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Problem formulation

@ Gaussian process (GP) regression problem:

f ~ gP(O, k(X, X/)),
yi = f(x,-) I Efo
@ The GP-regression has cubic computational complexity O(n®) in the

number of measurements.
@ This results from the inversion of an n X n matrix:

,U,(X*) = k(x*, xl:n) (k(xl:m xl:n) + 0'121|)_1 y
V(X*) = k(X*, X*) - k(X*, Xl:n) (k(xl:m xl:n) + Urzll)_l k(Xl;n, X*).

@ In practice, we use Cholesky factorization and do not invert explicitly
— but still the O(n®) problem remains.

@ Various sparse, reduced-rank, and related approximations have been
developed for mitigating this problem.
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Covariance operator

@ For covariance function k(x,x’) we can define covariance operator:

o= [ Kex)olx)d

e For stationary covariance function k(x,x’) £ k(||r||); r = x — x’ we get

el = / K(r) e <" dr.
@ = The transfer function corresponding to the operator K is
S(w) = .Z[K].

@ The spectral density S(w) also gives the approximate eigenvalues of
the operator K.

@ We can now represent the operator KC as a series of Laplace operators.
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Laplacian operator series

e In isotropic case S(w) = S(||w]||), and we can expand
S(llwll) = a0 + arl|wl|* + ax([lwl*)? + as(flw]?)* + -~ -
@ The Fourier transform of the Laplace operator V2 is —||w||?, i.e.,

K=ao+ai(—V?) +ay(—V?)?+a3(-V>)> +--- .

Defines a pseudo-differential operator as a series of differential
operators.
@ Let us now approximate the Laplacian operators with a Hilbert
method...
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Background: series expansions of GPs

@ Assume a covariance function k(x,x’) and an inner product, say,

(f.g) = /Q f(x) g(x) w(x) dx.

@ The inner product induces a Hilbert-space of (random) functions.

o If we fix a basis {¢;(x)}, a Gaussian process f(x) can be expanded
into a series -
F(x) = £ (%),
j=1
where f; are jointly Gaussian.

o If we select ¢; to be the eigenfunctions of k(x,x’) w.r.t. (-,-), then
this becomes the Karhunen—Loeéve series.

@ In the Karhunen—Logve case the coefficients f; are independent
Gaussian.
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Hilbert-space approximation of Laplacian

o Consider the eigenvalue problem for the Laplacian operators:

—quﬁj(x) = >‘j ¢j(x), x € Q,
¢j(x) =0, x € 00Q.

@ The eigenfunctions ¢;(-) are orthonormal w.r.t. inner product
(f.e) = | F()g(x)ax
Lgf);(x) ¢j(x) dx = 5,J

@ The negative Laplacian has the formal kernel
106,X) = > A 6j(x) ¢(X)
J
in the sense that

—V3f(x) = /I(x,x') f(x')dx'.
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Hilbert-space approximation of covariance function

@ Recall that we have the expansion
K=ap+a1(—V?) + ax(-V?3)? + a3(-V?)3 + ... .
@ Substituting the formal kernel gives
k(x,X') ~ ag + a1 I (x,x) + ap 1> (x,x') 4 a3 13(x,x') + - - -

= Z [ao + a1 /\Jl + :':72)\-,2 -+ 33)\? ol ] ¢j(x)¢j(x,)’
J

o Evaluating the spectral density series at ||w|> = ); gives
5(\/)‘_1) = 4o +a1>\} + azAJ? + 33)\5’ 4o

@ This leads to the final approximation

k(x,x') = Z S(V/N) ¢5(x) 5(x)-
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Accuracy of the approximation

0 5¢

Approximations to covariance functions of the Matérn class of various
degrees of smoothness; ¥ = 1/2 corresponds to the exponential
Ornstein—Uhlenbeck covariance function, and v — oo to the squared
exponential (exponentiated quadratic) covariance function.
Approximations are shown for 12, 32, 64, and 128 eigenfunctions.
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Reduced-rank method for GP regression

@ Recall the GP-regression problem
f ~GP(0, k(x,x"))
yi= f(x,-) -+ Ej.

o Let us now approximate

Fx) ~ D £ 5(x)

J=1

where f; ~ N(0, S(1\/j)).
@ The approximating GP f,(x) now approximately has the desired
covariance function.

@ Via the matrix inversion lemma we then get
o = OL(@T® + o AT Ty,
Vi = 02¢] (®T® 4+ 02A 1) ..
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Computational complexity

The computation of ®T® takes O(nm?) operations.

The covariance function parameters do not enter ® and we need to
evaluate ®T® only once (nice in parameter estimation).

If the observations are on a grid, we can use FFT-kind of methods.

The scaling in input dimensionality can be quite bad—but depends on
the chosen domain.
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Convergence analysis

There exists a constant Cy such that

<—+—/ S(w) dw,
lw]|>

‘k(x,x') Km(x,x')

where L = ming Ly, which in turn implies that uniformly

lim [ lim Em(x,x’)] = k(x,x).
Li,....,Lg—00 | m—oo

Corollary

The uniform convergence of the prior covariance function also implies
uniform convergence of the posterior mean and covariance in the limit
m,Ly,..., Ly — .
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Toy example
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Correlation contours in two-dimensions (m = 16)
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Correlation contours computed for three locations corresponding to the
squared exponential covariance function (exact contours dashed).
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Precipitation data

Interpolation of yearly precipitation (n = 5776) using a full GP and the Laplacian GP.

0 1500 3000 mm
b

S < 5

= 1

1

4 3 :
a5 i

3 =S .

| = '

(= 1

= .

N .

2 '
T --a--
Ll Lol Lol TR T S Lol Lol Lol TR T

10° 10! 10° 10° 10* 10°
Evaluation time (s) Evaluation time (s)

Solin & Sarkka (Aalto University, Finland) Hilbert Space Methods for GPs May, 2015 20 / 24



Surface temperature of the globe

Random draws (Matérn, v = {1/2,3/2,00}) in a spherical domain.
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GP regression (mean and standard deviation)
of temperature data (n = 11028).
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Hilbert-space method for reduced-rank Gaussian process regression.

The covariance function is approximated by eigenfunctions of the
Laplace operator.
The eigenvalues are approximated by spectral density values.

The approximation converges to exact limit in well-defined conditions.

Experimental results show that the method works well in practice.
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Related and future work

Spatio-temporal Gaussian processes — combination with Kalman
filtering and smoothing.

@ Periodic covariance functions and other specific classes of covariances.
@ Static and spatio-temporal inverse problems.

@ Non-Gaussian processes.
°

Optimization for high-dimensional inputs.
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