Convergence and dynamics of expectation propagation and adaptive TAP

Ole Winther

Technical University of Denmark (DTU)

Collaborators: Manfred Opper, Ulrich Paquet, Burak Cakmak and Bernard Fleury

May 21, 2015

① EP most often converges – but not always Can we derive conditions for convergence?

- 1 EP most often converges but not always Can we derive conditions for convergence?
- 2 Parallel update EP needs damping Can we derive better algorithms (from stat. physics)?

- 1 EP most often converges but not always Can we derive conditions for convergence?
- Parallel update EP needs damping Can we derive better algorithms (from stat. physics)?
- 3 Empirically EP marginal likelihood often lower bound?
 Can we derive conditions for bound?

- 1 EP most often converges but not always Can we derive conditions for convergence?
- Parallel update EP needs damping Can we derive better algorithms (from stat. physics)?
- 3 Empirically EP marginal likelihood often lower bound?
 Can we derive conditions for bound?

I will address the first two questions!

Simulations - Gaussian process classification

- Marginal likelihood (Paquet, Winther & Opper, 2008+2013)
- USPS digits 3-vs-5, N = 767 and kernel

$$k(\xi, \xi') = \sigma^2 \exp(-||\xi - \xi||^2/2\ell^2)$$
.

 Note correction log R = log(Z/Z_{EP}) is always positive - EP a bound in this case?

Outline

- Running examples GP in a box and Ising model
- Expectation propagation (EP) in a nutshell

Outline

- Running examples GP in a box and Ising model
- Expectation propagation (EP) in a nutshell
- Part 1: EP Convergence
 - Sequential EP map
 - Convergence proof and conditions for specific models

Outline

- Running examples GP in a box and Ising model
- Expectation propagation (EP) in a nutshell
- Part 1: EP Convergence
 - Sequential EP map
 - Convergence proof and conditions for specific models
- Part 2: Memoryless adaptive TAP dynamics
 - EP fixed-point = adaptive TAP equations
 - Marginal distribution theorem
 - Gaussian cavity field approximation → TAP
 - Construction of memoryless dynamics
 - Asymptottics of memoryless dynamics

Example 1 - Gaussian process (GP) in a box

- GP prior over functions x(s): $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{K})$
- Take inputs $s_i = (i-1)/(N-1), i = 0, ..., N-1$.
- Kernel matrix $K_{ij} = [\mathbf{K}]_{ij}$ from Kernel function k(s, s')

$$K_{ij} = k(s_i, s_j) = \exp(-|s_i - s_j|/\ell) , \quad \ell = 1$$

$$\rho_a(\mathbf{x}) = \frac{1}{Z} \prod \mathbb{I}(|x_n| < a) \, \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{K})$$

Example 2 - Ising model

Ising model

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{k} \underbrace{\left[\delta(x_k + 1) + \delta(x_k - 1)\right]}_{f_k(x_k)} \underbrace{\exp\{\mathbf{x}^\top \mathbf{J} \mathbf{x}/2 + \boldsymbol{\theta}^\top \mathbf{x}\}}_{f_0(\mathbf{x})}.$$

Model of interest has a certain factorization:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{a} f_a(\mathbf{x}_a)$$

Model of interest has a certain factorization:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{a} f_a(\mathbf{x}_a)$$

• Exponential family approx., restricted Gaussian

$$q(\mathbf{x}) = \frac{1}{Z_q} \prod_a g_a(\mathbf{x}_a), \qquad g_a(\mathbf{x}_a) = \exp\left(\gamma_a^T \mathbf{x}_a - \mathbf{x}_a^T \mathbf{\Lambda}_a \mathbf{x}_a/2\right)$$

Model of interest has a certain factorization:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{a} f_a(\mathbf{x}_a)$$

Exponential family approx., restricted Gaussian

$$q(\mathbf{x}) = \frac{1}{Z_q} \prod_a g_a(\mathbf{x}_a), \qquad g_a(\mathbf{x}_a) = \exp\left(\gamma_a^T \mathbf{x}_a - \mathbf{x}_a^T \mathbf{\Lambda}_a \mathbf{x}_a/2\right)$$

Tilted distribution tractable! Note subscript a

$$q_a(\mathbf{x}) = \frac{1}{Z_a} \frac{q(\mathbf{x}) f_a(\mathbf{x}_a)}{g_a(\mathbf{x}_a)}$$

Model of interest has a certain factorization:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{a} f_a(\mathbf{x}_a)$$

Exponential family approx., restricted Gaussian

$$q(\mathbf{x}) = \frac{1}{Z_q} \prod_a g_a(\mathbf{x}_a), \qquad g_a(\mathbf{x}_a) = \exp\left(\gamma_a^T \mathbf{x}_a - \mathbf{x}_a^T \mathbf{\Lambda}_a \mathbf{x}_a/2\right)$$

Tilted distribution tractable! Note subscript a

$$q_a(\mathbf{x}) = \frac{1}{Z_a} \frac{q(\mathbf{x}) f_a(\mathbf{x}_a)}{g_a(\mathbf{x}_a)}$$

• Moment matching $\phi_a(\mathbf{x}_a) = \begin{bmatrix} \mathbf{x}_a & \mathbf{x}_a \mathbf{x}_a^T \end{bmatrix}^T$ determines $g_a(\mathbf{x}_a)$:

$$\langle \phi_{a}(\mathbf{x}_{a}) \rangle_{q_{a}} = \langle \phi_{a}(\mathbf{x}_{a}) \rangle_{q}$$

Model of interest has a certain factorization:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{a} f_a(\mathbf{x}_a)$$

• Exponential family approx., restricted Gaussian

$$q(\mathbf{x}) = \frac{1}{Z_q} \prod_a g_a(\mathbf{x}_a), \qquad g_a(\mathbf{x}_a) = \exp\left(\gamma_a^T \mathbf{x}_a - \mathbf{x}_a^T \mathbf{\Lambda}_a \mathbf{x}_a/2\right)$$

Tilted distribution tractable! Note subscript a

$$q_a(\mathbf{x}) = \frac{1}{Z_a} \frac{q(\mathbf{x}) f_a(\mathbf{x}_a)}{g_a(\mathbf{x}_a)}$$

• Moment matching $\phi_a(\mathbf{x}_a) = \begin{bmatrix} \mathbf{x}_a & \mathbf{x}_a \mathbf{x}_a^T \end{bmatrix}^T$ determines $g_a(\mathbf{x}_a)$:

$$\langle \phi_a(\mathbf{x}_a) \rangle_{q_a} = \langle \phi_a(\mathbf{x}_a) \rangle_q$$

• Marginal likelihood: $Z pprox Z_{\rm EP} = Z_q \prod_a Z_a$.

EP for Ising model

Ising model

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{k} \underbrace{\left[\delta(x_k + 1) + \delta(x_k - 1)\right]}_{f_k(x_k)} \underbrace{\exp\{\mathbf{x}^\top \mathbf{J} \mathbf{x}/2 + \boldsymbol{\theta}^\top \mathbf{x}\}}_{f_0(\mathbf{x})}.$$

EP for Ising model

Ising model

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{k} \underbrace{\left[\delta(x_k + 1) + \delta(x_k - 1)\right]}_{f_k(x_k)} \underbrace{\exp\{\mathbf{x}^\top \mathbf{J} \mathbf{x}/2 + \boldsymbol{\theta}^\top \mathbf{x}\}}_{f_0(\mathbf{x})}.$$

• Factorise: $g_0(\mathbf{x}) = f_0(\mathbf{x}) \& g_k(x_k) = \exp(\gamma_k x_k - \Lambda_{kk} x_k^2/2)$:

$$q(\mathbf{x}) = \frac{1}{Z_q} \prod_{k=0}^K g_k(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

with
$$\mathbf{\Sigma} = (\mathbf{\Lambda} - \mathbf{J})^{-1}$$
 and $\mathbf{\mu} = \mathbf{\Sigma}(\gamma + \mathbf{\theta})$.

EP for Ising model

Ising model

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{k} \underbrace{\left[\delta(x_k + 1) + \delta(x_k - 1)\right]}_{f_k(x_k)} \underbrace{\exp\{\mathbf{x}^\top \mathbf{J} \mathbf{x}/2 + \theta^\top \mathbf{x}\}}_{f_0(\mathbf{x})}.$$

• Factorise: $g_0(\mathbf{x}) = f_0(\mathbf{x}) \& g_k(x_k) = \exp(\gamma_k x_k - \Lambda_{kk} x_k^2/2)$:

$$q(\mathbf{x}) = \frac{1}{Z_q} \prod_{k=0}^K g_k(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

with $\mathbf{\Sigma} = (\mathbf{\Lambda} - \mathbf{J})^{-1}$ and $\mathbf{\mu} = \mathbf{\Sigma}(\gamma + \mathbf{\theta})$.

• Tilted distribution $q_k(x_k) = \int q_k(\mathbf{x}) d\mathbf{x}_{\setminus k}$

$$q_k(x_k) = rac{1}{Z_k} rac{f_k(x_k)}{g_k(x_k)} \int q(\mathbf{x}) d\mathbf{x}_{\setminus k} \quad \Rightarrow \quad m_k = anh\left(rac{\mu_k}{\Sigma_{kk}} - \gamma_k
ight)$$

EP algorithmic recipe

- Loop over k:
 - 1 Tilted distribution $q_k(x_k) = \int q_k(\mathbf{x}) d\mathbf{x}_{\setminus k}$

$$m_k \leftarrow \tanh\left(\frac{\mu_k}{\Sigma_{kk}} - \gamma_k\right)$$

2 Moment matching

$$\mu_k = m_k$$
 and $\Sigma_{kk} = 1 - m_k^2$

Solve wrt γ_k and Λ_{kk} :

$$\begin{split} \gamma_k \leftarrow \frac{m_k}{1 - m_k^2} - \frac{\mu_k}{\Sigma_{kk}} + \gamma_k \\ \Lambda_{kk} \leftarrow \frac{1}{1 - m_k^2} - \frac{1}{\Sigma_{kk}} + \Lambda_{kk} \end{split}$$

 $oldsymbol{3}$ Rank-one update of $oldsymbol{\Sigma}$ and $oldsymbol{\mu} = oldsymbol{\Sigma}(\gamma + oldsymbol{ heta}).$

Part 1 – EP convergence

EP for GP in a box

GP in a box

$$p_a(\mathbf{x}) = \frac{1}{Z} \prod_n \mathbb{I}(|x_n| < a) \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{K})$$

• Factors: $f_0(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{K})$ and

$$f_n(x_n) = \mathbb{I}(|x_n| < a)$$

EP for GP in a box

GP in a box

$$p_a(\mathbf{x}) = \frac{1}{Z} \prod_n \mathbb{I}(|x_n| < a) \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{K})$$

• Factors: $f_0(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{K})$ and

$$f_n(x_n) = \mathbb{I}(|x_n| < a)$$

• Approximating factors $g_0(\mathbf{x}) = f_0(\mathbf{x})$ and by symmetry:

$$g_n(x_n) = \exp\left(-\Lambda_{nn}x_n^2/2\right)$$

EP algorithmic recipe - GP in a box

- Loop over n:
 - **1** Tilted distribution $q_n(x_n) = \int q_n(\mathbf{x}) d\mathbf{x}_{\setminus n}$

$$q_n(x_n) = \frac{1}{Z_n} \frac{f_n(x_n)}{g_n(x_n)} q(x_n)$$

$$= \frac{1}{Z_n} \mathbb{I}(|x_n| < a) \exp\left(-\frac{\lambda_n}{2} x_n^2\right)$$

$$\lambda_n \equiv \frac{1}{\Sigma_{nn}} - \Lambda_{nn} = \frac{1}{[(\Lambda - \mathbf{J})^{-1}]_{nn}} - \Lambda_{nn}$$

2 Moment matching

$$\Sigma_{nn} = \langle x^2 \rangle_{q_n}$$

Solve wrt Λ_{nn} :

$$\Lambda_{nn} \leftarrow \frac{1}{\langle x^2 \rangle_{\alpha_n}} - \frac{1}{\Sigma_{nn}} + \Lambda_{nn} = F(\lambda_n)$$

3 Rank-one update of Σ.

Analysis of EP mapping

The sequence of N updates defines maps

$$\Lambda_{nn} \leftarrow T_n(\Lambda)$$

 Fixed-point theorem: if map is differentiable in a neighborhood of T(Λ*) = Λ* and

$$\left|\frac{dT_N(\mathbf{\Lambda}^*)}{d\Lambda_{NN}}\right|<1$$

then attraction is guarenteed.

• Use chain to calculate $T_N' \equiv \frac{dT_N}{d\Lambda_{NN}}$.

Analysis of EP mapping cont.

· Zero mean EP:

$$\Lambda_{nn} \leftarrow \frac{1}{\langle x^2 \rangle_{q_n}} - \frac{1}{\Sigma_{nn}} + \Lambda_{nn} = F(\lambda_n)$$
$$\lambda_n \equiv \frac{1}{\Sigma_{nn}} - \Lambda_{nn} = \frac{1}{[(\Lambda - \mathbf{J})^{-1}]_{nn}} - \Lambda_{nn}$$

• Update order 1, ..., *N*:

$$T_i^{'} \equiv rac{dT_i}{d\Lambda_{NN}} = F_i^{'}(\lambda_i) \left(rac{\partial \lambda_i}{\partial \Lambda_{NN}} + \sum_{I < i} rac{\partial \lambda_i}{\partial \Lambda_{II}} T_I^{'}
ight)$$
 $F_i^{'}(\lambda_i) = rac{1}{2} \left(rac{\langle x^4
angle_{q_n}}{\langle x^2
angle_{q_n}^2} - 3
ight) = rac{1}{2} imes ext{excess kurtosis}$
 $rac{\partial \lambda_i}{\partial \Lambda_{jj}} = rac{\Sigma_{ij}^2}{\Sigma_{ij}^2} - \delta_{ij}$

Iteration index omitted for simplicity.

Fixed-point analysis

· At fixed-point we can simplify to

$$\Delta_{i} \equiv \frac{T_{i}^{'}}{F_{i}^{'}(\lambda_{i})} \frac{\Sigma_{ii}}{\Sigma_{NN}} = \rho_{iN}^{2} (1 - \delta_{iN}) + \sum_{l < i} \rho_{il}^{2} F_{l}^{'}(\lambda_{l}) \Delta_{l}$$

$$\rho_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii} \Sigma_{jj}}}$$

$$T_{N}^{'} = F_{N}^{'}(\lambda_{N}) \Delta_{N}$$

Fixed-point analysis

At fixed-point we can simplify to

$$\Delta_{i} \equiv \frac{T_{i}^{'}}{F_{i}^{'}(\lambda_{i})} \frac{\Sigma_{ii}}{\Sigma_{NN}} = \rho_{iN}^{2} (1 - \delta_{iN}) + \sum_{l < i} \rho_{il}^{2} F_{l}^{'}(\lambda_{l}) \Delta_{l}$$

$$\rho_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$$

$$T_{N}^{'} = F_{N}^{'}(\lambda_{N}) \Delta_{N}$$

• Special case
$$ho_{ij}^2=
ho^2$$
, $i
eq j$

$$T_N^{'}=
ho^2F_N^{'}(\lambda_N)\left(\prod_{l=1}^{i-1}\left(1+
ho^2F_l^{'}\right)-1\right)$$

- For GP in a box (and log concave factors?) $F'_i(\lambda) \in [-1,0]$.
- Thus $|T'_N| \le 1$.
- Not proved for general Σ, but for other special cases. e.g. repeated box factors (Cunningham et. al.)

Part 2 – Memoryless dynamics

EP algorithmic recipe

- Loop over n:
 - **1** Tilted distribution $q_n(x_k) = \int q_n(\mathbf{x}) d\mathbf{x}_{\setminus n}$

$$q_n(x_k) = \frac{1}{Z_n} f q(\mathbf{x})$$

2 Moment matching

$$\mu_k = m_k$$
 and $\Sigma_{kk} = 1 - m_k^2$

Solve wrt γ_k and Λ_{kk} :

$$\begin{split} \gamma_k \leftarrow \frac{m_k}{1 - m_k^2} - \frac{\mu_k}{\Sigma_{kk}} + \gamma_k \\ \Lambda_{kk} \leftarrow \frac{1}{1 - m_k^2} - \frac{1}{\Sigma_{kk}} + \Lambda_{kk} \end{split}$$

 $oldsymbol{3}$ Rank-one update of $oldsymbol{\Sigma}$ and $oldsymbol{\mu} = oldsymbol{\Sigma}(\gamma + oldsymbol{ heta}).$

Equivalence with adaptive TAP equations

EP moment matching:

with

$$m_k = \tanh\left(\frac{\mu_k}{\Sigma_{kk}} - \gamma_k\right)$$

$$\Sigma = (\mathbf{\Lambda} - \mathbf{J})^{-1}$$

$$\mu = \mathbf{\Sigma}(\gamma + \theta)$$

Equivalence with adaptive TAP equations

• EP moment matching:

with

$$m_k = \tanh\left(\frac{\mu_k}{\Sigma_{kk}} - \gamma_k\right)$$

$$\Sigma = (\mathbf{\Lambda} - \mathbf{J})^{-1}$$

$$\mu = \mathbf{\Sigma}(\gamma + \theta)$$

 Fixed-points are the adaptive TAP equations (Opper and Winther, Neural Comp 2000, PRL and PRE 2001):

$$\mathbf{m} = \mu = (\mathbf{\Lambda} - \mathbf{J})^{-1} (\gamma + \theta) \Leftrightarrow -\gamma = \theta + (\mathbf{J} - \mathbf{\Lambda}) \mathbf{m}$$

$$\mathbf{m}_{k} = \tanh\left(\frac{\mu_{k}}{\Sigma_{kk}} - \gamma_{k}\right) = \tanh\left([\mathbf{J}\mathbf{m}]_{k} - \mathbf{v}_{k} \mathbf{m}_{k} + \theta_{k}\right)$$

$$\mathbf{v}_{k} = \Lambda_{kk} - \frac{1}{\Sigma_{kk}}$$

Marginal distribution theorem

Exact result for marginal distribution

$$p(x_k) = \frac{1}{Z} f_k(x_k) \int \exp\left(\frac{1}{2} \mathbf{x}^T \mathbf{J} \mathbf{x} + \theta^T \mathbf{x}\right) \prod_{k' \neq k} f_{k'}(x_{k'}) d\mathbf{x}_{\setminus k}$$

$$= \frac{1}{Z} f_k(x_k) e^{\frac{1}{2} J_{kk} x_k^2 + \theta_k x_k} \times$$

$$\int \exp(x_k \sum_{\substack{k' \neq k \\ \equiv h_k}} J_{kk'} x_{k'}) e^{\frac{1}{2} \mathbf{x}_{\setminus k}^T \mathbf{J}_{\setminus k} \mathbf{x}_{\setminus k} + \theta_{\setminus k}^T \mathbf{x}_{\setminus k}} \prod_{k' \neq k} f_{k'}(x_{k'}) d\mathbf{x}_{\setminus k}$$

$$= \frac{1}{Z} f_k(x_k) e^{\frac{1}{2} J_{kk} x_k^2 + \theta_k x_k} \int e^{x_k h_k} p(h_k) dh_k$$

• $p(h_k)$ has no memory of J_{kk} and θ_k

$$p(h_k) \equiv \int \delta(h_k - \sum_{k' \neq k} J_{kk'} \mathbf{x}_{k'}) p(\mathbf{x}_{\setminus k} | \mathbf{J}_{\setminus k}, \theta_{\setminus k}) d\mathbf{x}_{\setminus k}$$

Gaussian cavity assumption → TAP

· Gaussian cavity assumption

$$p(h_k) = \mathcal{N}(h_k | \langle h_k \rangle_{\backslash k}, \langle h_k^2 \rangle_{\backslash k} - \langle h_k \rangle_{\backslash k}^2)$$

leads to tilted distribution form:

$$p(x_k) = \frac{1}{Z} f_k(x_k) e^{\frac{1}{2} J_{kk} x_k^2 + \theta_k x_k} \int e^{x_k h_k} p(h_k) dh_k$$

$$\approx \frac{1}{Z} f_k(x_k) e^{\frac{1}{2} (J_{kk} + \langle h_k^2 \rangle_{\backslash k} - \langle h_k \rangle_{\backslash k}^2) x_k^2 + (\langle h_k \rangle_{\backslash k} + \theta_k) x_k} \propto q_k(x_k)$$

• For Ising $(x_k^2 = 1)$:

$$m_k = \tanh((\langle h_k \rangle_{\backslash k} + \theta_k))$$

• From $p(x_k, h_k)$ (Mezard, Parisi and Virasoro 1987):

$$\langle h_k \rangle_{\backslash k} = [\mathbf{Jm}]_k - v_k m_k$$

 $v_k = \langle h_k^2 \rangle_{\backslash k} - \langle h_k \rangle_{\backslash k}^2$

Memoryless dynamics

- Dynamics wanted that should:
 - converge to adaptive TAP fixed-point
 - be memoryless in the same sense as fixed-point.

Memoryless dynamics

- Dynamics wanted that should:
 - converge to adaptive TAP fixed-point
 - be memoryless in the same sense as fixed-point.
- Propose (parallel) update on the form:

$$m_i(t+1) = f(\phi_i(t) + \theta_i(t))$$

$$\phi_i(t) = \sum_j J_{ij} m_j(t) - \sum_{s < t} \hat{K}_i(t,s) m_i(s) .$$

- Set parameters $\hat{K}_i(t,s)$ to remove memory.
- $\theta_i(t) = \theta_i$ in actual dynamics

Memoryless dynamics

- Dynamics wanted that should:
 - converge to adaptive TAP fixed-point
 - · be memoryless in the same sense as fixed-point.
- Propose (parallel) update on the form:

$$m_i(t+1) = f(\phi_i(t) + \theta_i(t))$$

$$\phi_i(t) = \sum_j J_{ij} m_j(t) - \sum_{s < t} \hat{K}_i(t,s) m_i(s) .$$

- Set parameters $\hat{K}_i(t,s)$ to remove memory.
- $\theta_i(t) = \theta_i$ in actual dynamics
- Condition for memoryless dynamics $\tau < t$:

$$\frac{\partial \phi_i(t)}{\partial \theta_i(\tau)} = \sum_k J_{ik} G_{ki}(t,\tau) - \sum_{\tau < s < t} \hat{K}_i(t,s) G_{ii}(s,\tau) = 0.$$

Response funtion:

$$G_{ij}(t,\tau) \equiv \frac{\partial m_i(t)}{\partial \theta_i(\tau)} = \text{change in } m_i(t) \text{ due to change in } \theta_j(\tau)$$

Dynamics for response

Dynamics

$$m_i(t+1) = f\left(\sum_j J_{ij}m_j(t) - \sum_{s < t} \hat{K}_i(t,s)m_i(s) + \theta_i(t)\right)$$

Response dynamics – differentiate dynamics:

$$G_{ij}(t+1,\tau) = \frac{\partial m_i(t+1)}{\partial \theta_j(\tau)} = g_i(t+1) \left(\delta_{ij} \delta_{t\tau} + \sum_k J_{ik} G_{kj}(t,\tau) - \sum_{\tau < s < t} \hat{K}_i(t,s) G_{ij}(s,\tau) \right)$$

- with $g_i(t+1) = \frac{\partial f(z)}{\partial z}\Big|_{z=\phi_i(t)+\theta_i(t)}$
- Complexity for step t: $\mathcal{O}(N^3t)$. Not feasible!

Dynamics for cumulative response

· Define cumulative response

$$\chi_{ij}(t) \equiv \sum_{\tau < t} G_{ij}(t, au)$$

and sum response recursion

$$G_{ij}(t+1,\tau) = g_i(t+1) \left(\delta_{ij} \delta_{t\tau} + \sum_k J_{ik} G_{kj}(t,\tau) - \sum_{\tau < s < t} \hat{K}_i(t,s) G_{ij}(s,\tau) \right)$$

to get O(N³)-update:

$$\chi_{ij}(t+1) = g_i(t+1) \left(\delta_{ij} + \sum_k J_{ik} \chi_{kj}(t) - \sum_{\tau < t} \hat{K}_i(t,\tau) \chi_{ij}(\tau) \right) .$$

Memoryless for SK model

Approximately memoryless

• Replace $\frac{\partial \phi_i(t)}{\partial \theta_i(\tau)} = 0$ with $\sum_{\tau < t} \frac{\partial \phi_i(t)}{\partial \theta_i(\tau)} = 0$:

$$\sum_{k} J_{ik} \chi_{ki}(t) - \sum_{\tau < t} \hat{K}_{i}(t,\tau) \chi_{ii}(\tau) = 0$$

• Leaves considerable freedom to choose $\hat{\mathcal{K}}_i(t, au)$

Approximately memoryless

• Replace $\frac{\partial \phi_i(t)}{\partial \theta_i(au)} = 0$ with $\sum_{ au < t} \frac{\partial \phi_i(t)}{\partial \theta_i(au)} = 0$:

$$\sum_{k} J_{ik} \chi_{ki}(t) - \sum_{\tau < t} \hat{K}_{i}(t,\tau) \chi_{ii}(\tau) = 0$$

- Leaves considerable freedom to choose $\hat{K}_i(t, au)$
- Approximate single step memory: $\hat{K}_i(t,\tau) = 0$ for $\tau < t-1$
- Recursion simplifies:

$$\chi_{ij}(t+1) = g_i(t+1) \left(\delta_{ij} + \sum_k J_{ik} \chi_{kj}(t) - \hat{K}_i(t,t-1) \chi_{ij}(t-1) \right)$$

$$\hat{K}_i(t,t-1) = \frac{1}{\chi_{ii}(t-1)} \sum_k J_{ik} \chi_{ki}(t)$$

Approximately memoryless for SK model

Convergence to adaptive TAP

If dynamics

$$\chi_{ij}(t+1) = g_i(t+1) \left(\delta_{ij} + \sum_k J_{ik} \chi_{kj}(t) - \hat{K}_i(t,t-1) \chi_{ij}(t-1) \right)$$

converges:

$$g_i(t) \to g_i \qquad \qquad \chi_{ij}(t) \to \chi_{ij}$$

then we recover the adaptive TAP response (= covariance)

$$\chi_{ij} = g_i \left(\delta_{ij} + \sum_k J_{ik} \chi_{kj} - \nu_i \chi_{ij} \right)$$

• with $\hat{K}_i(t, t-1) \rightarrow v_i$

Simulations

· Cool simulations here

Summary and outlook

- Questions: Convergence, parallel algorithms, marginal likelihood bound, assessing accuracy?
- Part 1: Sequential EP convergent for

$$\frac{\langle x^4 \rangle_{q_n}}{\langle x^2 \rangle_{q_n}^2} - 3 \in [-2, 0]$$
 ?

- Other approaches to proofs?
- Part 2: New memoryless parallel updates.
- · High complexity!

