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Drug and material design

Goal: find novel molecules that optimally fulfill various metrics.

About 108 compounds in databases, potential ones: 1020 — 1090,

Challenges:
e Evaluating molecular properties is slow and expensive.

e Chemical space is huge.
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Bayesian optimization aims to efficiently optimize black-box functions:

X* = arg max f(x)
xXEX

No gradients, observations may be corrupted by noise.

) Black-box, f — Yi
query inputs ! noisy outputs

Black-box queries are very expensive (time, economic cost, etc...).



Bayesian optimization aims to efficiently optimize black-box functions:

X* = arg max f(x)
xXEX

No gradients, observations may be corrupted by noise.

X _| Blackbox, f |— 't
query inputs & noisy outputs

Black-box queries are very expensive (time, economic cost, etc...).

Main idea: replace expensive
black-box queries with cheaper
computations that will save
additional queries in the long run.
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Discovering new optimal molecules

Library generation
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Bayesian optimization can accelerate the search!
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Bayesian optimization can accelerate the search!

Challenges:
@ Massive libraries with millions of candidate molecules
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Bayesian optimization can accelerate the search!

Challenges:
@ Massive libraries with millions of candidate molecules

@® Need to collect hundreds of thousands of data points
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Discovering new optimal molecules
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Bayesian optimization can accelerate the search!

Challenges:
@ Massive libraries with millions of candidate molecules.

@® Need to collect hundreds of thousands of data points.

©® How to collect data in parallel efficiently? e.g. with a computer cluster.
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Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!
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Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Black-box

:> e Objective | Ye

Y U\ \hm

Computing clusters allow us to collect a batch of data at once!
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Traditional parallel BO

Parallel BO can be implemented by averaging the sequential acquisition function
across data {y,}X_, fantasized at pending evaluation locations {x;}%_;:

aparallel(x|D) = EP({)/k}kK,l\{Xk}kK:pD) [asequential(x|D U {xk7.yk};(<:1):| .
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Traditional parallel BO

Parallel BO can be implemented by averaging the sequential acquisition function
across data {y,}X_, fantasized at pending evaluation locations {x;}%_;:

aparallel(x|D) = EP({)/k}kK,l\{Xk}kK:pD) [asequential(x|D U {xk7.yk};(<:1):| .

Approximated by an empirical average across fantasies (samples) of {yk}fle.
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Traditional parallel BO

Two pending evaluations, three fantasies.

Three acquisition functions, one per fantasy.

Average acquisition function.

Figure source: Snoek et al. 2012.

~an [
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Traditional parallel BO

Two pending evaluations, three fantasies.

Three acquisition functions, one per fantasy.

Average acquisition function.

Challenges:

Figure source: Snoek et al. 2012.

~an [

e Lack of scalability with large batch sizes and large library sizes.

42 /91



Traditional parallel BO
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Traditional parallel BO
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Updating the model and optimizing acquisition function is done sequentially.
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Updating the model and optimizing acquisition function is done sequentially.

Fails to exploit parallelism!
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Traditional parallel BO

Node
updating model

I Io
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Updating the model and optimizing acquisition function is done sequentially.

Fails to exploit parallelism!

There is a need for methods that fully work in a parallel and distributed manner.
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Thompson sampling (TS)
Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!
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Thompson sampling (TS)
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Implemented by drawing f’ ~ p(f|D) and then evaluating at x = arg min f'(x’).
x/

The acquisition function is a sample from the posterior over functions!
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The acquisition function is a sample from the posterior over functions!

000 objective
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Exploitation: achieved because on average f’ minimizes the prediction error.
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Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

Very simple strategy that
often works well in practice.

5| S S -

Exploitation: achieved because on average f’ minimizes the prediction error.

Exploration: achieved because ' ~ p(f|D) is a random sample.
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TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

ats(x) = Eyyix, p)[y]

where p(y|x, D) = [ p(y|x,0)p(0|D) dO and 0 are the model parameters.

55 /91



TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize
ats(x) = Epyx. p)[y] Om ~ p(0/D),

where p(y|x, D) = [ p(y|x,0)p(0|D) dO and 0 are the model parameters.

56 /91



TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

M
1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y],  Om ~ p(0D),
m=1

where p(y|x, D) = [ p(y|x,0)p(0|D) dO and 0 are the model parameters.

57 /91



TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

M
1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y],  Om ~ p(0D),
m=1

where p(y|x, D) = [ p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.
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TS as utility maximization and parallel TS
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TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize
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TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y],  Om ~ p(0D),
=1
where p(y|x, D) = [ p(y|x,0)p(0|D) dO and 0 are the model parameters.
TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparallel TS(X|D) =E {Yk}k 1|{Xk}k D) |:04TS(X|DU {Xk,yk}/’f:l)]

M

N > ars(xD U {xe,ykmbicr) = ars(x|D)
m=1

where {yi i ~ p({yi i [{xk} i1, D), and as before, M — 1.

Our parallel TS is equivalent to running sequential TS multiple times!
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Each optimization problem can be done independently in a different computer.
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Parallel Thompson sampling
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Parallel Thompson sampling

Node
updating model

| 10

comunicating information
between nodes
optimizing acquisition L @) o €D R

function

=~ evaluating objective
function

= =. idle node

time

Works in a fully parallel and distributed manner.
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Thompson sampling with Gaussian processes (GPs)
GPs are a non-parametric models, so sampling the model parameters € and
optimizing E,,|x, 6)[y] is not possible.

We approximate the objective function f as f(x) &~ ®(x)8 with random features
®(x) = C cos(W'x +b), (1)

where W, b ~ p(W,b), a distribution specified by the GP covariance function.

The prior for 8 is N'(0,1). The resulting Bayesian linear regression model is
a parametric approximation to the original GP model.
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Results

Batch size:

with Gaussian process based models
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Results with Bayesian neural networks

Data sets:
® CEP: Harvard Clean Energy Project data, 2.3M molecules.

® One-dose: percentage cell growth relative to control, 27,000 molecules.

® Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).
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Data sets:
® CEP: Harvard Clean Energy Project data, 2.3M molecules.
® One-dose: percentage cell growth relative to control, 27,000 molecules.

® Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).

Fraction of top 10% (CEP) or 1% (Malaria and One-dose) molecules found:
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Thompson
Ignoring uncertainty
Random

BO gives 20x gains over random in CEP. Using uncertainty always helps.
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Comparison with ¢-greedy sampling

Table: Average rank and standard errors obtained by each method.

Method Rank

e =0.01 3.424+0.28
e = 0.025 3.02+0.25
e = 0.05 2.86+0.23
e = 0.075 3.20+0.26
Thompson 2.51+0.20
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Take home message

Parallel Thompson sampling...
@ Batch BO method that runs in a parallel and distributed manner.
@® Can handle large batch sizes and large molecule libraries.
©® Comparable to non-scalable approaches in small problems with GPs.

@ Outperforms other alternative scalable approaches in large scale settings.
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Thanks!



