

Naish-Guzman, Andrew and Holden, Sean. The generalized fitc approximation. In Advances in
Neural Information Processing Systems 20, pp. 1057–1064. 2008.

Qi, Yuan (Alan), Abdel-Gawad, Ahmed H., and Minka, Thomas P. Sparse-posterior gaussian
processes for general likelihoods. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, pp. 450–457, 2010.

Quiñonero Candela, J. and Rasmussen, C.E. A unifying view of sparse approximate gaussian
process regression. Journal of Machine Learning Research, pp. 1935–1959, 2005.

Rasmussen, Carl Edward and Williams, Christopher K. I. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2006. ISBN
026218253X.

Seeger, M. Expectation propagation for exponential families. Technical report, Department of
EECS, University of California, Berkeley, 2006.

Titsias, Michalis. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

Zeiler, Matthew D. Adadelta: An adaptive learning rate method. ArXiv e-prints, 2012.
arXiv:1212.5701.

17 / 17

