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Contents of this talk

I Theory behind GPs + derivatives
I GP-NEB
I Automatic monotonicity detection with GPs
I Bayesian optimization with derivative sign information



Advances in using GPs with derivative observations

May 30, 2017

3/43

Theory: GP + derivative observations

How to use (partial) derivatives with GPs?
We need to consider two parts:

I Covariance function
I Likelihood function

I Posterior -> Inference method
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Covariance function

Nice property (See e.g. Papoulis [1991, ch. 10]):
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And between latent function derivative values f̃

X̃

and f̃
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Likelihood function

Observations are assumed independent given latent function
values:

p(y, ỹ0|f
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How to select the likelihood of derivatives?
I If direct derivative values can be observed:

Gaussian likelihood
I If we only have hint about the direction:

Probit likelihood with a tuning parameter (Riihimäki and
Vehtari (2010))
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Posterior distribution

Posterior distribution of joint values:
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The posterior distribution is either Gaussian or similar as in
classification problems

I We might need posterior approximation methods
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Saddle point search using GPs + derivative

observations

I The properties of the
system can be described
by an energy surface

I Finding a minimum energy
path and the saddle point
between two states is
useful when determining
properties of transitions
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Nudged elastic band (NEB)

I Starting from an initial
guess, the idea is to move
the images downwards on
the energy surface but keep
them evenly spaced

I The images are moved
along a force vector, which
is a resultant of two
components:

I (Negative) energy
gradient component
perpendicular to the path

I A spring force parallel to
the path, which tends to
keep the images evenly
spaced
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I The convergence of NEB may require hundreds or
thousands of iterations

I Each iteration requires evaluation of the energy gradient
for all images, which is often a time-consuming operation
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Speedup of NEB

I Repeat until convergence:
1. Evaluate the energy (and

forces) at the images of
the current path

2. If path not converged,
approximate the energy
surface using machine
learning based on the
observations so far

3. Find the predicted
minimum energy path on
the approximate surface
and go to 1

I The details in paper by
Peterson (2016)
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Speedup of NEB with GP and derivatives

I Evaluate the energy (and forces) only at the image with the
highest uncertainty

I Re-approximate the energy surface and find a new MEP
guess after each image evaluation

I Convergence check:
I If the magnitude of the force (may be accurate or

approximation) is below the convergence limit for all
images, we don’t move the path, but evaluate more images,
until the convergence limit is not met any more or all
images have been evaluated

I If we manage to evaluate all images without moving the
path, we know for sure if the path is converged

I The details in paper by Koistinen, Maras, Vehtari and
Jónsson (2016):
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I When evaluating the transition rates, the Hessian of the
minimum points needs to be evaluated at some phase

I This information can be used to improve the GP
approximations, especially in the beginning, when there is
little information
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Comparison of methods in heptamer case study
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Automatic monotonicity detection

I Derivative sign information can be used to find monotonic
input output directions

I The basic idea:
I Add derivative sign observations to the GP model
I See if the additions affect to the probability of the data

I the dimension is monotonic if not

I The details in paper by Siivola, Piironen and Vehtari (2016)
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Theoretical background

Energy comparison:
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GP with monotonicity assumption

regular GP

Number of virtual observations

Energy of data

E

E

0
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Figure: Change in energy in reality as a function of virtual derivative
sign observations
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Using automatic monotonicity detection in

modelling

I Monotonic dimensions can be detected from the data and
used in modelling

I The method makes the modelling results especially on the
borders.
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Experiment

I Six different functions of varying monotonicity
I Different amount of noise added to training samples (signal

to noise ratio (SNR) between 0 and 1)
I Measure the log predictive posterior density of samples

from a hold out set that resemble 20 % of the bordermost
samples in the training data:

lppd =
LX

i=1

log
Z

p(y
i

|f )ppost(f |x
i

)df

I Do this for three different models for 200 times:
I Use fixed monotonicity
I Use monotonicity if the it does not change the energy

(adaptive monotonicity)
I Use model without derivative observations
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Results
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Multidimensional experiment

Diabetes data1:
I Target value: a measure of diabetes progression one year

after baseline
I 10 dimensions
I Detect monotonic dimensions and use them if needed

1diabetes data, available at:
http://web.stanford.edu/~hastie/Papers/LARS/diabetes.data

http://web.stanford.edu/~hastie/Papers/LARS/diabetes.data
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Results
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Figure: Target value as a function of single predictive values while
others are kept at the median of dataset. Regular black lines
correspond to regular GP mean and 90 % posterior central interval.
Red dashed lines correspond to AMD GPs mean and standard
deviation when body mass index and low-tension glaucoma are
detected as increasing. Black dashed line corresponds to the largest
value of covariate.
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Bayesian optimization with virtual derivative sign

observations

Bayesian optimization (BO):
I A global optimization strategy designed to find the

minimum of expensive black-box functions:
1. Fit GP to the available dataset X, y

2. Evaluate the function at a new location based on some
acquisition function

3. If stopping criterion is not met, go to 1
I Usually the search space is selceted so that the minimum

is not on the border
I An over-exploration of the edges is a typical problem
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Figure: Over exploration of the edges visualized with LCB as an
acquisition function. Circles are initial samples and crosses are
acquisitions.
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Fixing over exploration with derivative sign

observations

I By adding fake derivative observations to the borders, the
over-exploration problem can be solved:

1. Fit GP to the available dataset X, y

2. Find a new location based on some acquisition function
3. If the new location is at the border:

I add a derivative sign observation to the border
4. Else:

I add the new location.
5. If stopping criterion is not met, go to 1

I The details in paper by Siivola, Vehtari, Vanhatalo and
Gonzalez (2017)
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Figure: GP prior and acquisition functions for one dimensional space.
a) and c), without fake derivative sign observations. b) and d) with
derivative sign observations.
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Experiments

Metrics for comparing performances of two BO algorithm:
I

Percentual minimum difference (PMD): PMD is designed to
compare the absolute performances of the algorithms and
intuitively it measures the difference of the best values of
both algorithms.

I
Percentual hit difference (PHD): PHD is created for
comparing the speeds of the algorithms and intuitively it
measures difference of how fast both algorithms are able
to find good enough values.

I
Percentual border hit difference (PBHD): Assuming that
the minimum is not near the border, BHD tells the scaled
difference of unnecessary samples taken near the borders.
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I
Average evaluation distance difference (AED): Intuitively,
AED measures the overall performance of the algorithm
before finding the minimum.

I
Virtual derivative observations per dimension (VDO):
Intuitively, larger VDOs are worse, since they increase the
computational burden of the algorithm as GP’s scale as
O �(n + q)3�.

The interpretation for the magnitude of PMD, PHD and PBHD
are that negative values tell that the proposed method is better,
the values are always scaled between �1 and 1 and the further
away the value is from 0, the bigger the difference between the
two methods is.
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Experiment 1
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Experiment 2

I 100 d-dimensional multivariate normal distribution
functions as d = 1, ..., 11

I Different amount of noise added to the functions
I BO and BO with derivatives ran for 100 acquisitions
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Results
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Experiment 3

I Same as in experiment 2, but for sigopt function dataset2

I 113 functions from 1 to 11 dimensions

2Dataset available at: https://github.com/sigopt/sigopt-examples

https://github.com/sigopt/sigopt-examples
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Results
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Summary

Derivatives can be used with GPs in many new ways:
I To improve accuracy of GPs in simulation of energy

surfaces
I To automatically find monotonic dimensions from data
I To fix border over-exploration problem of BOs
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Questions?
I email: eero.siivola@aalto.fi
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