Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

Carlos Villacampa-Calvo and Daniel Hernández-Lobato
Computer Science Department
Universidad Autónoma de Madrid
http://dhnzl.org, daniel.hernandez@uam.es

Introduction to Multi-class Classification with GPs

Given \mathbf{x}_{i} we want to make predictions about $y_{i} \in\{1, \ldots, C\}, C>2$.
One can assume that (Kim \& Ghahramani, 2006):

$$
y_{i}=\underset{k}{\arg \max } f^{k}\left(\mathbf{x}_{i}\right) \quad \text { for } \quad k \in\{1, \ldots, C\}
$$

Introduction to Multi-class Classification with GPs

Given \mathbf{x}_{i} we want to make predictions about $y_{i} \in\{1, \ldots, C\}, C>2$.
One can assume that (Kim \& Ghahramani, 2006):

$$
y_{i}=\underset{k}{\arg \max } f^{k}\left(\mathbf{x}_{i}\right) \quad \text { for } \quad k \in\{1, \ldots, C\}
$$

Introduction to Multi-class Classification with GPs

Given \mathbf{x}_{i} we want to make predictions about $y_{i} \in\{1, \ldots, C\}, C>2$.
One can assume that (Kim \& Ghahramani, 2006):

$$
y_{i}=\underset{k}{\arg \max } f^{k}\left(\mathbf{x}_{i}\right) \quad \text { for } \quad k \in\{1, \ldots, C\}
$$

Find $p(\mathbf{f} \mid \mathbf{y})=p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}) / p(\mathbf{y})$ under $p\left(\mathbf{f}^{k}\right) \sim \mathcal{G} \mathcal{P}(0, k(\cdot, \cdot))$.

Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:
(1) Approximate inference is more difficult.

Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:
(1) Approximate inference is more difficult.
(2) $C>2$ latent functions instead of just one.

Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:
(1) Approximate inference is more difficult.
(2) $C>2$ latent functions instead of just one.
(3) Deal with more complicated likelihood factors.

Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:
(1) Approximate inference is more difficult.
(2) $C>2$ latent functions instead of just one.
(3) Deal with more complicated likelihood factors.
(4) More expensive algorithms, computationally.

Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:
(1) Approximate inference is more difficult.
(2) $C>2$ latent functions instead of just one.
(3) Deal with more complicated likelihood factors.
(4) More expensive algorithms, computationally.

Most techniques do not scale to large datasets: (Williams \& Barber, 1998; Kim \& Ghahramani, 2006; Girolami \& Rogers, 2006; Chai, 2012; Riihimäki et al., 2013).

Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:
(1) Approximate inference is more difficult.
(2) $C>2$ latent functions instead of just one.
(3) Deal with more complicated likelihood factors.
(4) More expensive algorithms, computationally.

Most techniques do not scale to large datasets: (Williams \& Barber, 1998; Kim \& Ghahramani, 2006; Girolami \& Rogers, 2006; Chai, 2012; Riihimäki et al., 2013).

The best cost is $\mathcal{O}\left(C N M^{2}\right)$, if sparse priors are used.

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:
$p\left(y_{i} \mid \mathbf{f}_{i}\right)=(1-\epsilon) p_{i}+\frac{\epsilon}{C-1}\left(1-p_{i}\right) \quad$ with $\quad p_{i}= \begin{cases}1 & \text { if } y_{i}=\underset{k}{\arg \max } \quad f^{k}\left(\mathbf{x}_{i}\right) \\ 0 & \text { otherwise }\end{cases}$

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:
$p\left(y_{i} \mid \mathbf{f}_{i}\right)=(1-\epsilon) p_{i}+\frac{\epsilon}{C-1}\left(1-p_{i}\right) \quad$ with $\quad p_{i}=\left\{\begin{array}{lll}1 & \text { if } y_{i}=\underset{k}{\arg \max } \quad f^{k}\left(\mathbf{x}_{i}\right) \\ 0 & \text { otherwise }\end{array}\right.$
The posterior approximation is $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$

$$
\begin{gathered}
q(\overline{\mathbf{f}})=\prod_{k=1}^{c} \mathcal{N}\left(\overline{\mathbf{f}}^{k} \mid \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k}\right) \\
\overline{\mathbf{f}}^{k}=\left(f^{k}\left(\overline{\mathbf{x}}_{1}^{k}\right), \ldots, f^{k}\left(\overline{\mathbf{x}}_{M}^{k}\right)\right)^{\top} \quad \overline{\mathbf{X}}^{k}=\left(\overline{\mathbf{x}}_{1}^{k}, \ldots, \overline{\mathbf{x}}_{M}^{k}\right)^{\top}
\end{gathered}
$$

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:
$p\left(y_{i} \mid \mathbf{f}_{i}\right)=(1-\epsilon) p_{i}+\frac{\epsilon}{C-1}\left(1-p_{i}\right) \quad$ with $\quad p_{i}= \begin{cases}1 & \text { if } y_{i}=\underset{k}{\arg \max } \quad f^{k}\left(\mathbf{x}_{i}\right) \\ 0 & \text { otherwise }\end{cases}$
The posterior approximation is $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$

$$
\begin{gathered}
q(\overline{\mathbf{f}})=\prod_{k=1}^{C} \mathcal{N}\left(\overline{\mathbf{f}}^{k} \mid \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k}\right) \\
\overline{\mathbf{f}}^{k}=\left(f^{k}\left(\overline{\mathbf{x}}_{1}^{k}\right), \ldots, f^{k}\left(\overline{\mathbf{x}}_{M}^{k}\right)\right)^{\top} \quad \overline{\mathbf{X}}^{k}=\left(\overline{\mathbf{x}}_{1}^{k}, \ldots, \overline{\mathbf{x}}_{M}^{k}\right)^{\top}
\end{gathered}
$$

The number of latent variables goes from $C N$ to $C M$, with $M \ll N$.

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:
$p\left(y_{i} \mid \mathbf{f}_{i}\right)=(1-\epsilon) p_{i}+\frac{\epsilon}{C-1}\left(1-p_{i}\right) \quad$ with $\quad p_{i}=\left\{\begin{array}{lll}1 & \text { if } y_{i}=\underset{k}{\arg \max } \quad f^{k}\left(\mathbf{x}_{i}\right) \\ 0 & \text { otherwise }\end{array}\right.$
The posterior approximation is $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$

$$
\begin{gathered}
q(\overline{\mathbf{f}})=\prod_{k=1}^{c} \mathcal{N}\left(\overline{\mathbf{f}}^{k} \mid \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k}\right) \\
\overline{\mathbf{f}}^{k}=\left(f^{k}\left(\overline{\mathbf{x}}_{1}^{k}\right), \ldots, f^{k}\left(\overline{\mathbf{x}}_{M}^{k}\right)\right)^{\top} \quad \overline{\mathbf{x}}^{k}=\left(\overline{\mathbf{x}}_{1}^{k}, \ldots, \overline{\mathbf{x}}_{M}^{k}\right)^{\top}
\end{gathered}
$$

The number of latent variables goes from $C N$ to $C M$, with $M \ll N$.

$$
\mathcal{L}(q)=\sum_{i=1}^{N} \mathbb{E}_{q}\left[\log p\left(y_{i} \mid \mathbf{f}_{i}\right)\right]-\mathrm{KL}(q \mid p)
$$

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:
$p\left(y_{i} \mid \mathbf{f}_{i}\right)=(1-\epsilon) p_{i}+\frac{\epsilon}{C-1}\left(1-p_{i}\right) \quad$ with $\quad p_{i}= \begin{cases}1 & \text { if } y_{i}=\underset{k}{\arg \max } \quad f^{k}\left(\mathbf{x}_{i}\right) \\ 0 & \text { otherwise }\end{cases}$
The posterior approximation is $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$

$$
\begin{gathered}
q(\overline{\mathbf{f}})=\prod_{k=1}^{c} \mathcal{N}\left(\overline{\mathbf{f}}^{k} \mid \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k}\right) \\
\overline{\mathbf{f}}^{k}=\left(f^{k}\left(\overline{\mathbf{x}}_{1}^{k}\right), \ldots, f^{k}\left(\overline{\mathbf{x}}_{M}^{k}\right)\right)^{\top} \quad \overline{\mathbf{X}}^{k}=\left(\overline{\mathbf{x}}_{1}^{k}, \ldots, \overline{\mathbf{x}}_{M}^{k}\right)^{\top}
\end{gathered}
$$

The number of latent variables goes from $C N$ to $C M$, with $M \ll N$.

$$
\mathcal{L}(q)=\sum_{i=1}^{N} \mathbb{E}_{q}\left[\log p\left(y_{i} \mid \mathbf{f}_{i}\right)\right]-\mathrm{KL}(q \mid p)
$$

The cost is $\mathcal{O}\left(C M^{3}\right)$ (uses quadratures)!

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:
$p\left(y_{i} \mid \mathbf{f}_{i}\right)=(1-\epsilon) p_{i}+\frac{\epsilon}{C-1}\left(1-p_{i}\right) \quad$ with $\quad p_{i}= \begin{cases}1 & \text { if } y_{i}=\underset{k}{\arg \max } \quad f^{k}\left(\mathbf{x}_{i}\right) \\ 0 & \text { otherwise }\end{cases}$
The posterior approximation is $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$

$$
\begin{gathered}
q(\overline{\mathbf{f}})=\prod_{k=1}^{c} \mathcal{N}\left(\overline{\mathbf{f}}^{k} \mid \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k}\right) \\
\overline{\mathbf{f}}^{k}=\left(f^{k}\left(\overline{\mathbf{x}}_{1}^{k}\right), \ldots, f^{k}\left(\overline{\mathbf{x}}_{M}^{k}\right)\right)^{\top} \quad \overline{\mathbf{X}}^{k}=\left(\overline{\mathbf{x}}_{1}^{k}, \ldots, \overline{\mathbf{x}}_{M}^{k}\right)^{\top}
\end{gathered}
$$

The number of latent variables goes from $C N$ to $C M$, with $M \ll N$.

$$
\mathcal{L}(q)=\sum_{i=1}^{N} \mathbb{E}_{q}\left[\log p\left(y_{i} \mid \mathbf{f}_{i}\right)\right]-\mathrm{KL}(q \mid p)
$$

The cost is $\mathcal{O}\left(C M^{3}\right)$ (uses quadratures)! Can we do that with EP?

Expectation Propagation (EP)

Let $\boldsymbol{\theta}$ summarize the latent variables of the model.
Approximates $p(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \prod_{n=1}^{N} f_{n}(\boldsymbol{\theta})$ with $q(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \prod_{n=1}^{N} \tilde{f}_{n}(\boldsymbol{\theta})$

Expectation Propagation (EP)

Let $\boldsymbol{\theta}$ summarize the latent variables of the model.
Approximates $p(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \prod_{n=1}^{N} f_{n}(\boldsymbol{\theta})$ with $q(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \prod_{n=1}^{N} \tilde{f}_{n}(\boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) f_{1}(\boldsymbol{\theta}) f_{2}(\boldsymbol{\theta}) f_{3}(\boldsymbol{\theta}) \quad{ }^{q(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \quad \tilde{f}_{1}(\boldsymbol{\theta}) \tilde{f}_{2}(\boldsymbol{\theta}) \tilde{f}_{3}(\boldsymbol{\theta})}
$$

Expectation Propagation (EP)

Let $\boldsymbol{\theta}$ summarize the latent variables of the model.
Approximates $p(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \prod_{n=1}^{N} f_{n}(\boldsymbol{\theta})$ with $q(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \prod_{n=1}^{N} \tilde{f}_{n}(\boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto p_{0}(\boldsymbol{\theta}) \quad f_{1}(\boldsymbol{\theta}) f_{2}(\boldsymbol{\theta}) f_{3}(\boldsymbol{\theta})
$$

The \tilde{f}_{n} are tuned by minimizing the KL divergence

$$
D_{\mathrm{KL}}\left[p_{n} \| q\right] \quad \text { for } n=1, \ldots, N, \quad \text { where } \quad \begin{array}{rll}
p_{n}(\boldsymbol{\theta}) & \propto & f_{n}(\boldsymbol{\theta}) \prod_{j \neq n} \\
q(\boldsymbol{\theta}) & \propto & \tilde{f}_{j}(\boldsymbol{\theta}) \\
\tilde{f}_{n}(\boldsymbol{\theta}) \prod_{j \neq n} \\
\tilde{f}_{j}(\boldsymbol{\theta})
\end{array} .
$$

Model Specification

We consider that $y_{i}=\underset{k}{\arg \max } f^{k}\left(\mathbf{x}_{i}\right)$, which gives the likelihood:

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} p\left(y_{i} \mid \mathbf{f}_{i}\right)=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \Theta\left(f^{y_{i}}\left(\mathbf{x}_{i}\right)-f^{k}\left(\mathbf{x}_{i}\right)\right)
$$

Model Specification

We consider that $y_{i}=\underset{k}{\arg \max } f^{k}\left(\mathbf{x}_{i}\right)$, which gives the likelihood:

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} p\left(y_{i} \mid \mathbf{f}_{i}\right)=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \Theta\left(f^{y_{i}}\left(\mathbf{x}_{i}\right)-f^{k}\left(\mathbf{x}_{i}\right)\right)
$$

The posterior approximation is also set to be $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$.

Model Specification

We consider that $y_{i}=\arg \max f^{k}\left(\mathbf{x}_{i}\right)$, which gives the likelihood:

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} p\left(y_{i} \mid \mathbf{f}_{i}\right)=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \Theta\left(f^{y_{i}}\left(\mathbf{x}_{i}\right)-f^{k}\left(\mathbf{x}_{i}\right)\right)
$$

The posterior approximation is also set to be $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$.
The posterior over $\overline{\mathbf{f}}$ is:

$$
p(\overline{\mathbf{f}} \mid \mathbf{y})=\frac{\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \overline{\mathbf{f}}) d \mathbf{f} p(\overline{\mathbf{f}})}{p(\mathbf{y})} \approx \frac{\left[\prod_{i=1}^{N} \int p\left(y_{i} \mid \mathbf{f}_{i}\right) p\left(\mathbf{f}_{i} \mid \overline{\mathbf{f}}\right) d \mathbf{f}_{i}\right] p(\overline{\mathbf{f}})}{p(\mathbf{y})}
$$

where we have used the FITC approximation $p(\mathbf{f} \mid \overline{\mathbf{f}}) \approx \prod_{i=1}^{N} p\left(\mathbf{f}_{i} \mid \overline{\mathbf{f}}\right)$.

Model Specification

We consider that $y_{i}=\arg \max f^{k}\left(\mathbf{x}_{i}\right)$, which gives the likelihood:

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} p\left(y_{i} \mid \mathbf{f}_{i}\right)=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \Theta\left(f^{y_{i}}\left(\mathbf{x}_{i}\right)-f^{k}\left(\mathbf{x}_{i}\right)\right)
$$

The posterior approximation is also set to be $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$.
The posterior over $\overline{\mathbf{f}}$ is:

$$
p(\overline{\mathbf{f}} \mid \mathbf{y})=\frac{\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \overline{\mathbf{f}}) d \mathbf{f} p(\overline{\mathbf{f}})}{p(\mathbf{y})} \approx \frac{\left[\prod_{i=1}^{N} \int p\left(y_{i} \mid \mathbf{f}_{i}\right) p\left(\mathbf{f}_{i} \mid \overline{\mathbf{f}}\right) d \mathbf{f}_{i}\right] p(\overline{\mathbf{f}})}{p(\mathbf{y})}
$$

where we have used the FITC approximation $p(\mathbf{f} \mid \overline{\mathbf{f}}) \approx \prod_{i=1}^{N} p\left(\mathbf{f}_{i} \mid \overline{\mathbf{f}}\right)$.
The corresponding likelihood factors are:

$$
\phi_{i}(\overline{\mathbf{f}})=\int\left[\prod_{k \neq y_{i}} \Theta\left(f_{i}^{y_{i}}-f_{i}^{k}\right)\right] \prod_{k=1}^{c} p\left(f_{i}^{k} \mid \overline{\mathbf{f}}^{k}\right) d \mathbf{f}_{i}
$$

Model Specification

We consider that $y_{i}=\arg \max f^{k}\left(\mathbf{x}_{i}\right)$, which gives the likelihood:

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} p\left(y_{i} \mid \mathbf{f}_{i}\right)=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \Theta\left(f^{y_{i}}\left(\mathbf{x}_{i}\right)-f^{k}\left(\mathbf{x}_{i}\right)\right)
$$

The posterior approximation is also set to be $q(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) q(\overline{\mathbf{f}}) d \overline{\mathbf{f}}$.
The posterior over $\overline{\mathbf{f}}$ is:

$$
p(\overline{\mathbf{f}} \mid \mathbf{y})=\frac{\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \overline{\mathbf{f}}) d \mathbf{f} p(\overline{\mathbf{f}})}{p(\mathbf{y})} \approx \frac{\left[\prod_{i=1}^{N} \int p\left(y_{i} \mid \mathbf{f}_{i}\right) p\left(\mathbf{f}_{i} \mid \overline{\mathbf{f}}\right) d \mathbf{f}_{i}\right] p(\overline{\mathbf{f}})}{p(\mathbf{y})}
$$

where we have used the FITC approximation $p(\mathbf{f} \mid \overline{\mathbf{f}}) \approx \prod_{i=1}^{N} p\left(\mathbf{f}_{i} \mid \overline{\mathbf{f}}\right)$.
The corresponding likelihood factors are:

$$
\phi_{i}(\overline{\mathbf{f}})=\int\left[\prod_{k \neq y_{i}} \Theta\left(f_{i}^{y_{i}}-f_{i}^{k}\right)\right] \prod_{k=1}^{c} p\left(f_{i}^{k} \mid \overline{\mathbf{f}}^{k}\right) d \mathbf{f}_{i}
$$

The integral is intractable and we cannot evaluate $\phi_{i}(\overline{\mathbf{f}})$ in closed form!

Approximate Likelihood Factors

It is possible to show that:

$$
\phi_{i}(\overline{\mathbf{f}})=p\left(f_{i}^{y_{i}}>f_{i}^{1}, \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right)
$$

Approximate Likelihood Factors

It is possible to show that:

$$
\begin{aligned}
\phi_{i}(\overline{\mathbf{f}})= & p\left(f_{i}^{y_{i}}>f_{i}^{1}, \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \\
= & p\left(f_{i}^{y_{i}}>f_{i}^{1} \mid \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \times \\
& p\left(f_{i}^{y_{i}}>f_{i}^{2} \mid \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \times \cdots \\
& \cdots \times p\left(f_{i}^{y_{i}}>f_{i}^{C-1} \mid f_{i}^{y_{i}}>f_{i}^{C}\right) \times p\left(f_{i}^{y_{i}}>f_{i}^{C}\right)
\end{aligned}
$$

Approximate Likelihood Factors

It is possible to show that:

$$
\begin{aligned}
\phi_{i}(\overline{\mathbf{f}})= & p\left(f_{i}^{y_{i}}>f_{i}^{1}, \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \\
= & p\left(f_{i}^{y_{i}}>f_{i}^{1} \mid \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \times \\
& p\left(f_{i}^{y_{i}}>f_{i}^{2} \mid \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \times \cdots \\
& \cdots \times p\left(f_{i}^{y_{i}}>f_{i}^{C-1} \mid f_{i}^{y_{i}}>f_{i}^{C}\right) \times p\left(f_{i}^{y_{i}}>f_{i}^{C}\right) \\
\approx & \prod_{k \neq y_{i}} p\left(f_{i}^{y_{i}}>f_{i}^{k}\right)=\prod_{k \neq y_{i}} \Phi\left(\alpha_{i}^{k}\right)
\end{aligned}
$$

Approximate Likelihood Factors

It is possible to show that:

$$
\begin{aligned}
\phi_{i}(\overline{\mathbf{f}})= & p\left(f_{i}^{y_{i}}>f_{i}^{1}, \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \\
= & p\left(f_{i}^{y_{i}}>f_{i}^{1} \mid \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \times \\
& p\left(f_{i}^{y_{i}}>f_{i}^{2} \mid \ldots, f_{i}^{y_{i}}>f_{i}^{y_{i}-1}, f_{i}^{y_{i}}>f_{i}^{y_{i}+1}, \ldots, f_{i}^{y_{i}}>f_{i}^{C}\right) \times \cdots \\
& \cdots \times p\left(f_{i}^{y_{i}}>f_{i}^{C-1} \mid f_{i}^{y_{i}}>f_{i}^{C}\right) \times p\left(f_{i}^{y_{i}}>f_{i}^{C}\right) \\
\approx & \prod_{k \neq y_{i}} p\left(f_{i}^{y_{i}}>f_{i}^{k}\right)=\prod_{k \neq y_{i}} \Phi\left(\alpha_{i}^{k}\right)
\end{aligned}
$$

where $\Phi(\cdot)$ is the cdf of a standard Gaussian and we have defined

$$
\alpha_{i}^{k}=\left(m_{i}^{y_{i}}-m_{i}^{k}\right) / \sqrt{v_{i}^{y_{i}}+v_{i}^{k}}
$$

with $m_{i}^{y_{i}}, m_{i}^{k}, v_{i}^{y_{i}}$ and v_{i}^{k} the mean and variances of $f_{i}^{y_{i}}$ and f_{i}^{k}.

EP Approximation of the Likelihood Factors

EP approximates each likelihood factor ϕ_{i}^{k} with a Gaussian factor:

$$
\begin{aligned}
\Phi\left(\alpha_{i}^{k}\right)=\phi_{i}^{k}(\overline{\mathbf{f}}) \approx \tilde{\phi}_{i}^{k}(\overline{\mathbf{f}})= & \tilde{s}_{i, k} \exp \left\{-\frac{1}{2}\left(\overline{\mathbf{f}}^{y_{i}}\right)^{\top} \tilde{\mathbf{V}}_{i, k}^{y_{i}} \overline{\mathbf{f}}^{y_{i}}+\left(\overline{\mathbf{f}}^{y_{i}}\right)^{\top} \tilde{\mathbf{m}}_{i, k}^{y_{i}}\right\} \times \\
& \exp \left\{-\frac{1}{2}\left(\overline{\mathbf{f}}^{k}\right)^{\top} \tilde{\mathbf{V}}_{i, k}^{k} \overline{\mathbf{f}}^{k}+\left(\overline{\mathbf{f}}^{k}\right)^{\top} \tilde{\mathbf{m}}_{i, k}^{k}\right\}
\end{aligned}
$$

EP Approximation of the Likelihood Factors

EP approximates each likelihood factor ϕ_{i}^{k} with a Gaussian factor:

$$
\begin{aligned}
\Phi\left(\alpha_{i}^{k}\right)=\phi_{i}^{k}(\overline{\mathbf{f}}) \approx \tilde{\phi}_{i}^{k}(\overline{\mathbf{f}})= & \tilde{s}_{i, k} \exp \left\{-\frac{1}{2}\left(\overline{\mathbf{f}}^{y_{i}}\right)^{\top} \tilde{\mathbf{V}}_{i, k}^{y_{i}} \overline{\mathbf{f}}_{i}\right. \\
& \exp \left\{-\frac{1}{2}\left(\overline{\mathbf{f}}^{k}\right)^{\top} \tilde{\mathbf{V}}_{i, k}^{k} \overline{\mathbf{f}}^{\mathrm{y}}+\left(\overline{\mathbf{f}}^{k}\right)^{\top} \tilde{\mathbf{m}}_{i, k}^{y_{i}}\right\} \times
\end{aligned}
$$

$\tilde{\mathbf{V}}_{i, k}^{y_{i}}$ and $\tilde{\mathbf{V}}_{i, k}^{k}$ are 1-rank matrices. Each $\tilde{\phi}_{i}^{k}$ only has $\mathcal{O}(M)$ parameters.

EP Approximation of the Likelihood Factors

EP approximates each likelihood factor ϕ_{i}^{k} with a Gaussian factor:

$$
\begin{aligned}
\Phi\left(\alpha_{i}^{k}\right)=\phi_{i}^{k}(\overline{\mathbf{f}}) \approx \tilde{\phi}_{i}^{k}(\overline{\mathbf{f}})= & \tilde{s}_{i, k} \exp \left\{-\frac{1}{2}\left(\overline{\mathbf{f}}^{y_{i}}\right)^{\top} \tilde{\mathbf{V}}_{i, k}^{y_{i}} \overline{\mathbf{f}}^{y_{i}}+\left(\overline{\mathbf{f}}^{y_{i}}\right)^{\top} \tilde{\mathbf{m}}_{i, k}^{y_{i}}\right\} \times \\
& \exp \left\{-\frac{1}{2}\left(\overline{\mathbf{f}}^{k}\right)^{\top} \tilde{\mathbf{V}}_{i, k}^{k} \overline{\mathbf{f}}^{k}+\left(\overline{\mathbf{f}}^{k}\right)^{\top} \tilde{\mathbf{m}}_{i, k}^{k}\right\}
\end{aligned}
$$

$\tilde{\mathbf{V}}_{i, k}^{y_{i}}$ and $\tilde{\mathbf{V}}_{i, k}^{k}$ are 1-rank matrices. Each $\tilde{\phi}_{i}^{k}$ only has $\mathcal{O}(M)$ parameters.
The posterior approximation is:

$$
q(\overline{\mathbf{f}})=\frac{1}{Z_{q}} \prod_{i=1}^{N} \prod_{k \neq y_{i}} \tilde{\phi}_{i}^{k}(\overline{\mathbf{f}}) p(\overline{\mathbf{f}})
$$

and Z_{q} approximates the marginal likelihood of the model.

Approx. Maximization of the Marginal Likelihood

Z_{q} is maximized w.r.t. ξ_{k} and $\overline{\mathbf{X}}^{k}$ to find good hyper-parameters.

Approx. Maximization of the Marginal Likelihood

Z_{q} is maximized w.r.t. $\boldsymbol{\xi}_{k}$ and $\overline{\mathbf{X}}^{k}$ to find good hyper-parameters. If EP converges, the gradient of $\log Z_{q}$ is given by:

$$
\frac{\partial \log Z_{q}}{\partial \xi_{j}^{k}}=\boldsymbol{\eta}^{\top} \frac{\partial \theta_{\text {prior }}}{\partial \xi_{j}^{k}}-\boldsymbol{\eta}_{\text {prior }}^{\top} \frac{\partial \theta_{\text {prior }}}{\partial \xi_{j}^{k}}+\sum_{i=1}^{N} \sum_{k \neq y_{i}} \frac{\partial \log Z_{i, k}}{\partial \xi_{j}^{k}}
$$

where $Z_{i, k}$ is the normalization constant of $\phi_{i, k} q^{\backslash i, k}$ with $q^{\backslash i, k} \propto q / \tilde{\phi}_{i, k}$.

Approx. Maximization of the Marginal Likelihood

Z_{q} is maximized w.r.t. ξ_{k} and $\overline{\mathbf{X}}^{k}$ to find good hyper-parameters. If $E P$ converges, the gradient of $\log Z_{q}$ is given by:

$$
\frac{\partial \log Z_{q}}{\partial \xi_{j}^{k}}=\boldsymbol{\eta}^{\top} \frac{\partial \theta_{\text {prior }}}{\partial \xi_{j}^{k}}-\boldsymbol{\eta}_{\text {prior }}^{\top} \frac{\partial \theta_{\text {prior }}}{\partial \xi_{j}^{k}}+\sum_{i=1}^{N} \sum_{k \neq y_{i}} \frac{\partial \log Z_{i, k}}{\partial \xi_{j}^{k}}
$$

where $Z_{i, k}$ is the normalization constant of $\phi_{i, k} q^{\backslash i, k}$ with $q^{\backslash i, k} \propto q / \tilde{\phi}_{i, k}$.

Hernández-Lobato and Hernández-Lobato, 2016 show convergence is not needed.

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :
(1) Refine in parallel all approximate factors $\tilde{\phi}_{i, k}$ corresponding to \mathcal{M}_{b}.

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :
(1) Refine in parallel all approximate factors $\tilde{\phi}_{i, k}$ corresponding to \mathcal{M}_{b}.
(2) Reconstruct the posterior approximation q.

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :
(1) Refine in parallel all approximate factors $\tilde{\phi}_{i, k}$ corresponding to \mathcal{M}_{b}.
(2) Reconstruct the posterior approximation q.
(3) Get a noisy estimate of the grad of $\log Z_{q}$ w.r.t to each ξ_{j}^{k} and $\bar{x}_{i, d}^{k}$.

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :
(1) Refine in parallel all approximate factors $\tilde{\phi}_{i, k}$ corresponding to \mathcal{M}_{b}.
(2) Reconstruct the posterior approximation q.
(3) Get a noisy estimate of the grad of $\log Z_{q}$ w.r.t to each ξ_{j}^{k} and $\bar{x}_{i, d}^{k}$.
(4) Update all model hyper-parameters.

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :
(1) Refine in parallel all approximate factors $\tilde{\phi}_{i, k}$ corresponding to \mathcal{M}_{b}.
(2) Reconstruct the posterior approximation q.
(3) Get a noisy estimate of the grad of $\log Z_{q}$ w.r.t to each ξ_{j}^{k} and $\bar{x}_{i, d}^{k}$.
(4) Update all model hyper-parameters.
(5) Reconstruct the posterior approximation q.

Expectation Propagation using Mini-batches

Consider a minibatch of data \mathcal{M}_{b} :
(1) Refine in parallel all approximate factors $\tilde{\phi}_{i, k}$ corresponding to \mathcal{M}_{b}.
(2) Reconstruct the posterior approximation q.
(3) Get a noisy estimate of the grad of $\log Z_{q}$ w.r.t to each ξ_{j}^{k} and $\bar{x}_{i, d}^{k}$.
(4) Update all model hyper-parameters.
(5) Reconstruct the posterior approximation q.

If $\left|\mathcal{M}_{b}\right|<M$ the cost is $\mathcal{O}\left(C M^{3}\right)$. Memory cost is $\mathcal{O}(N C M)$.

Stochastic Expectation Propagation

Li et al., 2015 suggest to store in memory only the product of the $\tilde{\phi}_{i}^{k}$:

$$
\tilde{\phi}=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \tilde{\phi}_{i}^{k}
$$

Stochastic Expectation Propagation

Li et al., 2015 suggest to store in memory only the product of the $\tilde{\phi}_{i}^{k}$:

$$
\tilde{\phi}=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \tilde{\phi}_{i}^{k}
$$

The cavity distribution is computed as $q^{\backslash i, k} \propto q / \tilde{\phi}^{\frac{1}{N_{\text {factors }}}}$.

Stochastic Expectation Propagation

Li et al., 2015 suggest to store in memory only the product of the $\tilde{\phi}_{i}^{k}$:

$$
\tilde{\phi}=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \tilde{\phi}_{i}^{k}
$$

The cavity distribution is computed as $q^{\backslash i, k} \propto q / \tilde{\phi}^{\frac{1}{N_{\text {factors }}}}$.

EP

Stochastic Expectation Propagation

Li et al., 2015 suggest to store in memory only the product of the $\tilde{\phi}_{i}^{k}$:

$$
\tilde{\phi}=\prod_{i=1}^{N} \prod_{k \neq y_{i}} \tilde{\phi}_{i}^{k}
$$

The cavity distribution is computed as $q^{\backslash i, k} \propto q / \tilde{\phi}^{\frac{1}{N_{\text {factors }}}}$.
EP

The memory cost is reduced to $\mathcal{O}\left(C M^{2}\right)$.

Baseline Method: Generalized FITC Approximation

- The same likelihood as the proposed method (Kim \& Ghahramani, 2006).

Baseline Method: Generalized FITC Approximation

- The same likelihood as the proposed method (Kim \& Ghahramani, 2006).
- Original GFITC formulation (Naish-Guzman \& Hoden, 2008).

Baseline Method: Generalized FITC Approximation

- The same likelihood as the proposed method (Kim \& Ghahramani, 2006).
- Original GFITC formulation (Naish-Guzman \& Hoden, 2008).
- Key difference: The latent variables corresponding to the inducing points $\overline{\mathbf{f}}$ are marginalized out to obtain an approximate prior:

$$
p(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) p(\overline{\mathbf{f}}) d \overline{\mathbf{f}} \approx \prod_{k=1}^{C} \mathcal{N}\left(\mathbf{f}^{k} \mid \mathbf{0}, \mathbf{Q}_{N N}^{k}-\operatorname{diag}\left(\mathbf{K}_{N N}^{k}-\mathbf{Q}_{N N}^{k}\right)\right)
$$

Baseline Method: Generalized FITC Approximation

- The same likelihood as the proposed method (Kim \& Ghahramani, 2006).
- Original GFITC formulation (Naish-Guzman \& Hoden, 2008).
- Key difference: The latent variables corresponding to the inducing points \bar{f} are marginalized out to obtain an approximate prior:

$$
p(\mathbf{f})=\int p(\mathbf{f} \mid \overline{\mathbf{f}}) p(\overline{\mathbf{f}}) d \overline{\mathbf{f}} \approx \prod_{k=1}^{C} \mathcal{N}\left(\mathbf{f}^{k} \mid \mathbf{0}, \mathbf{Q}_{N N}^{k}-\operatorname{diag}\left(\mathbf{K}_{N N}^{k}-\mathbf{Q}_{N N}^{k}\right)\right)
$$

- Training costs $\mathcal{O}\left(C N M^{2}\right)$. Does not allow for scalable training!

UCI Repository datasets

Initial comparison on small datasets and batch training.

Dataset	\#Instances	\#Attributes	\#Classes
Glass	214	9	6
New-thyroid	215	5	3
Satellite	6435	36	6
Svmguide2	391	20	3
Vehicle	846	18	4
Vowel	540	10	6
Waveform	1000	21	3
Wine	178	13	3

UCI Repository (test error)

Problem	GFITC	EP	SE	VI
Glass	0.23 ± 0.02	0.31 ± 0.02	0.31 ± 0.02	0.35 ± 0.02
New-thyro	0.02 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
Satellite	0.12 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
Svmguid	0.2 ± 0.01	0.2 ± 0.01	0.2 ± 0.02	0.19 ± 0.01
Vehicle	0.17 ± 0.01	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
Σ Vowel	0.05 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	0.06 ± 0.01
Wavefor	0.17 ± 0.01	0.15 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
Wine	0.03 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.04 ± 0.01
Avg.	2.24 ± 0.07	2.33 ± 0.07	2.61 ± 0.06	2.82 ± 0.08
Avg. Time	131 ± 3.11	53.8 ± 0.19	48.5 ± 0.97	157 ± 0.59
Glass	0.2 ± 0.01	0.29 ± 0.02	0.3 ± 0.02	0.35 ± 0.02
New-thy	0.03 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
S	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
Svmguide2	0.19 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.17 ± 0.02
Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
Vowel	0.03 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
Wave	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.18 ± 0.01
Wine	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
Avg. Rank	2.4 ± 0.08	2.21 ± 0.07	2.62 ± 0.06	2.76 ± 0.08
Avg. Time	264 ± 6.91	102 ± 0.64	96.6 ± 1.99	179 ± 0.78
Glas	0.2 ± 0.02	0.28 ± 0.02	0.28 ± 0.02	0.36 ± 0.02
New-thyr	0.03 ± 0.01	0.02 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
Satellite	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.11 ± 0.01
NSvmguide2	0.2 ± 0.01	0.19 ± 0.01	0.2 ± 0.02	0.19 ± 0.02
Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
Vowel	0.03 ± 0.01	0.03 ± 0.01	0.05 ± 0.01	0.03 ± 0.01
Wavefor	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01	0.18 ± 0.01
Wine	0.04 ± 0.01	0.01 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
Avg. Rank	2.48 ± 0.08	2.06 ± 0.07	2.69 ± 0.07	2.77 ± 0.08
Avg. Time	683 ± 17.3	228 ± 0.78	216 ± 2.88	248 ± 0.66

UCI Repository (test error)

Proble	GFITC	EP	SEP	VI
Glass	0.23 ± 0.02	0.31 ± 0.02	0.31 ± 0.02	± 0.02
New-thy	0.02 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
$\bigcirc{ }^{\circ} \mathrm{Sa}$	0.12 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
Svmgui	0.2 ± 0.01	0.2 ± 0.01	0.2 ± 0.02	0.19 ± 0.01
Vehicle	0.17 ± 0.01	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
Σ Vowel	0.05 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	0.06 ± 0.01
2 Wavefo	0.17 ± 0.01	0.15 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
Wine	0.03 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.04 ± 0.01
Avg.	2.24 ± 0.07	2.33 ± 0.07	2.61 ± 0.06	根 ± 0.08
Avg. Time	131 ± 3.11	53.8 ± 0.19	48.5 ± 0.97	59
Glas	0.2 ± 0.01	0.29 ± 0.02	0.3 ± 0.02	0.35 ± 0.02
	0.03 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
S	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
Svmguide2	0.19 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.17 ± 0.02
Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
Vowel	0.03 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
Wave	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.18 ± 0.01
Wine	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
Avg. Rank	2.4 ± 0.08	2.21 ± 0.07	2.62 ± 0.06	
Avg. Time	264 ± 6.91	102 ± 0.64	96.6 ± 1.99	㖪 0.78
Gla	$0.2 \pm$	0.28 ± 0.02	0.28 ± 0.02	0.02
New-thy	0.03 ± 0.01	0.02 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.11 ± 0.01
NSvmguide2	0.2 ± 0.01	0.19 ± 0.01	0.2 ± 0.02	0.19 ± 0.02
Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
Vowel	0.03 ± 0.01	0.03 ± 0.01	0.05 ± 0.01	0.03 ± 0.01
Wavefor	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01	0.18 ± 0.01
Wine	0.04 ± 0.01	0.01 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
Avg. Rank	2.48 ± 0.08	2.06 ± 0.07	2.69 ± 0.07	2.77 ± 0.08
Avg. Time	683 ± 17.3	228 ± 0.78	216 ± 2.88	248 ± 0.66

UCI Repository (negative test log-likelihood)

UCI Repository (negative test log-likelihood)

	Problem	GFITC	EP	SEP	VI	
	Glass	0.61 ± 0.05	0.78 ± 0.06	0.77 ± 0.07	2.45 ± 0.14	
	New-thyroid	0.06 ± 0.01	0.11 ± 0.03	0.06 ± 0.01	0.09 ± 0.02	
) Satellite	0.33 ± 0.01	$\mathbf{0 . 3 1} \pm 0.01$	0.33 ± 0.01	0.61 ± 0.01	
	? Svmguide2	0.63 ± 0.06	0.63 ± 0.06	0.67 ± 0.06	1.03 ± 0.08	
	\| Vehicle	0.32 ± 0.01	0.34 ± 0.02	0.34 ± 0.02	0.76 ± 0.05	
	\sum Vowel	0.16 ± 0.01	0.25 ± 0.01	0.25 ± 0.01	0.41 ± 0.05	
	W	0.42 ± 0.01	0.36 ± 0.01	0.39 ± 0.01	0.89 ± 0.02	
	Wine	0.08 ± 0.02	0.07 ± 0.01	0.08 ± 0.01	0.08 ± 0.02	
	Avg. Rank	1.92 ± 0.07	2.09 ± 0.07	2.46 ± 0.06	3.52 ± 0.08	
	Avg. Time	131 ± 3.11	53.8 ± 0.19	48.5 ± 0.97	157 ± 0.59	
	Glass	0.58 ± 0.05	0.74 ± 0.06	0.79 ± 0.07	2.18 ± 0.14	
	0 New-thyroi	0.07 ± 0.01	0.06 ± 0.01	0.06 ± 0.01	0.05 ± 0.01	
	Satellite	0.34 ± 0.01	0.30 ± 0.01	0.34 ± 0.01	0.58 ± 0.01	
	Svmguide2	0.67 ± 0.05	0.67 ± 0.05	0.74 ± 0.07	0.90 ± 0.10	
	$1 /$ Vehicle	0.33 ± 0.01	0.33 ± 0.02	0.34 ± 0.02	0.72 ± 0.04	
	Vow	0.14 ± 0.01	0.19 ± 0.01	0.19 ± 0.01	0.30 ± 0.04	
	${ }^{\text {Wavef }}$	0.42 ± 0.01	0.36 ± 0.01	0.41 ± 0.01	0.85 ± 0.01	
	Wine	0.07 ± 0.01	0.06 ± 0.01	0.07 ± 0.01	0.07 ± 0.01	
	Avg. Rank	2.11 ± 0.08	2.01 ± 0.08	2.58 ± 0.07	3.31 ± 0.1	
	Avg. Time	264 ± 6.91	102 ± 0.64	96.6 ± 1.99	179 ± 0.78	
	Glass	0.6 ± 0.07	0.75 ± 0.06	0.81 ± 0.07	2.30 ± 0.15	
	\bigcirc New-thyroid	0.07 ± 0.01	0.06 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	
	Satellite	0.34 ± 0.01	0.30 ± 0.01	0.36 ± 0.01	0.53 ± 0.01	
	Svmguide2	0.67 ± 0.05	0.65 ± 0.06	0.74 ± 0.07	0.94 ± 0.08	
	\|	Vehicle	0.33 ± 0.01	0.33 ± 0.02	0.34 ± 0.02	0.63 ± 0.04
	Vowel	0.12 ± 0.01	0.16 ± 0.01	0.18 ± 0.01	0.15 ± 0.03	
	Waveform	0.43 ± 0.01	0.37 ± 0.01	0.45 ± 0.01	0.80 ± 0.01	
	Wine	0.07 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.02	
	Avg. Rank	2.17 ± 0.07	1.91 ± 0.07	2.68 ± 0.06	3.23 ± 0.1	
	Avg. Time	683 ± 17.3	228 ± 0.78	216 ± 2.88	248 ± 0.66	

Inducing Point Placement Analysis

Inducing Point Placement Analysis

EP based methods perform inducing point pruning (Bauer et al., 2016)!

Performance in Terms of Time (Satellite Dataset)

Minibatch Training: MNIST Dataset $M=200$

Minibatch Training: MNIST Dataset $M=200$

Method	Test Error in \%	Neg. Test Log-Likelihood
EP	2.10	0.0735
SEP	2.08	0.0725
VI	2.02	0.0682

Minibatch Training: Airline-delays $M=200$

Minibatch Training: Airline-delays $M=200$

Conclusions

- EP method for multi-class classification using GPs.

Conclusions

- EP method for multi-class classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}\left(C M^{3}\right)$.

Conclusions

- EP method for multi-class classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}\left(C M^{3}\right)$.
- Extensive experimental comparison with related methods.

Conclusions

- EP method for multi-class classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}\left(C M^{3}\right)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.

Conclusions

- EP method for multi-class classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}\left(C M^{3}\right)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.
- EP methods carry out inducing point pruning.

Conclusions

- EP method for multi-class classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}\left(C M^{3}\right)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.
- EP methods carry out inducing point pruning.
- VI sometimes gives bad test log-likelihoods.

Conclusions

- EP method for multi-class classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}\left(C M^{3}\right)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.
- EP methods carry out inducing point pruning.
- VI sometimes gives bad test log-likelihoods.

Thank you for your attention!

References

- Bauer, M., van der Wilk, M., and Rasmussen, C. E. Understanding probabilistic sparse Gaussian process approximations. NIPS 29, pp. 1533-1541. 2016.
- Chai, K. M. A. Variational multinomial logit Gaussian process. JMLR, 13:1745-1808, 2012.
- Girolami, M. and Rogers, S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:1790-1817, 2006.
- Hensman, J., Matthews, A. G., Filippone, M., and Ghahramani, Z. MCMC for variationally sparse Gaussian processes. NIPS 28, pp. 1648-1656. 2015.
- Hernández-Lobato, D. and Hernández-Lobato, J. M. Scal- able Gaussian process classification via expectation propagation. AISTATS, pp. 168-176, 2016.
- Kim, H.-C. and Ghahramani, Z. Bayesian Gaussian process classification with the EM-EP algorithm. IEEE PAMI, 28, 1948-1959, 2006.
- Li, Y., Hernandez-Lobato, J. M., and Turner, R. E. Stochas- tic expectation propagation. NIPS 28, pp. 2323-2331. 2015.
- Naish-Guzman, A. and Holden, S. The generalized FITC approximation. NIPS 20, pp. 1057-1064. 2008.
- Riihimäki, J., Jylänki, P., and Vehtari, A. Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood. JMLR, 14, 75-109, 2013.
- Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. NIPS 18, pp. 1257-1264, 2006.
- Williams, C. K. I. and Barber, D. Bayesian classification with Gaussian processes. IEEE PAMI, 20,1342-1351, 1998.

