Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Arno Solin and Simo Särkkä

Aalto University, Finland

Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015

Contents

- Problem formulation
- 2 Covariance and Laplacian operators
- 3 Hilbert-space approximation
- 4 Application to GP regression
- Experimental results
- **6** Summary

Problem formulation

Gaussian process (GP) regression problem:

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')),$$

 $y_i = f(\mathbf{x}_i) + \varepsilon_i.$

- The GP-regression has cubic computational complexity $O(n^3)$ in the number of measurements.
- This results from the inversion of an $n \times n$ matrix:

$$\mu(\mathbf{x}_*) = k(\mathbf{x}_*, \mathbf{x}_{1:n}) \left(k(\mathbf{x}_{1:n}, \mathbf{x}_{1:n}) + \sigma_{\mathbf{n}}^2 \mathbf{I} \right)^{-1} \mathbf{y}$$

$$V(\mathbf{x}_*) = k(\mathbf{x}_*, \mathbf{x}_*) - k(\mathbf{x}_*, \mathbf{x}_{1:n}) \left(k(\mathbf{x}_{1:n}, \mathbf{x}_{1:n}) + \sigma_{\mathbf{n}}^2 \mathbf{I} \right)^{-1} k(\mathbf{x}_{1:n}, \mathbf{x}_*).$$

- In practice, we use Cholesky factorization and do not invert explicitly but still the $O(n^3)$ problem remains.
- Various sparse, reduced-rank, and related approximations have been developed for mitigating this problem.

Covariance operator

• For covariance function $k(\mathbf{x}, \mathbf{x}')$ we can define covariance operator:

$$\mathcal{K}\phi = \int k(\cdot, \mathbf{x}') \phi(\mathbf{x}') d\mathbf{x}'.$$

• For stationary covariance function $k(\mathbf{x}, \mathbf{x}') \triangleq k(||\mathbf{r}||)$; $\mathbf{r} = \mathbf{x} - \mathbf{x}'$ we get

$$S(\boldsymbol{\omega}) = \int k(\mathbf{r}) e^{-\mathrm{i} \, \boldsymbol{\omega}^\mathsf{T} \mathbf{r}} \, \mathrm{d} \mathbf{r}.$$

ullet \Rightarrow The transfer function corresponding to the operator ${\cal K}$ is

$$S(\omega) = \mathscr{F}[\mathcal{K}].$$

- The spectral density $S(\omega)$ also gives the approximate eigenvalues of the operator \mathcal{K} .
- ullet We can now represent the operator ${\cal K}$ as a series of Laplace operators.

Laplacian operator series

• In isotropic case $S(\omega) \triangleq S(\|\omega\|)$, and we can expand

$$S(\|\omega\|) = a_0 + a_1 \|\omega\|^2 + a_2 (\|\omega\|^2)^2 + a_3 (\|\omega\|^2)^3 + \cdots$$

• The Fourier transform of the Laplace operator ∇^2 is $-\|\omega\|^2$, i.e.,

$$\mathcal{K} = a_0 + a_1(-\nabla^2) + a_2(-\nabla^2)^2 + a_3(-\nabla^2)^3 + \cdots$$

- Defines a pseudo-differential operator as a series of differential operators.
- Let us now approximate the Laplacian operators with a Hilbert method...

Background: series expansions of GPs

• Assume a covariance function $k(\mathbf{x}, \mathbf{x}')$ and an inner product, say,

$$\langle f, g \rangle = \int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) w(\mathbf{x}) d\mathbf{x}.$$

- The inner product induces a Hilbert-space of (random) functions.
- If we fix a basis $\{\phi_j(\mathbf{x})\}$, a Gaussian process $f(\mathbf{x})$ can be expanded into a series

$$f(\mathbf{x}) = \sum_{j=1}^{\infty} f_j \, \phi_j(\mathbf{x}),$$

where f_i are jointly Gaussian.

- If we select ϕ_j to be the eigenfunctions of $k(\mathbf{x}, \mathbf{x}')$ w.r.t. $\langle \cdot, \cdot \rangle$, then this becomes the Karhunen–Loève series.
- In the Karhunen–Loève case the coefficients f_j are independent Gaussian.

Hilbert-space approximation of Laplacian

• Consider the eigenvalue problem for the Laplacian operators:

$$\begin{cases} -\nabla^2 \phi_j(\mathbf{x}) = \lambda_j \, \phi_j(\mathbf{x}), & \mathbf{x} \in \Omega, \\ \phi_j(\mathbf{x}) = 0, & \mathbf{x} \in \partial \Omega. \end{cases}$$

• The eigenfunctions $\phi_i(\cdot)$ are orthonormal w.r.t. inner product

$$\langle f, g \rangle = \int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) d\mathbf{x},$$

 $\int_{\Omega} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x} = \delta_{ij}.$

The negative Laplacian has the formal kernel

$$I(\mathbf{x}, \mathbf{x}') = \sum_{i} \lambda_{j} \, \phi_{j}(\mathbf{x}) \, \phi_{j}(\mathbf{x}')$$

in the sense that

$$-\nabla^2 f(\mathbf{x}) = \int I(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') \, \mathrm{d}\mathbf{x}'.$$

Hilbert-space approximation of covariance function

Recall that we have the expansion

$$\mathcal{K} = a_0 + a_1(-\nabla^2) + a_2(-\nabla^2)^2 + a_3(-\nabla^2)^3 + \cdots$$

Substituting the formal kernel gives

$$k(\mathbf{x}, \mathbf{x}') \approx a_0 + a_1 l^1(\mathbf{x}, \mathbf{x}') + a_2 l^2(\mathbf{x}, \mathbf{x}') + a_3 l^3(\mathbf{x}, \mathbf{x}') + \cdots$$

= $\sum_{j} \left[a_0 + a_1 \lambda_j^1 + a_2 \lambda_j^2 + a_3 \lambda_j^3 + \cdots \right] \phi_j(\mathbf{x}) \phi_j(\mathbf{x}').$

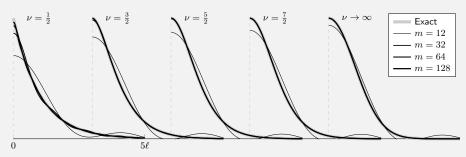
ullet Evaluating the spectral density series at $\|oldsymbol{\omega}\|^2 = \lambda_j$ gives

$$S(\sqrt{\lambda_j}) = a_0 + a_1\lambda_j^1 + a_2\lambda_j^2 + a_3\lambda_j^3 + \cdots$$

• This leads to the final approximation

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{j} S(\sqrt{\lambda_{j}}) \, \phi_{j}(\mathbf{x}) \, \phi_{j}(\mathbf{x}').$$

Accuracy of the approximation



Approximations to covariance functions of the Matérn class of various degrees of smoothness; $\nu=1/2$ corresponds to the exponential Ornstein–Uhlenbeck covariance function, and $\nu\to\infty$ to the squared exponential (exponentiated quadratic) covariance function. Approximations are shown for 12, 32, 64, and 128 eigenfunctions.

Reduced-rank method for GP regression

Recall the GP-regression problem

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

 $y_i = f(\mathbf{x}_i) + \varepsilon_i.$

Let us now approximate

$$f(\mathbf{x}) \approx \sum_{j=1}^{m} f_j \, \phi_j(\mathbf{x}),$$

where $f_i \sim \mathcal{N}(0, S(\sqrt{\lambda_i}))$.

- The approximating GP $f_m(\mathbf{x})$ now approximately has the desired covariance function.
- Via the matrix inversion lemma we then get

$$egin{aligned} \mu_* &pprox oldsymbol{\phi}_*^\mathsf{T} (oldsymbol{\Phi}^\mathsf{T} oldsymbol{\Phi} + \sigma_\mathrm{n}^2 oldsymbol{\Lambda}^{-1})^{-1} oldsymbol{\Phi}^\mathsf{T} oldsymbol{y}, \ V_* &pprox \sigma_\mathrm{n}^2 oldsymbol{\phi}_*^\mathsf{T} (oldsymbol{\Phi}^\mathsf{T} oldsymbol{\Phi} + \sigma_\mathrm{n}^2 oldsymbol{\Lambda}^{-1})^{-1} oldsymbol{\phi}_*. \end{aligned}$$

Computational complexity

- ullet The computation of $\Phi^\mathsf{T}\Phi$ takes $\mathcal{O}(\mathit{nm}^2)$ operations.
- The covariance function parameters do not enter Φ and we need to evaluate $\Phi^T\Phi$ only once (nice in parameter estimation).
- If the observations are on a grid, we can use FFT-kind of methods.
- The scaling in input dimensionality can be quite bad—but depends on the chosen domain.

Convergence analysis

Theorem

There exists a constant C_d such that

$$\left|k(\mathbf{x},\mathbf{x}')-\widetilde{k}_m(\mathbf{x},\mathbf{x}')\right|\leq \frac{C_d}{L}+\frac{1}{\pi^d}\int_{\|\boldsymbol{\omega}\|\geq \frac{\pi \,\hat{m}}{2L}}S(\boldsymbol{\omega})\,\mathrm{d}\boldsymbol{\omega},$$

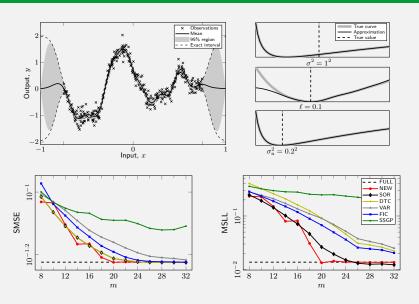
where $L = \min_k L_k$, which in turn implies that uniformly

$$\lim_{L_1,\ldots,L_d\to\infty}\left[\lim_{m\to\infty}\widetilde{k}_m(\mathbf{x},\mathbf{x}')\right]=k(\mathbf{x},\mathbf{x}').$$

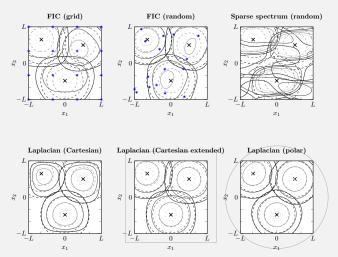
Corollary

The uniform convergence of the prior covariance function also implies uniform convergence of the posterior mean and covariance in the limit $m, L_1, \ldots, L_d \to \infty$.

Toy example



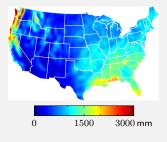
Correlation contours in two-dimensions (m = 16)

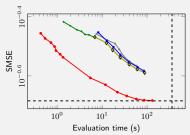


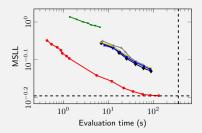
Correlation contours computed for three locations corresponding to the squared exponential covariance function (exact contours dashed).

Precipitation data

Interpolation of yearly precipitation (n = 5776) using a full GP and the Laplacian GP.

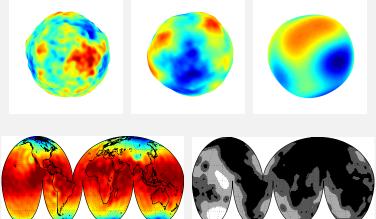






Surface temperature of the globe

Random draws (Matérn, $\nu=\{1/2,3/2,\infty\}$) in a spherical domain.



GP regression (mean and standard deviation) of temperature data (n = 11028).

30°C

-20°C

0°C

Summary

- Hilbert-space method for reduced-rank Gaussian process regression.
- The covariance function is approximated by eigenfunctions of the Laplace operator.
- The eigenvalues are approximated by spectral density values.
- The approximation converges to exact limit in well-defined conditions.
- Experimental results show that the method works well in practice.

Related and future work

- Spatio-temporal Gaussian processes combination with Kalman filtering and smoothing.
- Periodic covariance functions and other specific classes of covariances.
- Static and spatio-temporal inverse problems.
- Non-Gaussian processes.
- Optimization for high-dimensional inputs.