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Drug and material design

Goal: find novel molecules that optimally fulfill various metrics.

About 108 compounds in databases, potential ones: 1020 − 1060.

Challenges:

• Evaluating molecular properties is slow and expensive.

• Chemical space is huge.

Bayesian optimization can accelerate the search.
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Bayesian optimization aims to efficiently optimize black-box functions:

x? = arg max
x∈X

f (x)

No gradients, observations may be corrupted by noise.

Black-box queries are very expensive (time, economic cost, etc...).

Main idea: replace expensive
black-box queries with cheaper
computations that will save
additional queries in the long run.
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objective
1 Get initial sample.

2 Fit a model to the data:

p(y |x,D) .

3 Select data collection strategy:

α(x) = Ep(y |x,D)[U(y |x,D)] .

4 Optimize acquisition function α(x).

5 Collect data and update model.

6 Repeat!
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Discovering new optimal molecules

Library generation
Fragments Bonding 

rules

Performance 
evaluation

Interesting 
molecules

22

1

Bayesian optimization can accelerate the search!

Challenges:

1 Massive libraries with millions of candidate molecules.

2 Need to collect hundreds of thousands of data points.

3 How to collect data in parallel efficiently? e.g. with a computer cluster.
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Parallel Bayesian optimization

Traditional Bayesian optimization is sequential!

Computing clusters allow us to collect a batch of data at once!

Parallel experiments should be highly informative but also diverse!
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Traditional parallel BO

Parallel BO can be implemented by averaging the sequential acquisition function
across data {yk}Kk=1 fantasized at pending evaluation locations {xk}Kk=1:

αparallel(x|D) = Ep({yk}K
k=1|{xk}K

k=1,D)

[
αsequential(x|D ∪ {xk ,yk}Kk=1)

]
.

Approximated by an empirical average across fantasies (samples) of {yk}Kk=1.
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Traditional parallel BO
Figure source: Snoek et al. 2012.

Two pending evaluations, three fantasies.

Three acquisition functions, one per fantasy.

Average acquisition function.

Challenges:

• Lack of scalability with large batch sizes and large library sizes.
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Traditional parallel BO

time

Updating the model and optimizing acquisition function is done sequentially.

Fails to exploit parallelism!

There is a need for methods that fully work in a parallel and distributed manner.
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Thompson sampling (TS)

Sequential BO method that collects data by evaluating at x ∼ p(x?|D).

Implemented by drawing f ′ ∼ p(f |D) and then evaluating at x = arg min
x′

f ′(x′).

The acquisition function is a sample from the posterior over functions!

Very simple strategy that
often works well in practice.

Exploitation: achieved because on average f ′ minimizes the prediction error.

Exploration: achieved because f ′ ∼ p(f |D) is a random sample.
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TS as utility maximization and parallel TS

The utility function used by TS is U(y |x,D) = y . TS aims to optimize

αTS(x) = Ep(y|x,D)[y ]

≈ 1

M

M∑
m=1

Ep(y|x, θm)[y ] , θm ∼ p(θ|D) ,

where p(y |x,D) =
∫
p(y |x,θ)p(θ|D) dθ and θ are the model parameters.

TS uses M = 1 since low values of M increase variance and exploration

.

We can apply the traditional parallel BO approach to TS:

αparallel TS(x|D) = Ep({yk}Kk=1|{xk}Kk=1,D)

[
αTS(x|D ∪ {xk ,yk}Kk=1)

]
≈ 1

M

M∑
m=1

αTS(x|D ∪ {xk ,yk,m}Kk=1) = αTS(x|D) ,

where {yk,m}Kk=1 ∼ p({yk}Kk=1|{xk}Kk=1,D), and as before, M = 1.

Our parallel TS is equivalent to running sequential TS multiple times!
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We can apply the traditional parallel BO approach to TS:

αparallel TS(x|D) = Ep({yk}Kk=1|{xk}Kk=1,D)

[
αTS(x|D ∪ {xk ,yk}Kk=1)

]
≈ 1

M

M∑
m=1

αTS(x|D ∪ {xk ,yk,m}Kk=1)

= αTS(x|D) ,

where {yk,m}Kk=1 ∼ p({yk}Kk=1|{xk}Kk=1,D), and as before, M = 1.

Our parallel TS is equivalent to running sequential TS multiple times!
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Example

objective

Each optimization problem can be done independently in a different computer.
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Parallel Thompson sampling

time

Works in a fully parallel and distributed manner.
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Thompson sampling with Gaussian processes (GPs)

GPs are a non-parametric models, so sampling the model parameters θ and
optimizing Ep(y |x, θ)[y ] is not possible.

We approximate the objective function f as f (x) ≈ Φ(x)θ with random features

Φ(x) = C cos(WTx + b) , (1)

where W,b ∼ p(W,b), a distribution specified by the GP covariance function.

The prior for θ is N (0, I). The resulting Bayesian linear regression model is
a parametric approximation to the original GP model.
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Results with Gaussian process based models

Batch size: 10
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Results with Bayesian neural networks

Data sets:

• CEP: Harvard Clean Energy Project data, 2.3M molecules.

• One-dose: percentage cell growth relative to control, 27,000 molecules.

• Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).

Fraction of top 10% (CEP) or 1% (Malaria and One-dose) molecules found:

Thompson
Ignoring uncertainty
Random

BO gives 20× gains over random in CEP. Using uncertainty always helps.
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Comparison with ε-greedy sampling

Table: Average rank and standard errors obtained by each method.

Method Rank
ε = 0.01 3.42±0.28
ε = 0.025 3.02±0.25
ε = 0.05 2.86±0.23
ε = 0.075 3.20±0.26
Thompson 2.51±0.20
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Take home message

Parallel Thompson sampling...

1 Batch BO method that runs in a parallel and distributed manner.

2 Can handle large batch sizes and large molecule libraries.

3 Comparable to non-scalable approaches in small problems with GPs.

4 Outperforms other alternative scalable approaches in large scale settings.
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Thanks!
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