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Motivation

§ DGPs promise much, but are difficult to train

§ Fully factorized VI doesn’t work well

§ We seek a variational approach that works and scales

Other recently proposed schemes [1, 2, 5] make additional
approximations and require more machinery than VI
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Talk outline

1. Summary: Model Inference Results

2. Details: Model Inference Results

3. Questions
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Model

We use the standard DGP model, with one addition:

§ We include a linear (identity) mean function for all the internal
layers

(1D example in [4])
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Inference

§ We use the model conditioned on the inducing points as a
conditional variational posterior

§ We impose Gaussians on the inducing points, (independent
between layers but full rank within layers)

§ We use sampling to deal with the intractable expectation

We never compute N ˆ N matrices (we make no additional
simplifications to variational posterior)
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Results

§ We show significant improvement over single layer models on
large („ 106) and massive („ 109) data

§ Big jump in improvement over single layer GP with 5ˆ number
of inducing points

§ On small data we never do worse than the single layer model,
and often better

§ We can get 98.1% on mnist with only 100 inducing points

§ We surpass all permutation invariant methods on
rectangles-images (designed to test deep vs shallow
architectures)

§ Identical model/inference hyperparameters for all our models
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Details: The Model

We use the standard DGP model, with a linear mean function for all
the internal layers:

§ If dimensions agree use the identity, otherwise PCA

§ Sensible alternative: initialize latents to identity (but linear mean
function works better)

§ Not so sensible alternative: random. Doesn’t work well
(posterior is (very) multimodal)
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The DGP: Graphical Model
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The DGP: Density
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DGP prior
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Factorised Variational Posterior
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Our Variational Posterior
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Recap: ‘GPs for Big Data’ [3]

qpf, uq “ ppf|u; X, ZqN pu|m, Sq

Marginalise u from the variational posterior:
ª

ppf|u; X, ZqN pu|m, Sqdu “ N pf|µ, Sq “: qpf|m, S; X, Zq (1)

Define the following mean and covariance functions:

µm,Zpx
i

q “ mpx
i

q ` apx
i

qTpm ´ mpZqq ,

SS,Zpx
i

, x
j

q “ kpx
i

, x
j

q ´ apx
i

qTpkpZ, Zq ´ Sqapx
j

q .

where apx
i

q “ kpx
i

, ZqkpZ, Zq´1

With these functions rµs
i

“ µm,Zpx
i

q and rSs
ij

“ SS,Zpx
i

, x
j

q.
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Recap: ‘GPs for Big Data’ [3] cont.

Key idea:
The f

i

marginals of qpf, uq “ ppf|u; X, ZqN pu|m, Sq depend only on
the inputs x

i

(and the variational parameters)
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Our Variational Posterior
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Our approach

We can marginalise all the ul from our posterior

Result for lth layer is qpfl|ml , Sl ; hl´1, Zl´1q.
The fully coupled (both between and within layers) variational
posterior is

L

π

l“1

pphl|flqqpfl|ml , Sl ; hl´1, Zl´1q
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But what about the ith marginals?

Since at each layer the ith marginal depends only on the ith
component of the layer below, we have

qpt f

l

i

, h

l

i

uL

l“1q “
L

π

l“1

pph

l

i

| f

l

i

qqp f

l

i

|ml , Sl ; h

l´1
i

, Zl´1q (2)
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The lower bound

Since our variational posterior matches the model everywhere except
the inducing points, the bound is:

L “ E
qpt f

l

i

,hl

i

uL

l“1q log ppy

i

| f

L

i

q ´
L

ÿ

l“1

KLpqpulq||ppulqq

The analytic marginalisation of the all the inner layers qp f

L

i

q is
intractable, but we can draw samples ancestrally
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Sampling from the variational posterior

§ Each layer is Gaussian, given the layer below

§ We draw samples using unit Gaussians e „ N p0, 1q at each layer

§ For f̂

l

u

, mean and var from qp f

l

i

|ml , Sl ; ĥ

l´1
i

, Zl´1q

f̂

l

i

“ µml ,Zl´1pĥ

l´1
i

q ` e
b

SSl ,Zl´1pĥ

l´1
i

, ĥ

l´1
i

q

where for the first layer ĥ

0
i

“ x
i

§ Just add noise for the ĥ

l

i

Whole sampling process is differentiable wrt variational parameters
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The second source of stochasticity

§ We sample the bound in minibatches

§ Linear scaling in N

§ Can be used when only steaming is possible (° 50GB datasets)
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Inference recap

§ We use the full model as a variational posterior, conditioned on
the inducing points

§ We use Gaussians for the inducing points

§ The lower bound requires only the posterior marginals

§ We can take samples from the posterior marginals using a Monte
Carlo estimate

Doubly Stochastic Inference for DGPs Hugh Salimbeni @Amazon Berlin, 29/5/2017 20



Inference recap

§ We use the full model as a variational posterior, conditioned on
the inducing points

§ We use Gaussians for the inducing points

§ The lower bound requires only the posterior marginals

§ We can take samples from the posterior marginals using a Monte
Carlo estimate

Doubly Stochastic Inference for DGPs Hugh Salimbeni @Amazon Berlin, 29/5/2017 20



Inference recap

§ We use the full model as a variational posterior, conditioned on
the inducing points

§ We use Gaussians for the inducing points

§ The lower bound requires only the posterior marginals

§ We can take samples from the posterior marginals using a Monte
Carlo estimate

Doubly Stochastic Inference for DGPs Hugh Salimbeni @Amazon Berlin, 29/5/2017 20



Inference recap

§ We use the full model as a variational posterior, conditioned on
the inducing points

§ We use Gaussians for the inducing points

§ The lower bound requires only the posterior marginals

§ We can take samples from the posterior marginals using a Monte
Carlo estimate

Doubly Stochastic Inference for DGPs Hugh Salimbeni @Amazon Berlin, 29/5/2017 20



Results (1): UCI
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Code Demo

https://github.com/ICL-SML/Doubly-Stochastic-DGP/blob/

master/demos/demo_regression_UCI.ipynb
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Results (2): Large and Massive Data

Test RMSE
N D SGP SGP 500 DGP 2 DGP 3 DGP 4 DGP 5

year 463810 90 10.67 9.89 9.58 8.98 8.93 8.87
airline 700K 8 25.6 25.1 24.6 24.3 24.2 24.1
taxi 1B 9 337.5 330.7 281.4 270.4 268.0 266.4
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Thanks for listening

Questions?
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