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Introduction

I Model target y with several input variables x
I Only some of the inputs x relevant

I Bayesian approach: use a relevant prior and integrate over
all uncertainties

I Radford Neal won the NIPS 2003 feature selection
competition using Bayesian methods with all the features
(500 – 100 000)

I Sometimes we want to select a minimal subset from x with
a good predictive performance

I improved model interpretability
I reduced measurement costs in the future
I reduced prediction time
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Gaussian process (GP) regression

I GP-prior

f (x) ⇠ GP
�
0, k(x, x0)

�

I Observation model

y | f ⇠ N
⇣

y | f,�2I
⌘

I Predictive distribution

f⇤ | y ⇠ N(f⇤ |µ⇤,⌃⇤),

µ⇤ = K⇤(K + �2I)�1y

⌃⇤ = K⇤⇤ � K⇤(K + �2I)�1KT
⇤ .
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“Automatic relevance determination”

I Squared exponential (SE) or exponentiated quadratic
covariance function

kSE(x, x0) = �2
f exp

0

@�1
2

DX

j=1

(xj � x 0
j )

2

`2
j

1

A .

I Use of separate length-scales `j for each input referred to
as automatic relevance determination (ARD)

I Idea: Optimizing marginal likelihood will yield large values `j
for irrelevant inputs

I Problem: Large length-scale may simply mean linearity
w.r.t. the input (not irrelevance)
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Toy example
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How about estimating the predictive performance?

I Cross-validation gives an (almost) unbiased estimate of
the predictive performance

I Fast LOO-CV approximations in
Vehtari, Mononen, Tolvanen, Sivula, and Winther (2017).
Bayesian leave-one-out cross-validation approximations for
Gaussian latent variable models. JMLR 17(103):1-38.

I But...
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Selection induced bias in variable selection

I Even if the model performance estimate is unbiased (like
LOO-CV), but it’s noisy (like LOO-CV), then using it for
model selection introduces additional fitting to the data

I Performance of the selection process itself can be
assessed using two level cross-validation, but it does not
help choosing better models

I Bigger problem if there is a large number of models as in
covariate selection

I Juho Piironen and Aki Vehtari (2017). Comparison of Bayesian
predictive methods for model selection. Statistics and
Computing, 27(3):711-735. doi:10.1007/s11222-016-9649-y.
arXiv preprint arXiv:1503.08650.
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Selection induced bias in variable selection
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Selection induced bias in variable selection
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Selection induced bias in variable selection

0 20 40 60

�0.2

�0.1

0

0.1

0 20 40 60

�0.2

�0.1

0

0.1

Sonar

0 10 20 30
�0.4

�0.2

0

0.2

CV-10 /
IS-LOO-CV

Ionosphere

0 10 20 30
�0.4

�0.2

0

0.2

WAIC

0 10 20 30
�0.4

�0.2

0

0.2

DIC

0 20 40 60

�0.2

�0.1

0

0.1

0 5 10

�0.4

�0.2

0

0.2

0 5 10

�0.4

�0.2

0

0.2

0 5 10

�0.4

�0.2

0

0.2

Ovarian

0 5 10
�0.4

�0.2

0

0.2

Colon

0 5 10
�0.4

�0.2

0

0.2

0 5 10
�0.4

�0.2

0

0.2

0 5 10
�0.4

�0.2

0

0.2

0 5 10

�0.4

�0.2

0

0.2

0 20 40 60

�0.2

�0.1

0

0.1

0 10 20 30
�0.4

�0.2

0

0.2

MPP

0 10 20 30
�0.4

�0.2

0

0.2

BMA-ref

0 20 40 60

�0.2

�0.1

0

0.1

0 5 10

�0.4

�0.2

0

0.2

0 5 10
�0.4

�0.2

0

0.2

0 5 10
�0.4

�0.2

0

0.2

0 5 10

�0.4

�0.2

0

0.2

0 20 40 60

�0.2

�0.1

0

0.1

0 10 20 30
�0.4

�0.2

0

0.2

BMA-proj Piironen &
Vehtari (2017)



Projection Predictive Model Selection for Gaussian Processes
Piironen, Vehtari

Projection predictive method, general idea
I Originally proposed for generalized linear models by

Goutis and Robert (1998); Dupuis and Robert (2003)
(the decision theoretic idea of using the full model can be
tracked to Lindley (1968), see also many related
references in Vehtari and Ojanen (2012))

I Performs well in practice in comparison to many other
methods (Piironen and Vehtari, 2016)

I has low variance
I able to preserve information from the full model

I General idea
1. Fit the full encompassing model (with all the inputs) with

best possible prior information
2. Any submodel (reduced number of inputs) is trained by

minimizing predictive Kullback-Leibler (KL) divergence to
the full model (= projection)

I For a given number of variables, choose the model with
minimal projection discrepancy
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Projective predictive covariate selection, idea
I The full model predictive distribution represents our best

knowledge about future ỹ

p(ỹ |D) =

Z
p(ỹ |✓)p(✓|D)d✓,

where ✓ = (�,�2)) and � is in general non-sparse (all
�j 6= 0)

I What is the best distribution q?(✓) given a constraint that
only selected covariates have nonzero coefficient

I Optimization problem:

q? = arg min
q

1
n

nX

i=1

KL
✓

p(ỹi | D) k
Z

p(ỹi | ✓)q(✓)d✓
◆

I Optimal projection from the full posterior to a sparse
posterior (with minimal predictive loss)
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p(ỹ |✓)p(✓|D)d✓,

where ✓ = (�,�2)) and � is in general non-sparse (all
�j 6= 0)

I What is the best distribution q?(✓) given a constraint that
only selected covariates have nonzero coefficient

I Optimization problem:

q? = arg min
q

1
n

nX

i=1

KL
✓

p(ỹi | D) k
Z
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Projective predictive feature selection,
computation

I We have posterior draws {✓s}S
s=1, for the full model

(✓ = (�,�2)) and � is in general non-sparse (all �j 6= 0)

I The predictive distribution p(ỹ |D) ⇡ 1
S
P

s p(ỹ |✓s)
represents our best knowledge about future ỹ

I Easier optimization problem by changing the order of
integration and optimization (Goutis & Robert, 1998):

✓s
? = arg min

✓̂

1
n

nX

i=1

KL
⇣

p(ỹi | ✓s) kp(ỹi | ✓̂)
⌘

I ✓s
? are now (approximate) draws from the projected

distribution
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Projection by draws

I Projection of one Monte Carlo sample can be solved
I Gaussian case: analytically

w? = (X?
TX?)

�1X?
T f

�2
? = �2 +

1
n
(f � f?)T(f � f?)

I Exponential family case: equivalent to finding the maximum
likelihood parameters for the submodel with the
observations replaced by the fit of the reference model
(Goutis & Robert, 1998; Dupuis & Robert, 2003)
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Projection predictive method for GPs

I The parameters of the GP are essentially the latent values
f (and likelihood parameters like �)

I Without constraints for the latent values in the submodel,
the solution to the minimization problem is f? = f

I We require constraint that that the submodel prediction
satisfies the usual GP predictive equations
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Projection predictive method for GPs

I Fit the full model M by learning the hyperparameters ✓ to
obtain the latent fit f | y,✓ ⇠ N(f |µ✓,⌃✓)

I The projection to a submodel M? with fewer number of
variables D? is obtained by solving

�(M||M?) = min
✓?

. KL
�
N(f |µ✓,⌃✓)

��N
�
f |µ✓? ,⌃✓?

��
(1)

where

µ? = K?(K? + �2I)�1y,

⌃? = K? � K?(K? + �2I)�1K?,
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Toy example
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f (x) = f1(x1) + · · ·+ f8(x8),

y ⇠ N
⇣

f , 0.32
⌘
,

Var
�
fj
�
= 1 for all j .
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LIO proj. error

Leave-input-out (LIO) projection
errors (averaged over 100 data
realizations, n = 200)
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Projection predictive variable selection

I In variable selection usually not feasible to go through all
variable combinations

I Use e.g. forward search to explore promising combinations

I start from the empty model, at each step add the variable
that reduces the objective (1) the most

I stop when the performance similar to the full model
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Projection predictive variable selection

I In variable selection usually not feasible to go through all
variable combinations

I Use e.g. forward search to explore promising combinations

I start from the empty model, at each step add the variable
that reduces the objective (1) the most

I stop when the performance similar to the full model
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Real world examples
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Full model

Mean log predictive density (MLPD) on test data for full model
(all inputs) with sampled hyperparameters.
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Real world examples
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Accuracy for each submodel size, variables sorted by ARD
(length-scales), hyperparameters optimized to maximum
marginal likelihood.
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Real world examples
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Number of variables

Crime (D = 102)

Full model

ARD

Projection

Accuracy for each submodel size, variables sorted by stepwise
minimization of projection error (forward search),
hyperparameters learned via the projection.
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Non-Gaussian likelihood

I Given Gaussian posterior approximation (e.g. obtained
using EP), we can make the projection conditional on
Gaussian likelihood approximations
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Projection predictive method, pros and cons

I Advantage:
I Discrepancy to the full model much more reliable indicator

of submodel’s performance than the length-scales
I Disadvantage:

I Computational complexity for the projection is O(n3)
(unless sparse approximations are used) ) slow if several
submodels (e.g. variable combinations) are explored
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Summary

I Carry out inference for the full model for best performance,
select only if necessary

I ARD-values (length-scales) are unreliable for input
relevance assessment

I Projection discrepancy to the full model is a more robust
indicator

I However, the forward search requires substantial amount of
additional computations (in addition to fitting the full model)
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