# Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks

José Miguel Hernández-Lobato

joint work with Ryan P. Adams

Workshop on Gaussian Process Approximations

May 21, 2015





#### Infinitely-big Bayesian Neural Networks

- Neal [1996] showed that a neural network (NN) converges to a Gaussian Process (GP) as the number of hidden units increases.
- GPs allow for exact Bayesian inference. Learning infinitely-big Bayesian networks is then easier and more robust to overfitting.



### **Sparse Gaussian Processes**

- The price paid is in scalability. From  $\mathcal{O}(n)$  we go to  $\mathcal{O}(n^3)$ . The **Non-parametric** approach is infeasible with massive data!
- Solution: transform the full GP back into a sparse GPs using m inducing points. From  $\mathcal{O}(n^3)$  we go back to  $\mathcal{O}(n)$ .



### **Sparse Gaussian Processes as Parametric Methods**

FITC approximation: the most widely used method for sparse GPs.

The evaluations f of the function are **conditionally independent** given the value  $\mathbf{u}$  of the function at the m inducing points:

$$p(\mathbf{f}|\mathbf{u}) \approx \tilde{p}(\mathbf{f}|\mathbf{u}) = \prod_{i=1}^{n} \mathcal{N}(f_i|\mathbf{K}_{f_i,\mathbf{u}}\mathbf{K}_{\mathbf{u}\mathbf{u}}^{-1}\mathbf{u}, \mathbf{k}_{f_if_i} - \mathbf{K}_{f_i\mathbf{u}}\mathbf{K}_{\mathbf{u}\mathbf{u}}^{-1}\mathbf{K}_{\mathbf{u}f_i}).$$

The values  $\mathbf{u}$  at the inducing points are the **parameters** of the sparse GP.

A Gaussian approximation  $q(\mathbf{u}) = \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{V})$  can then be adjusted to the posterior on  $\mathbf{u}$  using scalable **stochastic** and **distributed VI** or **EP** (Hensman et al. [2013, 2014], Hernández-Lobato et al. [2015]).

Is the cycle  $parametric \rightarrow non-parametric \rightarrow parametric$  worth it? Perhaps, because scalable inference in NNs is very hard, or perhaps not...

# Probabilistic Multilayer Neural Networks

- L layers with  $\mathcal{W} = \{\mathbf{W}_l\}_{l=1}^L$  as weight matrices and outputs  $\{\mathbf{z}_l\}_{l=0}^L$ .
- The *I*-th layer input is  $\mathbf{a}_I = \mathbf{W}_I \mathbf{z}_{I-1} / \sqrt{\dim(\mathbf{z}_{I-1})}$ .
- ReLUs activation functions for the hidden layers:  $a(x) = \max(x, 0)$ .
- The likelihood:  $p(\mathbf{y}|\mathcal{W}, \mathbf{X}, \gamma) = \prod_{n=1}^{N} \mathcal{N}(y_n|z_L(\mathbf{x}_n|\mathcal{W}), \gamma^{-1}) \equiv f_n$ .
- The priors:  $p(\mathcal{W}|\lambda) = \prod_{l=1}^{L} \prod_{i=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} \mathcal{N}(w_{ij,l}|0,\lambda^{-1}) \equiv g_k,$  $p(\lambda) = \operatorname{Gamma}(\lambda|\alpha_0^{\lambda},\beta_0^{\lambda}) \equiv h, \ p(\gamma) = \operatorname{Gamma}(\gamma|\alpha_0^{\gamma},\beta_0^{\gamma}) \equiv s.$



The posterior approximation is  $q(\mathcal{W},\gamma,\lambda) = \left[\prod_{l=1}^L \prod_{i=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} \mathcal{N}(w_{ij,l}|m_{ij,l},v_{ij,l})\right] \operatorname{Gamma}(\gamma|\alpha^\gamma,\beta^\gamma)$   $\operatorname{Gamma}(\lambda|\alpha^\lambda,\beta^\lambda)\,.$ 

## Probabilistic Backpropagation (PBP)

PBP (Hernández-Lobato and Adams [2015]) is based on the **assumed density filtering** (ADF) algorithm (Opper and Winther [1998]).

After seeing the n-th data point, our beliefs about w are updated as

$$p(w) = Z^{-1} \mathcal{N}(y_n | z_L(\mathbf{x}_n | w), \gamma^{-1}) \mathcal{N}(w | m, v),$$

where Z is the normalization constant.

The parameters of the new Gaussian beliefs  $q^{\text{new}}(w) = \mathcal{N}(w|m^{\text{new}}, v^{\text{new}})$  that minimize the KL divergence between p(w) and  $q^{\text{new}}(w)$  are then

$$m^{\text{new}} = m + v \frac{\partial \log Z}{\partial m},$$

$$v^{\text{new}} = v - v^2 \left[ \left( \frac{\partial \log Z}{\partial m} \right)^2 - 2 \frac{\partial \log Z}{\partial v} \right].$$

We need a way to approximate Z and then obtain its gradients!

#### **Forward Pass**

**Propagate** distributions through the network and approximate them with **Gaussians** by moment matching.



### **Backward Pass and Implementation Details**

Once we compute  $\log Z$ , we obtain its gradients by **backpropagation**.

Like in classic backpropagation, we obtain a recursion in terms of deltas:

$$\delta_{j}^{m} = \frac{\partial \log Z}{\partial m_{j}^{a}} = \sum_{k \in O(j)} \left\{ \delta_{k}^{m} \frac{\partial m_{k}^{a}}{\partial m_{j}^{a}} + \delta_{k}^{v} \frac{\partial v_{k}^{a}}{\partial m_{j}^{a}} \right\},$$

$$\delta_{j}^{v} = \frac{\partial \log Z}{\partial v_{j}^{a}} = \sum_{k \in O(j)} \left\{ \delta_{k}^{m} \frac{\partial m_{k}^{a}}{\partial v_{j}^{a}} + \delta_{k}^{v} \frac{\partial v_{k}^{a}}{\partial v_{j}^{a}} \right\}.$$

Can be automatically implemented with **Theano** or **autograd**.

#### Implementation details:

- Approximation of the Student's t likelihood with a Gaussian.
- We do several passes over the data with ADF.
- The approximate factors for the prior are updated using EP.
- Posterior approximation g initialized with random mean value.

#### **Results on Toy Dataset**

40 training epochs.

100 hidden units.

VI uses two stochastic approximations to the lower bound (Graves [2011]).

BP and VI tuned with Bayesian optimization (www.whetlab.com).



#### **Exhaustive Evaluation on 10 Datasets**

**Table :** Characteristics of the analyzed data sets.

| Dataset                       | N       | d  |
|-------------------------------|---------|----|
| Boston Housing                | 506     | 13 |
| Concrete Compression Strength | 1030    | 8  |
| Energy Efficiency             | 768     | 8  |
| Kin8nm                        | 8192    | 8  |
| Naval Propulsion              | 11,934  | 16 |
| Combined Cycle Power Plant    | 9568    | 4  |
| Protein Structure             | 45,730  | 9  |
| Wine Quality Red              | 1599    | 11 |
| Yacht Hydrodynamics           | 308     | 6  |
| Year Prediction MSD           | 515,345 | 90 |

Always 50 hidden units except in Year and Protein where we use 100.

## **Average Test RMSE**

Table: Average test RMSE and standard errors.

| Dataset     | VI                 | BP                   | PBP                  |
|-------------|--------------------|----------------------|----------------------|
| Boston      | 4.320±0.2914       | $3.228 \pm 0.1951$   | $3.010\pm0.1850$     |
| Concrete    | $7.128 \pm 0.1230$ | $5.977 \pm 0.2207$   | $5.552 {\pm} 0.1022$ |
| Energy      | $2.646 \pm 0.0813$ | $1.185{\pm}0.1242$   | $1.729 \pm 0.0464$   |
| Kin8nm      | $0.099 \pm 0.0009$ | $0.091{\pm}0.0015$   | $0.096 {\pm} 0.0008$ |
| Naval       | $0.005 \pm 0.0005$ | $0.001 {\pm} 0.0001$ | $0.006 \pm 0.0000$   |
| Power Plant | $4.327 \pm 0.0352$ | $4.182 \pm 0.0402$   | $4.116 \pm 0.0332$   |
| Protein     | $4.842{\pm}0.0305$ | $4.539 {\pm} 0.0288$ | $4.731 \pm 0.0129$   |
| Wine        | $0.646{\pm}0.0081$ | $0.645 {\pm} 0.0098$ | $0.635{\pm}0.0078$   |
| Yacht       | $6.887 \pm 0.6749$ | $1.182{\pm}0.1645$   | $0.922{\pm}0.0514$   |
| Year        | 9.034±NA           | 8.932±NA             | 8.881 $\pm$ NA       |

## **Average Training Time in Seconds**

PBP does not need to optimize hyper-parameters and is run only once.

Table: Average running time in seconds.

| Problem     | VI      | BP     | PBP  |
|-------------|---------|--------|------|
| Boston      | 1035    | 677    | 13   |
| Concrete    | 1085    | 758    | 24   |
| Energy      | 2011    | 675    | 19   |
| Kin8nm      | 5604    | 2001   | 156  |
| Naval       | 8373    | 2351   | 220  |
| Power Plant | 2955    | 2114   | 178  |
| Protein     | 7691    | 4831   | 485  |
| Wine        | 1195    | 917    | 50   |
| Yacht       | 954     | 626    | 12   |
| Year        | 142,077 | 65,131 | 6119 |

These results are for the **Theano** implementation of PBP. **C** code for PBP based on open-blas is about 5 times faster.

# Comparison with Sparse GPs

VI implementation described by Hensman et al. [2014]. Same number m of pseudo-inputs as hidden units in neural networks. Stochastic optimization with ADADELTA and minibatch size m.

Table: Average Test Log-likelihood.

| Dataset     | SGP                | PBP                  |
|-------------|--------------------|----------------------|
| Boston      | -2.614±0.074       | $-2.577{\pm}0.095$   |
| Concrete    | $-3.417 \pm 0.031$ | $-3.144{\pm}0.022$   |
| Energy      | $-1.612 \pm 0.022$ | $-1.998 \pm 0.020$   |
| Kin8nm      | $0.872 \pm 0.008$  | $0.919 {\pm} 0.008$  |
| Naval       | $4.320 \pm 0.039$  | $3.728 \pm 0.007$    |
| Power Plant | $-2.997 \pm 0.016$ | $-2.835{\pm}0.008$   |
| Protein     | $-3.046\pm0.006$   | $-2.973 \pm 0.003$   |
| Wine        | $-1.071 \pm 0.023$ | $-0.969 {\pm} 0.014$ |
| Yacht       | $-2.507 \pm 0.062$ | $-1.465{\pm}0.021$   |
| Year        | -3.793±NA          | -3.603 $\pm$ NA      |

These results are a collaboration with Daniel Hernández-Lobato.

### **Results with Deep Neural Networks**

Performance of networks with up to 4 hidden layers.

Same number of units in each hidden layer as before.

**Table :** Average Test RMSE.

| Dataset  | $BP_1$               | $BP_2$             | BP <sub>3</sub>    | BP <sub>4</sub>    | $PBP_1$            | PBP <sub>2</sub>     | PBP <sub>3</sub>   | PBP <sub>4</sub>   |
|----------|----------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|
| Boston   | $3.23{\pm}0.195$     | $3.18 \pm 0.237$   | $3.02{\pm}0.185$   | $2.87{\pm}0.157$   | $3.01 \pm 0.180$   | $2.80 {\pm} 0.159$   | $2.94{\pm}0.165$   | $3.09 \pm 0.152$   |
| Concrete | $5.98 \!\pm\! 0.221$ | $5.40 {\pm} 0.127$ | $5.57 \pm 0.127$   | $5.53{\pm}0.139$   | $5.67 \pm 0.093$   | $5.24 \!\pm\! 0.116$ | $5.73 {\pm} 0.108$ | $5.96 \pm 0.160$   |
| Energy   | $1.18 {\pm} 0.124$   | $0.68 {\pm} 0.037$ | $0.63 {\pm} 0.028$ | $0.67{\pm}0.032$   | $1.80 {\pm} 0.048$ | $0.90 {\pm} 0.048$   | $1.24{\pm}0.059$   | $1.18 {\pm} 0.055$ |
| Kin8nm   | $0.09 {\pm} 0.002$   | $0.07{\pm}0.001$   | $0.07 \pm 0.001$   | $0.07 {\pm} 0.001$ | $0.10 {\pm} 0.001$ | $0.07{\pm}0.000$     | $0.07 {\pm} 0.001$ | $0.07 {\pm} 0.001$ |
| Naval    | $0.00 \!\pm\! 0.000$ | $0.00 \pm 0.000$   | $0.00 \pm 0.000$   | $0.00 \pm 0.000$   | $0.01 {\pm} 0.000$ | $0.00 {\pm} 0.000$   | $0.01 {\pm} 0.001$ | $0.00 {\pm} 0.001$ |
| Plant    | $4.18 {\pm} 0.040$   | $4.22 {\pm} 0.074$ | $4.11 \pm 0.038$   | $4.18 \pm 0.059$   | $4.12 \pm 0.035$   | $4.03 {\pm} 0.035$   | $4.06 \pm 0.038$   | $4.08 \pm 0.037$   |
| Protein  | $4.54 {\pm} 0.023$   | $4.18 \pm 0.027$   | $4.02 \pm 0.026$   | $3.95 {\pm} 0.016$ | $4.69 \pm 0.009$   | $4.24{\pm}0.014$     | $4.10 \pm 0.023$   | $3.98 \pm 0.032$   |
| Wine     | $0.65{\pm}0.010$     | $0.65 {\pm} 0.011$ | $0.65 {\pm} 0.010$ | $0.65{\pm}0.016$   | $0.63 {\pm} 0.008$ | $0.64 {\pm} 0.008$   | $0.64 {\pm} 0.009$ | $0.64{\pm}0.008$   |
| Yacht    | $1.18 {\pm} 0.164$   | $1.54{\pm}0.192$   | $1.11 \pm 0.086$   | $1.27{\pm}0.129$   | $1.01 {\pm} 0.054$ | $0.85 {\pm} 0.049$   | $0.89 {\pm} 0.099$ | $1.71 \pm 0.229$   |
| Year     | 8.93±NA              | $8.98\pm NA$       | 8.93±NA            | $9.04\pm NA$       | 8.87 $\pm$ NA      | $8.92{\pm}NA$        | 8.87±NA            | 8.93±NA            |

# **Summary and Future Work**

#### Summary:

- PBP is a state-of-the-art method for scalable inference in NNs.
- PBP is very similar to traditional backpropagation.
- PBP often outperforms backpropagation at a lower cost.
- PBP seems to outperform sparse GPs.

Very fast C code available at <a href="https://github.com/HIPS">https://github.com/HIPS</a>

#### Future Work:

- Extension to multi-class classification problems.
- Can PBP be efficiently implemented using minibatches?
- ADF seems to be better than EP. Can PBP benefit from minimizing an  $\alpha$  divergence?
- Can we avoid posterior variance shrinkage?
   Collaboration with Rich Turner and Yingzhen Li.
- Can deep GPs benefit from similar inference techniques?

#### Thanks!

Thank you for your attention!

#### References I

- A. Graves. Practical variational inference for neural networks. In *Advances in Neural Information Processing Systems 24*, pages 2348–2356. Curran Associates, Inc., 2011.
- J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In *Uncertainty in Artificial Intelligence*, page 282, 2013.
- J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational gaussian process classification. In *International Conference on Artificial Intelligence and Statistics*, pages 351–360, 2014.
- J. M. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of bayesian neural networks. In *ICML*. 2015.
- D. Hernández-Lobato et al. Scalable gaussian process classification via expectation propagation. In *GP Approximations Workshop, Copenhagen,* 2015.

#### References II

- R. M. Neal. Priors for infinite networks. In *Bayesian Learning for Neural Networks*, pages 29–53. Springer, 1996.
- M. Opper and O. Winther. A Bayesian approach to on-line learning. *On-line Learning in Neural Networks, ed. D. Saad*, pages 363–378, 1998.