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Outline

I Variational learning of inducing variables

I Distributed representations of GPs (kernel functions) that can
facilitate approximations in large datasets



Gaussian process regression

Inputs X = (x1, . . . , xn) and outputs y = (y1, . . . , yn) such that

yi = f (xi ) + εi , εi ∼ N (0, σ2)

Place GP prior on latent function f (x):

f (x) ∼ GP(0, k(x, x′)),

Given that we have n data our current “marginal model” is

p(y|f)p(f) = N (y|f, σ2I )N (f|0,Kff ), [Kff ]ij = k(xi , xj )

where f = (f1, . . . , fn) are the parameters
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Inducing variables

We need approximations for big Data

The problem is that f grows as we collect more data

Idea: Summarize/replace f by a smaller parameter vector u

The size of u must be user-controllable based on current
computational resources

I it could grow if the computational capacity increase in future
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Inducing variables

Inducing variables u form a vector of user-controllable size that
augments the GP prior:

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
, Kfu = E[fuT ], Kuu = E[uuT ]

u can be:

I a subset of f
I values of f (x) at arbitrary “pseudo-inputs”
I arbitrary linear functionals, e.g. u = zi f (xi ) + zj f (xj )

The augmentation with u adds some parameters Z

I indices that specify the subset in f, pseudo-inputs, weights etc
I Kfu and Kuu depend on those parameters
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Inducing variables

The whole purpose of adding u is to help us obtain an approximation
to our Bayesian non-parametric model (without changing its
non-parametric nature) that will scale better computationally

How do we “turn around” u in order to make it the basis of our
approximation? Further, how do we learn the augmentation
parameters Z?
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Variational learning of inducing variables

Augmented joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Augmented exact posterior

p(f,u|y) = p(f|u, y)p(u|y)

Marginal likelihood is invariant to the augmentation parameters Z

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

and the marginal posterior p(f|y) is also invariant to Z

I I.e. Z is not model parameter
I ⇒ we can turn it into variational parameter by lower

bounding
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Exact posterior distribution
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Variational distribution

q(f,u) = p(f|u)q(u)

This choice encourages u to become approximate sufficient statistic

if p(f|u) ≈ p(f|u, y), then u summarizes well the data
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Variational learning of inducing variables

Minimize KL [q(f,u)||p(f,u|y)] or equivalently maximize the bound
on the log marginal likelihood

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu
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du
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∫
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log p(y) ≥ log
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e
∫

p(f|u) log p(y|f)dfp(u)du
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Variational learning of inducing variables

Bound:

For arbitrary GP model:

p(y) ≥
∫

G (y,u)p(u)du, G (y,u) = e
∫

p(f|u) log p(y|f)df

For GP regression:

N (y|0,Kff +σ2I ) ≥ N (y|0,KfuK
−1
uu Kuf +σ2I )e−

1
2σ2

tr(Kff−KfuK
−1
uu Kuf )

Monotonicity property: If we have inducing variables u and add
an extra ui the bound can only increase∫

G (y,u, ui )p(u, ui )du ≥
∫

G (y,u)p(u)du

Computation of the bound and the approximate GP prediction
scale as O(nm2) where m is the number of inducing variables
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Variational learning of inducing variables

For GP regression the bound has an interesting form:

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf + σ2I )− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)



Variational learning of inducing variables

The approximate posterior/predictive Gaussian process:

q(f∗) =

∫
p(f∗|f,u)q(f,u)dfdu

=

∫
p(f∗|f,u)p(f|u)q(u)dfdu

=

∫
p(f∗|u)q(u)du

where we used the consistency
∫
p(f∗|f,u)p(f|u)df = p(f|u)

The approximation can be thought of been restricted not to
explore freely the information in the training data. But it
maintains fully the non-parametric nature of the model
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Variational learning of inducing variables
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Full GP that scales as O(n3) = O(2003)
Variational approximation that scales as O(nm2) = O(200× 152) at
initialization

I The crosses (+) are the initial values of the inducing inputs Z
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Distributed representation of GPs

However for very complex functions we will need a large number of
inducing variables to get good approximations

One can say that the problem is that inducing variables try to
approximate the GP globally

But the actual problem could be that we represent the GP function
as a global model

If we could construct distributed representations of a given GP

I then our approximations (based on inducing variables or by
other means) could computationally become more distributed
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Distributed representation of GPs
So the precise problem we wish to address here (and the
framework to approach it) is the following:

Assume a GP with pre-specified/known kernel function k(x, x′)

f (x) ∼ GP(0, k(x, x′))

Question: How can we find a distributed representation of this GP
that will greatly facilitate our approximations?

Key idea: Use the divisibility property of Gaussian random
quantities (sum of GPs are GPs!)

Construct a set of GP function f1(x), f2(x), . . . , fJ (x) so that their
sum has the same probability law as f (x):

f1(x) + f2(x) + . . .+ fJ (x) ∼ GP(0, k(x, x′))

There are many ways to consctruct these fj s ⇒ but to facilitate
approximations we need these functions to be (in some sense) local!
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Distributed representation of GPs
But let’s assume we have some suitable functions fjs. How can we
can distribute the approximations?

The initial GP model has joint p(y, f) = p(y|f)p(f)

The equivalent distibuted representation has joint

p(y, f1, . . . , fJ ) = p(y|
J∑

j=1

f j )×
J∏

j=1

p(f j )

Introduce a separate set of m inducing variables uj to approximate
the correspoding fj

Assume a factorized
∏J

j=0 p(f j |uj )q(uj ) and compute the bound∫ J∏
j=1

p(f j |uj )q(uj ) log p(y|
J∑

j=0

f j )−
J∑

j=1

KL[q(uj )||p(uj )]

which has complexity O(n ∗ J ∗m2) (and we are using J ∗m
inducing variables!)
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p(y, f1, . . . , fJ ) = p(y|
J∑

j=1

f j )×
J∏

j=1

p(f j )

Introduce a separate set of m inducing variables uj to approximate
the correspoding fj

Assume a factorized
∏J

j=0 p(f j |uj )q(uj ) and compute the bound∫ J∏
j=1

p(f j |uj )q(uj ) log p(y|
J∑
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Distributed representation of GPs

Distributed representation of a GP

f (x) ∼ GP(0, k(x, x′))

f1(x) + f2(x) + . . .+ fJ (x) ∼ GP(0, k(x, x′))

Essentially we need a way to divide the kernel function so that

k(x, x′) =
J∑

j=1

kj (x, x
′)

and each kj is positive definite and hopefully local (variance drops
to zero outside from a certain input region)
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Distribute the kernel in 1-D

GP regression problem in 1-D with covariance function

k(x , x ′) = σ2
f e
− 1

2`2
(x−x′)2

Explicitly write this as a feature dot product

k(x , x ′) =

∫ ∞
−∞

φ(x , z)φ(x ′, z)dz

where φ(x , z) = σf(
π`2

2

) 1
4
e−

1
`2

(x−z)2

Divide the real axis a1 = −∞ < a2 < a3 < . . . < aJ < aJ+1 =∞
and write the kernel

k(x , x ′) =
J∑

j=1

∫ aj+1

aj

φ(x , z)φ(x ′, z)dz =
J∑

j=1

kj (x , x
′)
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Distribute the kernel in 1-D
Example

Assume k(x , x ′) = e−
1
2 (x−x′)2 . Figure shows the corresponding kernel

matrix in the range [−20, 20]



Distribute the kernel in 1-D

Example

Do the kernel splitting based on −∞ < −10 < −5 < 0 < 5 < 10 <∞.
Figure shows all 6 local kernel matrices



Distribute the kernel in 1-D
Example

Sample from the local GP associated with the segment (−∞,−10]
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Example

A sample from the next local GP
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Distribute the kernel in 1-D

Example

The sum of these local GP functions is a GP function (black line) with

kernel k(x , x ′) = e−
1
2 (x−x′)2



Distribute the kernel in high dimensions

GP regression with inputs x ∈ RD and covariance function

k(x, x′) = σ2
f

D∏
d=1

kd (xd , x
′
d )

and let’s assume k(xd , x
′
d ) = e

− 1

2`2
d

(xd−x′d )
2

Pick a certain input dimension d (here you will need a criterion e.g.
like information gain used in decision trees) to do the split:

k(x, x′) = σ2
f

∏
d′ 6=d

kd (xd , x
′
d )

× kd (xd , x
′
d )

= σ2
f

∏
d′ 6=d

kd (xd , x
′
d )

× J∑
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kdj (xd , x
′
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=
J∑

j=1

σ2
f

∏
d′ 6=d

kd (xd , x
′
d )

 kdj (xd , x
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d ) =
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Discussion

The divisibility property f1(x) + f2(x) + . . . of GPs could allow to
distribute approximations

This requires the use of a factorized variational approximations over
the fj s and can fit nicely with the current variational sparse GP
framework

I ⇒ there will be a separate localized set of inducing variables to
approximater each fj

These fj s need to be somehow local. We have presented one way to
achieve locality but perhaps there exist other possibilities

Current issues: How exactly the bound will be maximized in a
computionally distributed manner
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