
Probabilistic Backpropagation for
Scalable Learning of Bayesian Neural Networks

José Miguel Hernández-Lobato

joint work with Ryan P. Adams

Workshop on Gaussian Process Approximations

May 21, 2015

Infinitely-big Bayesian Neural Networks

• Neal [1996] showed that a neural network (NN) converges to a
Gaussian Process (GP) as the number of hidden units increases.

• GPs allow for exact Bayesian inference. Learning infinitely-big
Bayesian networks is then easier and more robust to overfitting.

−6 −4 −2 0 2 4

−
50

0
50

Neural Network Predictions

x

y

−6 −4 −2 0 2 4

−
50

0
50

Gaussian Process Predictions

x

y

1/17

Sparse Gaussian Processes

• The price paid is in scalability. From O(n) we go to O(n3). The
Non-parametric approach is infeasible with massive data!

• Solution: transform the full GP back into a sparse GPs using m
inducing points. From O(n3) we go back to O(n).

−6 −4 −2 0 2 4

−
50

0
50

Full Gaussian Process Predictions

x

y

−6 −4 −2 0 2 4

−
50

0
50

Sparse Gaussian Process Predictions

x

y − − − −− − − −

2/17

Sparse Gaussian Processes as Parametric Methods

FITC approximation: the most widely used method for sparse GPs.

The evaluations f of the function are conditionally independent given
the value u of the function at the m inducing points:

p(f|u) ≈ p̃(f|u) =
n∏

i=1

N (fi |Kfi ,uK−1uu u, kfi fi −KfiuK−1uu Kufi) .

The values u at the inducing points are the parameters of the sparse GP.

A Gaussian approximation q(u) = N (u|m,V) can then be adjusted to
the posterior on u using scalable stochastic and distributed VI or EP
(Hensman et al. [2013, 2014], Hernández-Lobato et al. [2015]).

Is the cycle parametric → non-parametric → parametric worth it?
Perhaps, because scalable inference in NNs is very hard, or perhaps not...

3/17

Probabilistic Multilayer Neural Networks

• L layers with W = {Wl}Ll=1 as weight matrices and outputs {zl}Ll=0.

• The l-th layer input is al = Wlzl−1/
√

dim(zl−1) .

• ReLUs activation functions for the hidden layers: a(x) = max(x , 0) .

• The likelihood: p(y|W,X, γ) =
∏N

n=1N (yn|zL(xn|W), γ−1)≡ fn .

• The priors: p(W|λ) =
∏L

l=1

∏Vl
i=1

∏Vl−1+1
j=1 N (wij ,l |0, λ−1)≡ gk ,

p(λ) = Gamma(λ|αλ0 , βλ0)≡ h, p(γ) = Gamma(γ|αγ0 , β
γ
0)≡ s .

The posterior approximation is

q(W, γ, λ) =
[∏L

l=1

∏Vl
i=1

∏Vl−1+1
j=1

N (wij ,l |mij ,l , vij ,l)] Gamma(γ|αγ , βγ)

Gamma(λ|αλ, βλ) .

4/17

Probabilistic Backpropagation (PBP)

PBP (Hernández-Lobato and Adams [2015]) is based on the assumed
density filtering (ADF) algorithm (Opper and Winther [1998]).

After seeing the n-th data point, our beliefs about w are updated as

p(w) = Z−1N (yn|zL(xn|w), γ−1)N (w |m, v) ,

where Z is the normalization constant.

The parameters of the new Gaussian beliefs qnew(w) = N (w |mnew, vnew)
that minimize the the KL divergence between p(w) and qnew(w) are then

We need a way to approximate Z and then obtain its gradients! 5/17

Forward Pass

Propagate distributions through the network and approximate them
with Gaussians by moment matching.

6/17

Backward Pass and Implementation Details

Once we compute log Z , we obtain its gradients by backpropagation.

Like in classic backpropagation, we obtain a recursion in terms of deltas:

δmj =
∂ log Z

∂ma
j

=
∑

k∈O(j)

{
δmk
∂ma

k

∂ma
j

+ δvk
∂va

k

∂ma
j

}
,

δvj =
∂ log Z

∂va
j

=
∑

k∈O(j)

{
δmk
∂ma

k

∂va
j

+ δvk
∂va

k

∂va
j

}
.

Can be automatically implemented with Theano or autograd.

Implementation details:

• Approximation of the Student’s t likelihood with a Gaussian.

• We do several passes over the data with ADF.

• The approximate factors for the prior are updated using EP.

• Posterior approximation q initialized with random mean value.
7/17

Results on Toy Dataset

40 training epochs.

100 hidden units.

VI uses two stochastic
approximations to the lower
bound (Graves [2011]).

BP and VI tuned with
Bayesian optimization
(www.whetlab.com).

−6 −4 −2 0 2 4

−5
0

0
50

−6 −4 −2 0 2 4

−5
0

0
50

−6 −4 −2 0 2 4

−5
0

0
50

−6 −4 −2 0 2 4

−5
0

0
50

8/17

www.whetlab.com

Exhaustive Evaluation on 10 Datasets

Table : Characteristics of the analyzed data sets.

Dataset N d

Boston Housing 506 13
Concrete Compression Strength 1030 8
Energy Efficiency 768 8
Kin8nm 8192 8
Naval Propulsion 11,934 16
Combined Cycle Power Plant 9568 4
Protein Structure 45,730 9
Wine Quality Red 1599 11
Yacht Hydrodynamics 308 6
Year Prediction MSD 515,345 90

Always 50 hidden units except in Year and Protein where we use 100.

9/17

Average Test RMSE

Table : Average test RMSE and standard errors.

Dataset VI BP PBP
Boston 4.320±0.2914 3.228±0.1951 3.010±0.1850
Concrete 7.128±0.1230 5.977±0.2207 5.552±0.1022
Energy 2.646±0.0813 1.185±0.1242 1.729±0.0464
Kin8nm 0.099±0.0009 0.091±0.0015 0.096±0.0008
Naval 0.005±0.0005 0.001±0.0001 0.006±0.0000
Power Plant 4.327±0.0352 4.182±0.0402 4.116±0.0332
Protein 4.842±0.0305 4.539±0.0288 4.731±0.0129
Wine 0.646±0.0081 0.645±0.0098 0.635±0.0078
Yacht 6.887±0.6749 1.182±0.1645 0.922±0.0514
Year 9.034±NA 8.932±NA 8.881± NA

10/17

Average Training Time in Seconds

PBP does not need to optimize hyper-parameters and is run only once.

Table : Average running time in seconds.

Problem VI BP PBP
Boston 1035 677 13
Concrete 1085 758 24
Energy 2011 675 19
Kin8nm 5604 2001 156
Naval 8373 2351 220
Power Plant 2955 2114 178
Protein 7691 4831 485
Wine 1195 917 50
Yacht 954 626 12
Year 142,077 65,131 6119

These results are for the Theano implementation of PBP. C code for
PBP based on open-blas is about 5 times faster. 11/17

Comparison with Sparse GPs

VI implementation described by Hensman et al. [2014].
Same number m of pseudo-inputs as hidden units in neural networks.
Stochastic optimization with ADADELTA and minibatch size m.

Table : Average Test Log-likelihood.

Dataset SGP PBP
Boston -2.614±0.074 -2.577±0.095
Concrete -3.417±0.031 -3.144±0.022
Energy -1.612±0.022 -1.998±0.020
Kin8nm 0.872±0.008 0.919±0.008
Naval 4.320±0.039 3.728±0.007
Power Plant -2.997±0.016 -2.835±0.008
Protein -3.046±0.006 -2.973±0.003
Wine -1.071±0.023 -0.969±0.014
Yacht -2.507±0.062 -1.465±0.021
Year -3.793±NA -3.603± NA

These results are a collaboration with Daniel Hernández-Lobato. 12/17

Results with Deep Neural Networks

Performance of networks with up to 4 hidden layers.

Same number of units in each hidden layer as before.

Table : Average Test RMSE.

Dataset BP1 BP2 BP3 BP4 PBP1 PBP2 PBP3 PBP4

Boston 3.23±0.195 3.18±0.237 3.02±0.185 2.87±0.157 3.01±0.180 2.80±0.159 2.94±0.165 3.09±0.152
Concrete 5.98±0.221 5.40±0.127 5.57±0.127 5.53±0.139 5.67±0.093 5.24±0.116 5.73±0.108 5.96±0.160
Energy 1.18±0.124 0.68±0.037 0.63±0.028 0.67±0.032 1.80±0.048 0.90±0.048 1.24±0.059 1.18±0.055
Kin8nm 0.09±0.002 0.07±0.001 0.07±0.001 0.07±0.001 0.10±0.001 0.07±0.000 0.07±0.001 0.07±0.001
Naval 0.00±0.000 0.00±0.000 0.00±0.000 0.00±0.000 0.01±0.000 0.00±0.000 0.01±0.001 0.00±0.001
Plant 4.18±0.040 4.22±0.074 4.11±0.038 4.18±0.059 4.12±0.035 4.03±0.035 4.06±0.038 4.08±0.037
Protein 4.54±0.023 4.18±0.027 4.02±0.026 3.95±0.016 4.69±0.009 4.24±0.014 4.10±0.023 3.98±0.032
Wine 0.65±0.010 0.65±0.011 0.65±0.010 0.65±0.016 0.63±0.008 0.64±0.008 0.64±0.009 0.64±0.008
Yacht 1.18±0.164 1.54±0.192 1.11±0.086 1.27±0.129 1.01±0.054 0.85±0.049 0.89±0.099 1.71±0.229
Year 8.93±NA 8.98±NA 8.93±NA 9.04±NA 8.87± NA 8.92±NA 8.87±NA 8.93±NA

13/17

Summary and Future Work

Summary:

• PBP is a state-of-the-art method for scalable inference in NNs.

• PBP is very similar to traditional backpropagation.

• PBP often outperforms backpropagation at a lower cost.

• PBP seems to outperform sparse GPs.

Very fast C code available at https://github.com/HIPS

Future Work:

• Extension to multi-class classification problems.

• Can PBP be efficiently implemented using minibatches?

• ADF seems to be better than EP.
Can PBP benefit from minimizing an α divergence?

• Can we avoid posterior variance shrinkage?
Collaboration with Rich Turner and Yingzhen Li.

• Can deep GPs benefit from similar inference techniques?
14/17

https://github.com/HIPS

Thanks!

Thank you for your attention!

15/17

References I

A. Graves. Practical variational inference for neural networks. In
Advances in Neural Information Processing Systems 24, pages
2348–2356. Curran Associates, Inc., 2011.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big
data. In Uncertainty in Artificial Intelligence, page 282, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational
gaussian process classification. In International Conference on
Artificial Intelligence and Statistics, pages 351–360, 2014.

J. M. Hernández-Lobato and R. Adams. Probabilistic backpropagation
for scalable learning of bayesian neural networks. In ICML. 2015.

D. Hernández-Lobato et al. Scalable gaussian process classification via
expectation propagation. In GP Approximations Workshop,
Copenhagen, 2015.

16/17

References II

R. M. Neal. Priors for infinite networks. In Bayesian Learning for Neural
Networks, pages 29–53. Springer, 1996.

M. Opper and O. Winther. A Bayesian approach to on-line learning.
On-line Learning in Neural Networks, ed. D. Saad, pages 363–378,
1998.

17/17

