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Motivation — important open questions in EP

© EP most often converges — but not always
Can we derive conditions for convergence?
@® Parallel update EP — needs damping
Can we derive better algorithms (from stat. physics)?
©® Empirically EP marginal likelihood often lower bound?
Can we derive conditions for bound?

| will address the first two questions!



Simulations - Gaussian process classification

e Marginal likelihood (Paquet, Winther & Opper, 2008+2013)
o USPS digits 3-vs-5, N = 767 and kernel

k(&,¢) = o exp(—|€ — €| /267) .

 Note correction log R = log(Z/Zzp) is always positive - EP
a bound in this case?
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Running examples — GP in a box and Ising model

Expectation propagation (EP) in a nutshell
Part 1: EP Convergence
e Sequential EP map
o Convergence proof and conditions for specific models
Part 2: Memoryless adaptive TAP dynamics
o EP fixed-point = adaptive TAP equations
Marginal distribution theorem
o Gaussian cavity field approximation — TAP
e Construction of memoryless dynamics
o Asymptottics of memoryless dynamics



Example 1 - Gaussian process (GP) in a box
o GP prior over functions x(s): p(x) = NV(x; 0, K)
e Takeinputs s;j=(i—1)/(N—1),i=0,...,N—1.
o Kernel matrix Kj = [K]; from Kernel function k(s, s’)

Kij = k(si, s;) = exp(—|si — sj|/¢), £=1

251
2

1.5
L

05l
2 o
-05

1t

15}

-2

-25
[

n



Example 2 - Ising model

e Ising model

px) = 5 H [0k + 1)+ d(xk — 1)] exp{x"Jx/2+0"x} .

k fx(Xk) fo(X)
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Expectation propagation (EP) in a nutshell
e Model of interest has a certain factorization:

p(x) = Z H fa(Xa)

Exponential family approx., restricted Gaussian

1
q(x) = Z H 9a(Xa), 9a(Xa) = exp (’Y;—Xa - X;Aaxa/2>
9 a

Tilted distribution tractable! Note subscript a

_ 1 g(x)fa(xa)
qa(X)_?a 9a(Xa)

Moment matching ¢a(Xa) = [Xa XaX}] " determines ga(Xa):

(ba(Xa))q. = (#a(Xa))q

Marginal likelihood: Z ~ Zgp = Z5 [][,Za -
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EP for Ising model

e Ising model

p(x) = H [6(xk + 1)+ 0(xx — 1)] exp{x"Jx/2+ 6 x} .
fie(Xic) fo(x)

e Factorise: QO fo(X) & 9k Xk) = exp ( Yk Xk — /\ka§/2):

K
9(x) = Z1q I] o) = N(x: . )
k=0

withE = (A—J)~"and u = (v + 6).
o Tilted distribution gx(xx) = [ gk(X)dX\x

1 (X
Ak(Xk) = 5 k) /q(x)dx\k = my = tanh (;:k — Yk

Zk 9k(Xk)

)



EP algorithmic recipe

e Loop over k:
@ Tilted distribution gx(xx) = [ gk(X)dX\k

tanh | — —
my <— 1an (zkk 'yk>

® Moment matching
Wk = Mg and Zkk:1—mi
Solve wrt v, and Ag:

s Fk
-+
1-— mi Zkk Tk

1 1
N — ———— — A
kk ] *mi zkk+ kk

Yk

©® Rank-one update of X and pu = Z(v + 0).



Part 1 — EP convergence




EP for GP in a box

e GP in a box
1
pa(x) = 5 [J1(x| < @) N (x; 0, K)

e Factors: fy(x) = N(x; 0, K) and

fo(Xn) = I(|xn| < @)



EP for GP in a box

e GP in abox

1
pa(x) = 5 [T 10| < &) N (x; 0. K)
e Factors: fy(x) = N(x; 0, K) and

fo(Xn) = I(|xn| < @)

e Approximating factors go(x) = f(x) and by symmetry:

9n(Xn) = exp (—AnnX§/2>



EP algorithmic recipe - GP in a box

e Loop over n:

@ Tilted distribution gs(x») = | gn(x)dX\,
1 fr(xn)
Xp) = = X,
Qn(Xn) Z1 9n(Xn) q(xn)
_ 1 n.2
= Z]I(|x,,| < a)exp ( 2xn>
1 1
)\n Znn nn [(,\ _ J)71]nn nn
® Moment matching
Ypp = <X2>qn
Solve wrt App:
A —— = A = FOW)
nn <X2>qn znn nn — n

® Rank-one update of X.



Analysis of EP mapping

e The sequence of N
updates defines maps

/\nn < Tn(/\)

e Fixed-point theorem: if map is differentiable in a
neighborhood of T(A*) = A* and
dTn(NY)

then attraction is guarenteed.

 Use chain to calculate T/, = 9v
N = dAny




Analysis of EP mapping cont.

e Zero mean EP:

1 1
A — — —— + A= F(N
nn < <X2>qn Znn+ nn ( n)
Y :L_A _; A
n_znn nn = [(A—J)q]nn nn

e Update order 1,... N:
/ dT; o\ O\
T =20 _F ’ ’
" dAnN (3/\NN Za/\ll )

oy 1 (X, 1
Fi(\) = > <<X2>3n -3 = 5 X excess kurtosis

YIRS

— 52 Y

e lteration index omitted for simplicity.



Fixed-point analysis
¢ At fixed-point we can simplify to

/

T. % )
Ai= = = ply(1 = o) + D> piF (M)A
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Fixed-point analysis
¢ At fixed-point we can simplify to

/

T. X )
Ai= = = ply(1 = o) + D> piF (M)A
i /(M) Taw pin iN) - PiiFr (M)A,
Pij = Zi
R,

Special case p§ = p?, i #j

i—1
Ty = P*Fn(Aw) (H (1+0%F)) - 1)

/=1

For GP in a box (and log concave factors?) F; (\) € [-1,0].
Thus |T,| < 1.

Not proved for general X, but for other special cases. e.g.
repeated box factors (Cunningham et. al.)



Part 2 — Memoryless dynamics
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EP algorithmic recipe

e Loop over n:
© Tilted distribution g,(xx) = [ gn(x)dx\,

® Moment matching
Lk = My and )Zkk:1—m,2(
Solve wrt v, and Ag:

M,
1—mi Zkk Tk

1
1—m§ o

Tk <
Nk < + Nk

© Rank-one update of X and u = (v + 6).



Equivalence with adaptive TAP equations
e EP moment matching:

m=p 1—m2 =Xy, Vk

e with
_ M
m, = tanh <zkk ’yk>
= (A=9)T
po= X(v+90)



Equivalence with adaptive TAP equations
e EP moment matching:

m=p 1—m2 =Xy, Vk
e with
m, = tanh (;:k—fyk>
= (AN=J)!
po= X(y+9)

e Fixed-points are the adaptive TAP equations (Opper and
Winther, Neural Comp 2000, PRL and PRE 2001):

m = u=A-Jd)"(v+60) = -~v=0+UJ-A)m

my = tanh ( - ’yk> = tanh ([dm], — vikrmy + 6x)
2k

Vik = /\kfi



Marginal distribution theorem

e Exact result for marginal distribution
1 1
p(Xx) = ka(Xk)/exp <2XTJX + BTx> T fer (i) dx
K'#k

1
= () ebmert 0t

IywT J . x: T x.
/exp(xkz Jkk/xk/)eZX‘\k‘J\kx\ﬁg‘\kx\k H fier (X ) X
k' £k K'#£k

Ehk Xp(X\k‘J\\k,g\\k)

1
= > (%) e;‘/kk"'%*"k"k/ex"hkp(hk)dhk

e p(hk) has no memory of Jyx and 6,

p(hy) = /5(hk =) i Xn )P(X k[, 01 ) Xk
Kik



Gaussian cavity assumption — TAP
e Gaussian cavity assumption
p(hi) = N (hi| (B ks () k — <hk>§k)

e |eads to tilted distribution form:

p(xx) = %f (i) @2+ O / ek p(hy)dhy
12,:( o) e Gt RN ORI (B0 X o o ()
e For Ising ( =1):

my = tanh(((hk>\k + Hk)
e From p(xk, hx) (Mezard, Parisi and Virasoro 1987):

(v = [Im])c — viemyc
Vk = (Mehk — (i)
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e Dynamics wanted that should:
e converge to adaptive TAP fixed-point
e be memoryless in the same sense as fixed-point.
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$it) = > Jymi(t) = > Ki(t, s)my(s) .
i

s<t

« Set parameters Ki(t, s) to remove memory.
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Memoryless dynamics

e Dynamics wanted that should:
e converge to adaptive TAP fixed-point
e be memoryless in the same sense as fixed-point.

Propose (parallel) update on the form:
mi(t+1) = f(¢i(t) + 0i(t))

(1) =3 Jymi(t) = 3" Ki(t. s)mi(s)
J

s<t

Set parameters Ki(t, s) to remove memory.
0;(t) = 0, in actual dynamics
Condition for memoryless dynamics 7 < t:

0oi(t 7
d)/ ) ZJ,ka, l' T Z K,'(t, S)G,’,’(S,T) =0.

T8<t

Response funtlon.
om;(t)
96;(7)

Gj(t, ) = = change in m;(t) due to change in 0;()



Dynamics for response

e Dynamics
mi(t+1)=f ZJ,,m, t) = Ki(t, s)mi(s) + 0;(t)
s<t
e Response dynamics — differentiate dynamics:
) B 8m,~(t + 1) _
Gj(t+1,7)= 789/(7) =

gi(t+1) <5ij(5t7 +)  JkGyi(t,7) Z Ki(t,s)Gj(s T))
K r<s

o with gi(t + 1) = 4

—

z=¢;(t)+0;(1)
o Complexity for step t: O(N3t). Not feasible!



Dynamics for cumulative response

¢ Define cumulative response

Xi/(t) = Z Gi/(th)

T<t

e and sum response recursion

Gj(t+1,7) =

gi(t+1) (5,,&7 +ZJ,ka, (t,7) Z Gj(s T))

TS

« to get O(N®)-update:

xii(t+1) = gi(t+1) (5/] + > dix(t) = Y Ki(t, T)Xij(T)> -
k

T<t



Memoryless for SK model
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Approximately memoryless

° Replace gg'((;g = 0 with ZT<1‘ g?%((g =0

> dioxwit) = Y Ki(t, T)xi(r) = 0
k

T<t

« Leaves considerable freedom to choose Ki(t,7)



Approximately memoryless

Replace 573 = 0 with 3°, _, 5048 = o:

> dioxwit) = Y Ki(t, T)xi(r) = 0
k

T<t

Leaves considerable freedom to choose Kij(t, )
Approximate single step memory: Ki(t,7) = 0 for r < t — 1

Recursion simplifies:
xj(t+1) = gi(t+1) <5,,+ZJ,k><k, - Ki(t, t—1)x,-,-(t—1))

Z J/ka/

Ktt—1
( Xut_1



Approximately memoryless for SK model
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Convergence to adaptive TAP

If dynamics

xj(t+1) = gi(t+1) <5ij + ZJikaj(t) — Ki(t, t—1)x(t — 1))
k

converges:

gi(t) = gi xii(f) = xiji

then we recover the adaptive TAP response (= covariance)

Xij = 9i (5/'1 + > Jixw — ViXij)
K

with f(,-(t,t— 1) —v



Simulations

e Cool simulations here



Summary and outlook

[ )

Questions: Convergence, parallel
algorithms, marginal likelihood
bound, assessing accuracy?

Part 1: Sequential EP convergent
for

<X4>Qn
(x2)%,

Other approaches to proofs?

Part 2: New memoryless parallel
updates.

High complexity!

-3€[-2,0] ?
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