Parallel Thompson Sampling
for Large-scale Accelerated Exploration
of Chemical Space,

José Miguel Hernandez—Lobato
Department of Engineering
University of Cambridge
http://jmhl.org, jmh233@cam.ac.uk

Joint work with James Requeima, Edward O. Pyzer-Knapp
and Alan Aspuru-Guzik.

http://jmhl.org
mailto:jmh@cam.ac.uk

Drug and material design

Goal: find novel molecules that optimally fulfill various metrics.

About 108 compounds in databases, potential ones: 1020 — 1090,

Challenges:
e Evaluating molecular properties is slow and expensive.

e Chemical space is huge.

2/91

Drug and material design

Goal: find novel molecules that optimally fulfill various metrics.

About 108 compounds in databases, potential ones: 1020 — 1090,

Challenges:
e Evaluating molecular properties is slow and expensive.

e Chemical space is huge.

Bayesian optimization can accelerate the search.

3/91

Bayesian optimization aims to efficiently optimize black-box functions:

X* = arg max f(x)
xXEX

No gradients, observations may be corrupted by noise.

) Black-box, f — Yi
query inputs ! noisy outputs

Black-box queries are very expensive (time, economic cost, etc...).

Bayesian optimization aims to efficiently optimize black-box functions:

X* = arg max f(x)
xXEX

No gradients, observations may be corrupted by noise.

X _| Blackbox, f |— 't
query inputs & noisy outputs

Black-box queries are very expensive (time, economic cost, etc...).

Main idea: replace expensive
black-box queries with cheaper
computations that will save
additional queries in the long run.

91

objective

@ Get initial sample.

/91

— objective
000 objective @ Get initial sample.

7/91

000 objective
@ Get initial sample.

@® Fit a model to the data:

p(ylx,D).

/o1

000 objective

@ Get initial sample.
' ® Fit a model to the data:
p(ylx,D).

9/01

— Objective

@ Get initial sample.
® Fit a model to the data:
p(y[x, D).

© Select data collection strategy:
a(x) = Epyx) [U(y[x, D)] .

10/91

—— Objective

@ Get initial sample.

@® Fit a model to the data:
p(y|x,D).

\ © Select data collection strategy:
a(x) = Epy) [U(y[x, D)] .

— Acquisition Function a(x)

O Optimize acquisition function a(x).

11/91

—— Objective

— Acquisition Function a(x)

@ Get initial sample.

@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep(1 p)[U(y[x, D)].

O Optimize acquisition function «(x).

@ Collect data and update model.

12/01

— Objective

— Acquisition Function a(x)

@ Get initial sample.
@ Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Epyx,0) [U(y[x, D)] .

- @ Optimize acquisition function a(x).

@ Collect data and update model.
® Repeat!

13/91

} — Objective
A —a £ @ Get initial sample.

@® Fit a model to the data:

p(y[x, D).
‘V © Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

14 /91

— Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

15/01

—— Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function o(x)

@ Collect data and update model.
® Repeat!

16/91

—— Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function o(x)

@ Collect data and update model.
® Repeat!

17/91

— Objectifre

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
@ Repeat!

18/01

_— Objectiv,e/
—~ @ Get initial sample.

@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
@ Repeat!

19/01

—— Objective

@ Get initial sample.
@® Fit a model to the data:

p(y|x, D) :

© Select data collection strategy:
a(x) = Epy) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

20/91

—— Objective
F—— @ Get initial sample.

' ® Fit a model to the data:

L p(y[x, D).

© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

21/91

—— Objective
@ Get initial sample.

@® Fit a model to the data:

p(y|x, D).
© Select data collection strategy:
a(x) = Epy) [U(y[x, D)] .

i

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

22/91

—— Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

23/91

_— Objective'

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

24/91

— Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

25/91

— Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x, D).
© Select data collection strategy:
a(x) = Ep) [U(y[x, D)] .

- @ Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

26/91

—— Objective

— Acquisition Function a(x)

- @ Optimize acquisition function «(x).

@ Get initial sample.

‘ @® Fit a model to the data:

p(y|x, D).
© Select data collection strategy:
a(x) = Epy) [U(y[x, D)] .

@ Collect data and update model.
® Repeat!

27 /91

Discovering new optimal molecules

Library generation

Performance Interesting
Fragments i
g Bonfllng evaluation molecules
be e mw o rules
DOOPNSES S N &
5 =8 ‘ri;lﬂﬁ?}“m AA» bk
oS Tl r . o? ¢
- o o 8 8
o 3 @/m@z o dn A

28 /91

Discovering new optimal molecules

Library generation

Fragments

v

oS AED

v

3

F
ASTE
‘;QE

"

:
O

J
e K - " w
‘;‘Q‘ e ~ o
, 3o

s

o 30 30 @c

Performance Interesting

Bonding evaluation molecules
rules ;

AA

Bayesian optimization can accelerate the search!

29 /01

Discovering new optimal molecules

Library generation .
s g oo
. AA = »..

SE

e

ﬁf;@i@a/

l,t; 20 o0 @z

W

‘}j;

E E{"‘/ﬁ z
» ez

3‘
Dy

8
£,

Bayesian optimization can accelerate the search!

Challenges:
@ Massive libraries with millions of candidate molecules

30/01

Discovering new optimal molecules

Library generation Pexf .
s g oo
. AA = »..

SE

e

ﬁf;@i@a/

l,t; 20 o0 @z

W

‘}j;

E E{"‘/ﬁ z
» ez

3‘
Dy

8
£,

Bayesian optimization can accelerate the search!

Challenges:
@ Massive libraries with millions of candidate molecules

@® Need to collect hundreds of thousands of data points

31/01

Discovering new optimal molecules

Library generation

Performance Interestin:

Fragments . g

g Bon;hng evaluation molecules

tronototototox rules

VOLPPrIPY o . &

DD Gy S W S S W AA» es

holye Qf} T IO < » év
. i v

\/L/ W\/L \/Ej (HV\ Kﬁi“ \L/V’
Bayesian optimization can accelerate the search!

Challenges:
@ Massive libraries with millions of candidate molecules.

@® Need to collect hundreds of thousands of data points.

©® How to collect data in parallel efficiently? e.g. with a computer cluster.

32/01

Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

33/01

Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Black-box

:> Xt = Objective | Ve

Y U\ \hm

34 /91

Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Black-box

:> Xt = Objective | Ve

Y U\ \hm

Computing clusters allow us to collect a batch of data at once!

35/91

Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Black-box
Objective

:{>XH

Ny ‘u

Computing clusters allow us to collect a batch of data at once!

Xt

Black-box
Objective

<
Raav T

= Y

Y
Vi

Ve

36 /91

Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Black-box
Objective

:{>XH

Ny ‘u

Computing clusters allow us to collect a batch of data at once!

Xt

Black-box
Objective

<
Raav T

= Y

Y
Vi

Ve

37/91

Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Black-box

:> e Objective | Ye

Y U\ \hm

Computing clusters allow us to collect a batch of data at once!

Xt

x} Black-box
:> t Objective
X¢ \
N
JlGd

Parallel experiments should be highly informative but also diverse!

Y
Vi

Ve

38/91

Traditional parallel BO

Parallel BO can be implemented by averaging the sequential acquisition function
across data {y,}X_, fantasized at pending evaluation locations {x;}%_;:

aparallel(x|D) = EP({)/k}kK,l\{Xk}kK:pD) [asequential(x|D U {xk7.yk};(<:1):| .

39/91

Traditional parallel BO

Parallel BO can be implemented by averaging the sequential acquisition function
across data {y,}X_, fantasized at pending evaluation locations {x;}%_;:

aparallel(x|D) = EP({)/k}kK,l\{Xk}kK:pD) [asequential(x|D U {xk7.yk};(<:1):| .

Approximated by an empirical average across fantasies (samples) of {yk}fle.

40 /91

Traditional parallel BO

Two pending evaluations, three fantasies.

Three acquisition functions, one per fantasy.

Average acquisition function.

Figure source: Snoek et al. 2012.

~an [

41 /91

Traditional parallel BO

Two pending evaluations, three fantasies.

Three acquisition functions, one per fantasy.

Average acquisition function.

Challenges:

Figure source: Snoek et al. 2012.

~an [

e Lack of scalability with large batch sizes and large library sizes.

42 /91

Traditional parallel BO

| 1o

Node

updating model
comunicating information
between nodes
optimizing acquisition
function

evaluating objective
function

idle node

\ 4

time

43 /91

Traditional parallel BO

Node
updating model

I Io

comunicating information
between nodes
optimizing acquisition
function

=/ evaluating objective
function

= =. idle node

\ 4

time

Updating the model and optimizing acquisition function is done sequentially.

44 /91

Traditional parallel BO

Node
updating model

I Io

comunicating information
between nodes
optimizing acquisition
function

=/ evaluating objective
function

= =. idle node

\ 4

time

Updating the model and optimizing acquisition function is done sequentially.

Fails to exploit parallelism!

45 /91

Traditional parallel BO

Node
updating model

I Io

comunicating information
between nodes
optimizing acquisition
function

=/ evaluating objective
function

= =. idle node

>
>

time

Updating the model and optimizing acquisition function is done sequentially.

Fails to exploit parallelism!

There is a need for methods that fully work in a parallel and distributed manner.

46 /91

Thompson sampling (TS)
Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

47 /91

Thompson sampling (TS)
Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

48 /91

Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ~ p(x,|D).

Implemented by drawing f’ ~ p(f|D) and then evaluating at x = arg min f'(x’).
x/

The acquisition function is a sample from the posterior over functions!

000 objective

49 /91

Thompson sampling (TS)
Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

50/91

Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

5| S S -

51/91

Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

5| S S -

Exploitation: achieved because on average f’ minimizes the prediction error.

52 /91

Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

5| S S -

Exploitation: achieved because on average f’ minimizes the prediction error.

Exploration: achieved because ' ~ p(f|D) is a random sample.
53/91

Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ~ p(x,|D).
Implemented by drawing ' ~ p(f|D) and then evaluating at x = arg min f/(x’).

The acquisition function is a sample from the posterior over functions!

000 objective

Very simple strategy that
often works well in practice.

5| S S -

Exploitation: achieved because on average f’ minimizes the prediction error.

Exploration: achieved because ' ~ p(f|D) is a random sample.
54 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

ats(x) = Eyyix, p)[y]

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

55 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize
ats(x) = Epyx. p)[y] Om ~ p(0/D),

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

56 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

M
1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y], Om ~ p(0D),
m=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

57 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

M
1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y], Om ~ p(0D),
m=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.

58 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

M
1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y], Om ~ p(0D),
m=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

59 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

M
1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y], Om ~ p(0D),
m=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparaliel T5(X|D) = Ep({yk}f,luxk}f:l,p) [aTS(X|D U {Xk:yk}l’le)]

60 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

L /
ars(x) = Exppx V] = 77 > Esymomly]l, Om~ p(0]D),
=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparallel TS(X|D) =E {Yk}k 1|{Xk}k D) |:04TS(X|DU {Xky}/k}l’le)]

M

1
oy > ars(xD U {xe,vim i)
m=1

61/91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

L /
ars(x) = Exppx V] = 77 > Esymomly]l, Om~ p(0]D),
=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparallel TS(X|D) =E {Yk}k 1|{Xk}k D) |:04TS(X|DU {Xky}/k}l’le)]

M

1
oy > ars(xD U {xe,vim i)
m=1

where {)’k,m}le ~ p({yk}f:IHXk}kK:lvD)v

62 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

L /
ars(x) = Exppx V] = 77 > Esymomly]l, Om~ p(0]D),
=1

where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.

TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparallel TS(X|D) =E {Yk}k 1|{Xk}k D) |:04TS(X|DU {Xky}/k}l’le)]

M

1
oy > ars(xD U {xe,vim i)
m=1

where {yi i ~ p({yi i [{xk} i1, D), and as before, M — 1.

63 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

1« .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y], Om ~ p(0D),
=1
where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.
TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparallel TS(X|D) =E {Yk}k 1|{Xk}k D) |:04TS(X|DU {Xky}/k}l’le)]

M

N > ars(xD U {xe,ykmbicr) = ars(x|D)
m=1

where {yi i ~ p({yi i [{xk} i1, D), and as before, M — 1.

64 /91

TS as utility maximization and parallel TS

The utility function used by TS is U(y|x,D) = y. TS aims to optimize

1 .
ats(x) = Eppix, p)ly] & M Z Eoyix, 0, [y], Om ~ p(0D),
=1
where p(y|x, D) = [p(y|x,0)p(0|D) dO and 0 are the model parameters.
TS uses M = 1 since low values of /V/ increase variance and exploration.

We can apply the traditional parallel BO approach to TS:

Qparallel TS(X|D) =E {Yk}k 1|{Xk}k D) |:04TS(X|DU {Xk,yk}/’f:l)]

M

N > ars(xD U {xe,ykmbicr) = ars(x|D)
m=1

where {yi i ~ p({yi i [{xk} i1, D), and as before, M — 1.

Our parallel TS is equivalent to running sequential TS multiple times!

65 /91

Example

000 objective

66 /91

Example

000 objective

67 /91

Example

000 objective

A avs

68 /91

Example

000 objective

Y S -

69 /91

Example

000 objective

70/091

Example

000 objective

YR T S——

71/91

Example

000 objective

72/01

Example

000 objective

Y e

73/01

Example

000 objective

74 /91

Example

000 objective

51 S R -

o

75 /91

Example

000 objective

et : : &

76 /91

Example

000 objective

Y S -

000

77/91

Example

000 objective

et o : &

78 /91

Example

000 objective

5 [S)

000

79/091

Example

000 objective

000 a Q

80 /91

Example

000 objective

et D : &

Each optimization problem can be done independently in a different computer.

81/91

Parallel Thompson sampling

| 10

Node

updating model
comunicating information
between nodes
optimizing acquisition
function

evaluating objective
function

idle node

time

82 /91

Parallel Thompson sampling

Node
updating model

| 10

comunicating information
between nodes
optimizing acquisition L @) o €D R

function

=~ evaluating objective
function

= =. idle node

time

Works in a fully parallel and distributed manner.

83 /91

Thompson sampling with Gaussian processes (GPs)
GPs are a non-parametric models, so sampling the model parameters € and
optimizing E,,|x, 6)[y] is not possible.

We approximate the objective function f as f(x) &~ ®(x)8 with random features
®(x) = C cos(W'x +b), (1)

where W, b ~ p(W,b), a distribution specified by the GP covariance function.

The prior for 8 is N'(0,1). The resulting Bayesian linear regression model is
a parametric approximation to the original GP model.

84 /91

Results

Batch size:

with Gaussian process based models

10

5 Bohachevsky
e
" — TS
— El
-
%“ 3 parallel TS
& \ — parallel El
e 2
]
3 \\
£ ! S~
£ \
g 0 \.\
! S
% 10 20 30 20
Number of Samples
10 Hartmann
0.5
o
]
LT~
[-4
0.0 1
)
3 e
£ -0.5
£
o
8
2 1,
1% 10 20 30 40

Number of Samples

50

Log Immediate Regret

2 Branin
1 \
N
5 o
o 0
<
2
T
£
2
13
E-2
o
L
-3
—4
0 10 20 30 40 50
Number of Samples
GP Samples
0l
-2
-4
-6
-8
-10 I I
20 40 60 80 100

Number of Samples

85 /01

Results with Bayesian neural networks

Data sets:
® CEP: Harvard Clean Energy Project data, 2.3M molecules.

® One-dose: percentage cell growth relative to control, 27,000 molecules.

® Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).

86 /91

Results with Bayesian neural networks

Data sets:
® CEP: Harvard Clean Energy Project data, 2.3M molecules.
® One-dose: percentage cell growth relative to control, 27,000 molecules.

® Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).

Fraction of top 10% (CEP) or 1% (Malaria and One-dose) molecules found:

°
go 45 CEP Data Set 07 One Dose Data Set 07 Malaria Data Set
2 ° °
3 3] 3
g 040 506 $06
T 035 3 3
305 g0s
5030 S S
2025 o4 go4
g 020 o3 Sos3
go1s %02 202
2o10 S S
5 B g
S 005 go1 go1
S fis frs
g 000 00 00
8 50 100 150 200 o 5 % 3 0 5 0 15 20 25 3
= Number of Samples Number of Samples Number of Samples
Thompson
Ignoring uncertainty
Random

87

91

Results with Bayesian neural networks

Data sets:
® CEP: Harvard Clean Energy Project data, 2.3M molecules.
® One-dose: percentage cell growth relative to control, 27,000 molecules.

® Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).

Fraction of top 10% (CEP) or 1% (Malaria and One-dose) molecules found:

°
goas CEP Data Set _o7 One Dose Data Set 07 Malaria Data Set
°
3
§ 040 § 06 §os
%® gos g 05
b b
5030 S S
8025 go04 go4
g 020 o3 Sos3
go1s %02 202
Loio S S
2005 go1 go1
5 g 8
3000 Foo Foo
8 50 100 150 200 o 5 0 15 20 25 30 0 5 0 15 20 25 3
v Number of Samples Number of Samples Number of Samples
Thompson
Ignoring uncertainty
Random

BO gives 20x gains over random in CEP. Using uncertainty always helps.

88

91

Comparison with ¢-greedy sampling

Table: Average rank and standard errors obtained by each method.

Method Rank

e =0.01 3.424+0.28
e = 0.025 3.02+0.25
e = 0.05 2.86+0.23
e = 0.075 3.20+0.26
Thompson 2.51+0.20

89/91

Take home message

Parallel Thompson sampling...
@ Batch BO method that runs in a parallel and distributed manner.
@® Can handle large batch sizes and large molecule libraries.
©® Comparable to non-scalable approaches in small problems with GPs.

@ Outperforms other alternative scalable approaches in large scale settings.

90 /91

Thanks!

