Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

Carlos Villacampa-Calvo and Daniel Hernández–Lobato Computer Science Department Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

Introduction to Multi-class Classification with GPs

Given \mathbf{x}_i we want to make **predictions** about $y_i \in \{1, \ldots, C\}$, C > 2.

One can assume that (Kim & Ghahramani, 2006):

$$y_i = \arg \max_k f^k(\mathbf{x}_i) \text{ for } k \in \{1, \dots, C\}$$

Introduction to Multi-class Classification with GPs

Given \mathbf{x}_i we want to make **predictions** about $y_i \in \{1, \ldots, C\}$, C > 2.

One can assume that (Kim & Ghahramani, 2006):

$$y_i = rg\max_k f^k(\mathbf{x}_i) \quad ext{for} \quad k \in \{1, \dots, C\}$$

Introduction to Multi-class Classification with GPs

Given \mathbf{x}_i we want to make **predictions** about $y_i \in \{1, \ldots, C\}$, C > 2.

One can assume that (Kim & Ghahramani, 2006):

$$y_i = \arg \max_k f^k(\mathbf{x}_i) \text{ for } k \in \{1, \dots, C\}$$

Find $p(\mathbf{f}|\mathbf{y}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f})/p(\mathbf{y})$ under $p(\mathbf{f}^k) \sim \mathcal{GP}(0, k(\cdot, \cdot))$.

Binary classification has received more attention than multi-class!

Challenges in the **multi-class case**:

1 Approximate inference is more difficult.

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:

- 1 Approximate inference is more difficult.
- **2** C > 2 latent functions instead of just one.

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:

- 1 Approximate inference is more difficult.
- **2** C > 2 latent functions instead of just one.
- **3** Deal with more complicated likelihood factors.

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:

- 1 Approximate inference is more difficult.
- **2** C > 2 latent functions instead of just one.
- **3** Deal with more complicated likelihood factors.
- 4 More expensive algorithms, computationally.

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:

- 1 Approximate inference is more difficult.
- **2** C > 2 latent functions instead of just one.
- **3** Deal with more complicated likelihood factors.
- 4 More expensive algorithms, computationally.

Most techniques **do not scale** to large datasets: (Williams & Barber, 1998; Kim & Ghahramani, 2006; Girolami & Rogers, 2006; Chai, 2012; Riihimäki et al., 2013).

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:

- 1 Approximate inference is more difficult.
- **2** C > 2 latent functions instead of just one.
- **3** Deal with more complicated likelihood factors.
- 4 More expensive algorithms, computationally.

Most techniques **do not scale** to large datasets: (Williams & Barber, 1998; Kim & Ghahramani, 2006; Girolami & Rogers, 2006; Chai, 2012; Riihimäki et al., 2013).

The best cost is $\mathcal{O}(CNM^2)$, if sparse priors are used.

Hensman et al., 2015, use a robust likelihood function:

$$p(y_i|\mathbf{f}_i) = (1-\epsilon)p_i + \frac{\epsilon}{C-1}(1-p_i) \quad \text{with} \quad p_i = \begin{cases} 1 & \text{if} \quad y_i = \arg\max_k & f^k(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$$

Hensman et al., 2015, use a robust likelihood function:

$$p(y_i|\mathbf{f}_i) = (1-\epsilon)p_i + rac{\epsilon}{C-1}(1-p_i)$$
 with $p_i = \begin{cases} 1 & \text{if } y_i = arg \max_k f^k(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$

The posterior approximation is $q(\mathbf{f}) = \int p(\mathbf{f}|\bar{\mathbf{f}})q(\bar{\mathbf{f}})d\bar{\mathbf{f}}$

$$q(\overline{\mathbf{f}}) = \prod_{k=1}^{C} \mathcal{N}(\overline{\mathbf{f}}^{k} | \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k})$$
$$\overline{\mathbf{f}}^{k} = (f^{k}(\overline{\mathbf{x}}_{1}^{k}), \dots, f^{k}(\overline{\mathbf{x}}_{M}^{k}))^{\mathsf{T}} \qquad \overline{\mathbf{X}}^{k} = (\overline{\mathbf{x}}_{1}^{k}, \dots, \overline{\mathbf{x}}_{M}^{k})^{\mathsf{T}}$$

Hensman et al., 2015, use a robust likelihood function:

$$p(y_i|\mathbf{f}_i) = (1-\epsilon)p_i + rac{\epsilon}{C-1}(1-p_i)$$
 with $p_i = \begin{cases} 1 & \text{if } y_i = arg \max_k f^k(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$

The posterior approximation is $q(\mathbf{f}) = \int p(\mathbf{f}|\bar{\mathbf{f}})q(\bar{\mathbf{f}})d\bar{\mathbf{f}}$

$$q(\overline{\mathbf{f}}) = \prod_{k=1}^{C} \mathcal{N}(\overline{\mathbf{f}}^{k} | \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k})$$
$$\overline{\mathbf{f}}^{k} = (f^{k}(\overline{\mathbf{x}}_{1}^{k}), \dots, f^{k}(\overline{\mathbf{x}}_{M}^{k}))^{\mathsf{T}} \qquad \overline{\mathbf{X}}^{k} = (\overline{\mathbf{x}}_{1}^{k}, \dots, \overline{\mathbf{x}}_{M}^{k})^{\mathsf{T}}$$

The number of **latent variables** goes from *CN* to *CM*, with $M \ll N$.

Hensman et al., 2015, use a robust likelihood function:

$$p(y_i|\mathbf{f}_i) = (1-\epsilon)p_i + rac{\epsilon}{C-1}(1-p_i)$$
 with $p_i = \begin{cases} 1 & \text{if } y_i = arg \max_k f^k(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$

The posterior approximation is $q(\mathbf{f}) = \int p(\mathbf{f}|\bar{\mathbf{f}})q(\bar{\mathbf{f}})d\bar{\mathbf{f}}$

$$q(\overline{\mathbf{f}}) = \prod_{k=1}^{C} \mathcal{N}(\overline{\mathbf{f}}^{k} | \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k})$$
$$\overline{\mathbf{f}}^{k} = (f^{k}(\overline{\mathbf{x}}_{1}^{k}), \dots, f^{k}(\overline{\mathbf{x}}_{M}^{k}))^{\mathsf{T}} \qquad \overline{\mathbf{X}}^{k} = (\overline{\mathbf{x}}_{1}^{k}, \dots, \overline{\mathbf{x}}_{M}^{k})^{\mathsf{T}}$$

The number of latent variables goes from CN to CM, with $M \ll N$.

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q} \left[\log p(y_{i} | \mathbf{f}_{i}) \right] - \mathsf{KL}(q | p)$$

Hensman et al., 2015, use a robust likelihood function:

$$p(y_i|\mathbf{f}_i) = (1-\epsilon)p_i + rac{\epsilon}{C-1}(1-p_i)$$
 with $p_i = \begin{cases} 1 & \text{if } y_i = arg \max_k f^k(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$

The posterior approximation is $q(\mathbf{f}) = \int p(\mathbf{f}|\bar{\mathbf{f}})q(\bar{\mathbf{f}})d\bar{\mathbf{f}}$

$$q(\overline{\mathbf{f}}) = \prod_{k=1}^{C} \mathcal{N}(\overline{\mathbf{f}}^{k} | \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k})$$
$$\overline{\mathbf{f}}^{k} = (f^{k}(\overline{\mathbf{x}}_{1}^{k}), \dots, f^{k}(\overline{\mathbf{x}}_{M}^{k}))^{\mathsf{T}} \qquad \overline{\mathbf{X}}^{k} = (\overline{\mathbf{x}}_{1}^{k}, \dots, \overline{\mathbf{x}}_{M}^{k})^{\mathsf{T}}$$

The number of latent variables goes from CN to CM, with $M \ll N$.

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q} \left[\log p(y_{i} | \mathbf{f}_{i}) \right] - \mathsf{KL}(q | p)$$

The cost is $\mathcal{O}(CM^3)$ (uses quadratures)!

Hensman et al., 2015, use a robust likelihood function:

$$p(y_i|\mathbf{f}_i) = (1-\epsilon)p_i + rac{\epsilon}{C-1}(1-p_i)$$
 with $p_i = \begin{cases} 1 & \text{if } y_i = arg \max_k f^k(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$

The posterior approximation is $q(\mathbf{f}) = \int p(\mathbf{f}|\bar{\mathbf{f}})q(\bar{\mathbf{f}})d\bar{\mathbf{f}}$

$$q(\overline{\mathbf{f}}) = \prod_{k=1}^{C} \mathcal{N}(\overline{\mathbf{f}}^{k} | \boldsymbol{\mu}^{k}, \boldsymbol{\Sigma}^{k})$$
$$\overline{\mathbf{f}}^{k} = (f^{k}(\overline{\mathbf{x}}_{1}^{k}), \dots, f^{k}(\overline{\mathbf{x}}_{M}^{k}))^{\mathsf{T}} \qquad \overline{\mathbf{X}}^{k} = (\overline{\mathbf{x}}_{1}^{k}, \dots, \overline{\mathbf{x}}_{M}^{k})^{\mathsf{T}}$$

The number of latent variables goes from CN to CM, with $M \ll N$.

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q} \left[\log p(y_{i} | \mathbf{f}_{i}) \right] - \mathsf{KL}(q | p)$$

The cost is $\mathcal{O}(CM^3)$ (uses quadratures)! Can we do that with **EP**?

Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates $p(\theta) \propto p_0(\theta) \prod_{n=1}^N f_n(\theta)$ with $q(\theta) \propto p_0(\theta) \prod_{n=1}^N \tilde{f}_n(\theta)$

Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates $p(\theta) \propto p_0(\theta) \prod_{n=1}^N f_n(\theta)$ with $q(\theta) \propto p_0(\theta) \prod_{n=1}^N \tilde{f}_n(\theta)$

Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates $p(\theta) \propto p_0(\theta) \prod_{n=1}^N f_n(\theta)$ with $q(\theta) \propto p_0(\theta) \prod_{n=1}^N \tilde{f}_n(\theta)$

$$p(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) \quad f_1(\boldsymbol{\theta}) \quad f_2(\boldsymbol{\theta}) \quad f_3(\boldsymbol{\theta}) \qquad q(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) \quad \tilde{f}_1(\boldsymbol{\theta}) \quad \tilde{f}_2(\boldsymbol{\theta}) \quad \tilde{f}_3(\boldsymbol{\theta})$$

The \tilde{f}_n are tuned by minimizing the KL divergence

$$D_{\mathsf{KL}}[p_n||q] \quad ext{for } n = 1, \dots, N \,, \quad ext{where} \quad egin{array}{cc} p_n(heta) & \propto & f_n(heta) \prod_{j
eq n} ilde{f}_j(heta) \ q(heta) & \propto & ilde{f}_n(heta) \prod_{j
eq n} ilde{f}_j(heta) \,. \end{array}$$

We consider that $y_i = \arg \max_k f^k(\mathbf{x}_i)$, which gives the **likelihood**: $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^N p(y_i|\mathbf{f}_i) = \prod_{i=1}^N \prod_{k \neq y_i} \Theta(f^{y_i}(\mathbf{x}_i) - f^k(\mathbf{x}_i))$

We consider that $y_i = \arg \max_k f^k(\mathbf{x}_i)$, which gives the **likelihood**: $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^N p(y_i|\mathbf{f}_i) = \prod_{i=1}^N \prod_{k \neq y_i} \Theta(f^{y_i}(\mathbf{x}_i) - f^k(\mathbf{x}_i))$

The posterior approximation is also set to be $q(\mathbf{f}) = \int p(\mathbf{f}|\bar{\mathbf{f}})q(\bar{\mathbf{f}})d\bar{\mathbf{f}}$.

We consider that $y_i = \arg \max_k f^k(\mathbf{x}_i)$, which gives the **likelihood**: $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^N p(y_i|\mathbf{f}_i) = \prod_{i=1}^N \prod_{k \neq y_i} \Theta(f^{y_i}(\mathbf{x}_i) - f^k(\mathbf{x}_i))$

The **posterior approximation** is also set to be $q(\mathbf{f}) = \int p(\mathbf{f}|\overline{\mathbf{f}})q(\overline{\mathbf{f}})d\overline{\mathbf{f}}$. The **posterior** over $\overline{\mathbf{f}}$ is:

$$p(\overline{\mathbf{f}}|\mathbf{y}) = \frac{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\overline{\mathbf{f}})d\mathbf{f}p(\overline{\mathbf{f}})}{p(\mathbf{y})} \approx \frac{[\prod_{i=1}^{N} \int p(y_i|\mathbf{f}_i)p(\mathbf{f}_i|\overline{\mathbf{f}})d\mathbf{f}_i]p(\overline{\mathbf{f}})}{p(\mathbf{y})}$$

where we have used the FITC approximation $p(\mathbf{f}|\bar{\mathbf{f}}) \approx \prod_{i=1}^{N} p(\mathbf{f}_i|\bar{\mathbf{f}})$.

We consider that $y_i = \arg \max_k f^k(\mathbf{x}_i)$, which gives the **likelihood**: $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^N p(y_i|\mathbf{f}_i) = \prod_{i=1}^N \prod_{k \neq y_i} \Theta(f^{y_i}(\mathbf{x}_i) - f^k(\mathbf{x}_i))$

The **posterior approximation** is also set to be $q(\mathbf{f}) = \int p(\mathbf{f}|\overline{\mathbf{f}})q(\overline{\mathbf{f}})d\overline{\mathbf{f}}$. The **posterior** over $\overline{\mathbf{f}}$ is:

$$p(\overline{\mathbf{f}}|\mathbf{y}) = \frac{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\overline{\mathbf{f}})d\mathbf{f}p(\overline{\mathbf{f}})}{p(\mathbf{y})} \approx \frac{[\prod_{i=1}^{N} \int p(y_i|\mathbf{f}_i)p(\mathbf{f}_i|\overline{\mathbf{f}})d\mathbf{f}_i]p(\overline{\mathbf{f}})}{p(\mathbf{y})}$$

where we have used the FITC approximation $p(\mathbf{f}|\mathbf{\bar{f}}) \approx \prod_{i=1}^{N} p(\mathbf{f}_i|\mathbf{\bar{f}})$. The corresponding **likelihood factors** are:

$$\phi_i(\mathbf{\bar{f}}) = \int \left[\prod_{k \neq y_i} \Theta\left(f_i^{y_i} - f_i^k\right)\right] \prod_{k=1}^C p(f_i^k | \mathbf{\bar{f}}^k) d\mathbf{f}_i^k$$

We consider that $y_i = \arg \max_k f^k(\mathbf{x}_i)$, which gives the **likelihood**: $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^N p(y_i|\mathbf{f}_i) = \prod_{i=1}^N \prod_{k \neq y_i} \Theta(f^{y_i}(\mathbf{x}_i) - f^k(\mathbf{x}_i))$

The **posterior approximation** is also set to be $q(\mathbf{f}) = \int p(\mathbf{f}|\overline{\mathbf{f}})q(\overline{\mathbf{f}})d\overline{\mathbf{f}}$. The **posterior** over $\overline{\mathbf{f}}$ is:

$$p(\overline{\mathbf{f}}|\mathbf{y}) = \frac{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\overline{\mathbf{f}})d\mathbf{f}p(\overline{\mathbf{f}})}{p(\mathbf{y})} \approx \frac{[\prod_{i=1}^{N} \int p(y_i|\mathbf{f}_i)p(\mathbf{f}_i|\overline{\mathbf{f}})d\mathbf{f}_i]p(\overline{\mathbf{f}})}{p(\mathbf{y})}$$

where we have used the FITC approximation $p(\mathbf{f}|\mathbf{\bar{f}}) \approx \prod_{i=1}^{N} p(\mathbf{f}_i|\mathbf{\bar{f}})$. The corresponding **likelihood factors** are:

$$\phi_i(\mathbf{\bar{f}}) = \int \left[\prod_{k \neq y_i} \Theta\left(f_i^{y_i} - f_i^k\right)\right] \prod_{k=1}^C p(f_i^k | \mathbf{\bar{f}}^k) d\mathbf{f}_i$$

The integral is **intractable** and we cannot evaluate $\phi_i(\bar{\mathbf{f}})$ in closed form!

It is possible to show that:

$$\phi_i(\bar{\mathbf{f}}) = p(f_i^{y_i} > f_i^1, \dots, f_i^{y_i} > f_i^{y_i-1}, f_i^{y_i} > f_i^{y_i+1}, \dots, f_i^{y_i} > f_i^{C})$$

It is possible to show that:

$$\begin{split} \phi_i(\bar{\mathbf{f}}) &= p(f_i^{y_i} > f_i^1, \dots, f_i^{y_i} > f_i^{y_i-1}, f_i^{y_i} > f_i^{y_i+1}, \dots, f_i^{y_i} > f_i^C) \\ &= p(f_i^{y_i} > f_i^1 | \dots, f_i^{y_i} > f_i^{y_i-1}, f_i^{y_i} > f_i^{y_i+1}, \dots, f_i^{y_i} > f_i^C) \times \\ p(f_i^{y_i} > f_i^2 | \dots, f_i^{y_i} > f_i^{y_i-1}, f_i^{y_i} > f_i^{y_i+1}, \dots, f_i^{y_i} > f_i^C) \times \\ &\cdots \times p(f_i^{y_i} > f_i^{C-1} | f_i^{y_i} > f_i^C) \times p(f_i^{y_i} > f_i^C) \end{split}$$

It is possible to show that:

$$\begin{split} \phi_{i}(\overline{\mathbf{f}}) &= p(f_{i}^{y_{i}} > f_{i}^{1}, \dots, f_{i}^{y_{i}} > f_{i}^{y_{i}-1}, f_{i}^{y_{i}} > f_{i}^{y_{i}+1}, \dots, f_{i}^{y_{i}} > f_{i}^{C}) \\ &= p(f_{i}^{y_{i}} > f_{i}^{1} | \dots, f_{i}^{y_{i}} > f_{i}^{y_{i}-1}, f_{i}^{y_{i}} > f_{i}^{y_{i}+1}, \dots, f_{i}^{y_{i}} > f_{i}^{C}) \times \\ &p(f_{i}^{y_{i}} > f_{i}^{2} | \dots, f_{i}^{y_{i}} > f_{i}^{y_{i}-1}, f_{i}^{y_{i}} > f_{i}^{y_{i}+1}, \dots, f_{i}^{y_{i}} > f_{i}^{C}) \times \\ & \cdots \times p(f_{i}^{y_{i}} > f_{i}^{C-1} | f_{i}^{y_{i}} > f_{i}^{C}) \times p(f_{i}^{y_{i}} > f_{i}^{C}) \\ &\approx \prod_{k \neq y_{i}} p(f_{i}^{y_{i}} > f_{i}^{k}) = \prod_{k \neq y_{i}} \Phi(\alpha_{i}^{k}) \end{split}$$

It is possible to show that:

$$\begin{split} \phi_{i}(\bar{\mathbf{f}}) &= p(f_{i}^{y_{i}} > f_{i}^{1}, \dots, f_{i}^{y_{i}} > f_{i}^{y_{i}-1}, f_{i}^{y_{i}} > f_{i}^{y_{i}+1}, \dots, f_{i}^{y_{i}} > f_{i}^{C}) \\ &= p(f_{i}^{y_{i}} > f_{i}^{1} | \dots, f_{i}^{y_{i}} > f_{i}^{y_{i}-1}, f_{i}^{y_{i}} > f_{i}^{y_{i}+1}, \dots, f_{i}^{y_{i}} > f_{i}^{C}) \times \\ &p(f_{i}^{y_{i}} > f_{i}^{2} | \dots, f_{i}^{y_{i}} > f_{i}^{y_{i}-1}, f_{i}^{y_{i}} > f_{i}^{y_{i}+1}, \dots, f_{i}^{y_{i}} > f_{i}^{C}) \times \\ & \dots \times p(f_{i}^{y_{i}} > f_{i}^{C-1} | f_{i}^{y_{i}} > f_{i}^{C}) \times p(f_{i}^{y_{i}} > f_{i}^{C}) \\ &\approx \prod_{k \neq y_{i}} p(f_{i}^{y_{i}} > f_{i}^{k}) = \prod_{k \neq y_{i}} \Phi(\alpha_{i}^{k}) \end{split}$$

where $\Phi(\cdot)$ is the cdf of a standard Gaussian and we have defined

$$\alpha_i^k = (m_i^{y_i} - m_i^k) / \sqrt{v_i^{y_i} + v_i^k}$$

with $m_i^{y_i}$, m_i^k , $v_i^{y_i}$ and v_i^k the mean and variances of $f_i^{y_i}$ and f_i^k .

EP Approximation of the Likelihood Factors

EP approximates each likelihood factor ϕ_i^k with a **Gaussian factor**:

$$\Phi(\alpha_i^k) = \phi_i^k(\bar{\mathbf{f}}) \approx \tilde{\phi}_i^k(\bar{\mathbf{f}}) = \tilde{\mathbf{s}}_{i,k} \exp\left\{-\frac{1}{2}(\bar{\mathbf{f}}^{y_i})^\mathsf{T}\tilde{\mathbf{V}}_{i,k}^{y_i}\bar{\mathbf{f}}^{y_i} + (\bar{\mathbf{f}}^{y_i})^\mathsf{T}\tilde{\mathbf{m}}_{i,k}^{y_i}\right\} \times \exp\left\{-\frac{1}{2}(\bar{\mathbf{f}}^k)^\mathsf{T}\tilde{\mathbf{V}}_{i,k}^k\bar{\mathbf{f}}^k + (\bar{\mathbf{f}}^k)^\mathsf{T}\tilde{\mathbf{m}}_{i,k}^k\right\}$$

EP Approximation of the Likelihood Factors

EP approximates each likelihood factor ϕ_i^k with a **Gaussian factor**:

$$\Phi(\alpha_i^k) = \phi_i^k(\bar{\mathbf{f}}) \approx \tilde{\phi}_i^k(\bar{\mathbf{f}}) = \tilde{\mathbf{s}}_{i,k} \exp\left\{-\frac{1}{2}(\bar{\mathbf{f}}^{y_i})^{\mathsf{T}} \tilde{\mathbf{V}}_{i,k}^{y_i} \bar{\mathbf{f}}^{y_i} + (\bar{\mathbf{f}}^{y_i})^{\mathsf{T}} \tilde{\mathbf{m}}_{i,k}^{y_i}\right\} \times \exp\left\{-\frac{1}{2}(\bar{\mathbf{f}}^k)^{\mathsf{T}} \tilde{\mathbf{V}}_{i,k}^k \bar{\mathbf{f}}^k + (\bar{\mathbf{f}}^k)^{\mathsf{T}} \tilde{\mathbf{m}}_{i,k}^k\right\}$$

 $\tilde{\mathbf{V}}_{i,k}^{y_i}$ and $\tilde{\mathbf{V}}_{i,k}^k$ are 1-rank matrices. Each $\tilde{\phi}_i^k$ only has $\mathcal{O}(M)$ parameters.

EP Approximation of the Likelihood Factors

EP approximates each likelihood factor ϕ_i^k with a **Gaussian factor**:

$$\Phi(\alpha_i^k) = \phi_i^k(\bar{\mathbf{f}}) \approx \tilde{\phi}_i^k(\bar{\mathbf{f}}) = \tilde{\mathbf{s}}_{i,k} \exp\left\{-\frac{1}{2}(\bar{\mathbf{f}}^{y_i})^{\mathsf{T}} \tilde{\mathbf{V}}_{i,k}^{y_i} \bar{\mathbf{f}}^{y_i} + (\bar{\mathbf{f}}^{y_i})^{\mathsf{T}} \tilde{\mathbf{m}}_{i,k}^{y_i}\right\} \times \exp\left\{-\frac{1}{2}(\bar{\mathbf{f}}^k)^{\mathsf{T}} \tilde{\mathbf{V}}_{i,k}^k \bar{\mathbf{f}}^k + (\bar{\mathbf{f}}^k)^{\mathsf{T}} \tilde{\mathbf{m}}_{i,k}^k\right\}$$

 $\tilde{\mathbf{V}}_{i,k}^{y_i}$ and $\tilde{\mathbf{V}}_{i,k}^k$ are 1-rank matrices. Each $\tilde{\phi}_i^k$ only has $\mathcal{O}(M)$ parameters. The posterior approximation is:

$$q(\bar{\mathbf{f}}) = \frac{1}{Z_q} \prod_{i=1}^N \prod_{k \neq y_i} \tilde{\phi}_i^k(\bar{\mathbf{f}}) p(\bar{\mathbf{f}})$$

and Z_q approximates the marginal likelihood of the model.

Approx. Maximization of the Marginal Likelihood

 Z_q is maximized w.r.t. $\boldsymbol{\xi}_k$ and $\overline{\mathbf{X}}^k$ to find good hyper-parameters.

Approx. Maximization of the Marginal Likelihood

 Z_q is **maximized** w.r.t. $\boldsymbol{\xi}_k$ and $\overline{\mathbf{X}}^k$ to find good hyper-parameters. If EP converges, the **gradient** of log Z_q is given by:

$$\frac{\partial \log Z_q}{\partial \xi_j^k} = \eta^{\mathsf{T}} \frac{\partial \theta_{\mathsf{prior}}}{\partial \xi_j^k} - \eta_{\mathsf{prior}}^{\mathsf{T}} \frac{\partial \theta_{\mathsf{prior}}}{\partial \xi_j^k} + \sum_{i=1}^N \sum_{k \neq y_i} \frac{\partial \log Z_{i,k}}{\partial \xi_j^k}$$

where $Z_{i,k}$ is the normalization constant of $\phi_{i,k}q^{\setminus i,k}$ with $q^{\setminus i,k} \propto q/\tilde{\phi}_{i,k}$.

Approx. Maximization of the Marginal Likelihood

 Z_q is **maximized** w.r.t. $\boldsymbol{\xi}_k$ and $\overline{\mathbf{X}}^k$ to find good hyper-parameters. If EP converges, the **gradient** of log Z_q is given by:

$$\frac{\partial \log Z_q}{\partial \xi_j^k} = \eta^{\mathsf{T}} \frac{\partial \theta_{\mathsf{prior}}}{\partial \xi_j^k} - \eta_{\mathsf{prior}}^{\mathsf{T}} \frac{\partial \theta_{\mathsf{prior}}}{\partial \xi_j^k} + \sum_{i=1}^N \sum_{k \neq y_i} \frac{\partial \log Z_{i,k}}{\partial \xi_j^k}$$

where $Z_{i,k}$ is the normalization constant of $\phi_{i,k}q^{\setminus i,k}$ with $q^{\setminus i,k} \propto q/\tilde{\phi}_{i,k}$.

Hernández-Lobato and Hernández-Lobato, 2016 show convergence is not needed.

Consider a **minibatch** of data \mathcal{M}_b :

1 Refine in parallel all approximate factors $\tilde{\phi}_{i,k}$ corresponding to \mathcal{M}_b .

Consider a **minibatch** of data \mathcal{M}_b :

1 Refine in parallel all approximate factors $\tilde{\phi}_{i,k}$ corresponding to \mathcal{M}_b . **2** Reconstruct the posterior approximation q.

- **1** Refine in parallel all approximate factors $\tilde{\phi}_{i,k}$ corresponding to \mathcal{M}_b .
- **2** Reconstruct the posterior approximation q.
- **3** Get a noisy estimate of the grad of log Z_q w.r.t to each ξ_i^k and $\overline{x}_{i,d}^k$.

- **1** Refine in parallel all approximate factors $\tilde{\phi}_{i,k}$ corresponding to \mathcal{M}_b .
- **2** Reconstruct the posterior approximation q.
- **3** Get a noisy estimate of the grad of log Z_q w.r.t to each ξ_i^k and $\overline{x}_{i,d}^k$.
- **4** Update all model hyper-parameters.

- **1** Refine in parallel all approximate factors $\tilde{\phi}_{i,k}$ corresponding to \mathcal{M}_b .
- **2** Reconstruct the posterior approximation q.
- **3** Get a noisy estimate of the grad of log Z_q w.r.t to each ξ_i^k and $\overline{x}_{i,d}^k$.
- **4** Update all model hyper-parameters.
- **6** Reconstruct the posterior approximation q.

Consider a **minibatch** of data \mathcal{M}_b :

- **1** Refine in parallel all approximate factors $\tilde{\phi}_{i,k}$ corresponding to \mathcal{M}_b .
- **2** Reconstruct the posterior approximation q.
- **3** Get a noisy estimate of the grad of log Z_q w.r.t to each ξ_i^k and $\overline{x}_{i,d}^k$.
- **4** Update all model hyper-parameters.
- **6** Reconstruct the posterior approximation q.

If $|\mathcal{M}_b| < M$ the **cost** is $\mathcal{O}(CM^3)$. Memory cost is $\mathcal{O}(NCM)$.

Li et al., 2015 suggest to store in memory only the **product** of the $\tilde{\phi}_i^k$:

$$\tilde{\phi} = \prod_{i=1}^{N} \prod_{k \neq y_i} \tilde{\phi}_i^k$$

Li et al., 2015 suggest to store in memory only the **product** of the $\tilde{\phi}_i^k$:

$$\tilde{\phi} = \prod_{i=1}^{N} \prod_{k \neq y_i} \tilde{\phi}_i^k$$

The cavity distribution is computed as $q^{ackslash i,k} \propto q/ ilde{\phi}^{rac{1}{N_{
m factors}}}.$

Li et al., 2015 suggest to store in memory only the **product** of the $\tilde{\phi}_i^k$:

$$\tilde{\phi} = \prod_{i=1}^{N} \prod_{k \neq y_i} \tilde{\phi}_i^k$$

The cavity distribution is computed as $q^{ackslash i,k} \propto q/ ilde{\phi}^{rac{1}{N_{
m factors}}}$.

Li et al., 2015 suggest to store in memory only the **product** of the $\tilde{\phi}_i^k$:

$$\tilde{\phi} = \prod_{i=1}^{N} \prod_{k \neq y_i} \tilde{\phi}_i^k$$

The cavity distribution is computed as $q^{ackslash i,k} \propto q/ ilde{\phi}^{rac{1}{N_{
m factors}}}.$

The memory cost is reduced to $\mathcal{O}(CM^2)$.

• The same likelihood as the proposed method (Kim & Ghahramani, 2006).

- The same likelihood as the proposed method (Kim & Ghahramani, 2006).
- Original GFITC formulation (Naish-Guzman & Hoden, 2008).

- The same likelihood as the proposed method (Kim & Ghahramani, 2006).
- Original GFITC formulation (Naish-Guzman & Hoden, 2008).
- Key difference: The latent variables corresponding to the inducing points \overline{f} are marginalized out to obtain an approximate prior:

$$p(\mathbf{f}) = \int p(\mathbf{f}|\overline{\mathbf{f}}) p(\overline{\mathbf{f}}) d\overline{\mathbf{f}} pprox \prod_{k=1}^{C} \mathcal{N}\left(\mathbf{f}^k|\mathbf{0}, \mathbf{Q}_{NN}^k - \operatorname{diag}\left(\mathbf{K}_{NN}^k - \mathbf{Q}_{NN}^k
ight)
ight)$$

- The same likelihood as the proposed method (Kim & Ghahramani, 2006).
- Original GFITC formulation (Naish-Guzman & Hoden, 2008).
- Key difference: The latent variables corresponding to the inducing points \overline{f} are marginalized out to obtain an approximate prior:

$$p(\mathbf{f}) = \int p(\mathbf{f}|\overline{\mathbf{f}}) p(\overline{\mathbf{f}}) d\overline{\mathbf{f}} \approx \prod_{k=1}^{C} \mathcal{N}\left(\mathbf{f}^{k}|\mathbf{0}, \mathbf{Q}_{NN}^{k} - \operatorname{diag}\left(\mathbf{K}_{NN}^{k} - \mathbf{Q}_{NN}^{k}\right)\right)$$

• Training costs $\mathcal{O}(CNM^2)$. Does not allow for scalable training!

UCI Repository datasets

Initial comparison on small datasets and batch training.

Dataset	#Instances	#Attributes	#Classes
Glass	214	9	6
New-thyroid	215	5	3
Satellite	6435	36	6
Svmguide2	391	20	3
Vehicle	846	18	4
Vowel	540	10	6
Waveform	1000	21	3
Wine	178	13	3

UCI Repository (test error)

_	Problem	GFITC	EP	SEP	VI
5%	Glass	$\textbf{0.23}\pm\textbf{0.02}$	0.31 ± 0.02	0.31 ± 0.02	0.35 ± 0.02
	New-thyroid	$\textbf{0.02}\pm\textbf{0.01}$	$0.04\ \pm\ 0.01$	0.02 ± 0.01	0.03 ± 0.01
	Satellite	0.12 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
	Svmguide2	$0.2\ \pm\ 0.01$	$0.2\ \pm\ 0.01$	0.2 ± 0.02	0.19 ± 0.01
	Vehicle	0.17 ± 0.01	0.17 ± 0.01	$\textbf{0.16}\pm\textbf{0.01}$	0.17 ± 0.01
⋝	Vowel	0.05 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	0.06 ± 0.01
~	Waveform	0.17 ± 0.01	0.15 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
	Wine	0.03 ± 0.01	$\textbf{0.03} \pm \textbf{0.01}$	0.03 ± 0.01	0.04 ± 0.01
	Avg. Rank	$\textbf{2.24} \pm \textbf{0.07}$	2.33 ± 0.07	2.61 ± 0.06	2.82 ± 0.08
	Avg. Time	$131~\pm~3.11$	53.8 ± 0.19	$\textbf{48.5} \pm \textbf{0.97}$	157 ± 0.59
	Glass	$0.2\ \pm\ 0.01$	0.29 ± 0.02	0.3 ± 0.02	0.35 ± 0.02
	New-thyroid	0.03 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
è	Satellite	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
Ξ	Svmguide2	0.19 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.17 ± 0.02
	Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
<	Vowel	$\textbf{0.03}\pm\textbf{0.01}$	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
~	Waveform	0.17 ± 0.01	$\textbf{0.16} \pm \textbf{0.01}$	0.16 ± 0.01	0.18 ± 0.01
_	Wine	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
	Avg. Rank	2.4 ± 0.08	$\textbf{2.21} \pm \textbf{0.07}$	2.62 ± 0.06	2.76 ± 0.08
	Avg. Time	$264\ \pm\ 6.91$	102 ± 0.64	$\textbf{96.6} \pm \textbf{1.99}$	179 ± 0.78
	Glass	$0.2\ \pm\ 0.02$	0.28 ± 0.02	0.28 ± 0.02	0.36 ± 0.02
0	New-thyroid	0.03 ± 0.01	$0.02\ \pm\ 0.01$	0.02 ± 0.01	0.03 ± 0.01
M = 20%	Satellite	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.11 ± 0.01
	Svmguide2	$0.2\ \pm\ 0.01$	0.19 ± 0.01	0.2 ± 0.02	0.19 ± 0.02
	Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
	Vowel	0.03 ± 0.01	0.03 ± 0.01	0.05 ± 0.01	0.03 ± 0.01
	Waveform	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01	0.18 ± 0.01
	Wine	0.04 ± 0.01	0.01 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
_	Avg. Rank	2.48 ± 0.08	$\textbf{2.06} \pm \textbf{0.07}$	2.69 ± 0.07	2.77 ± 0.08
	Avg. Time	683 ± 17.3	228 ± 0.78	$216~\pm~2.88$	248 ± 0.66

UCI Repository (test error)

_	Problem	GFITC	EP	SEP	VI
= 5%	Glass	0.23 ± 0.02	0.31 ± 0.02	0.31 ± 0.02	0.35 ± 0.02
	New-thyroid	0.02 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
	Satellite	0.12 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
	Svmguide2	0.2 ± 0.01	0.2 ± 0.01	0.2 ± 0.02	0.19 ± 0.01
	Vehicle	0.17 ± 0.01	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
Σ	Vowel	0.05 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	0.06 ± 0.01
	Waveform	0.17 ± 0.01	0.15 ± 0.01	0.16 ± 0.01	0.17 ± 0.01
	Wine	0.03 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.04 ± 0.01
	Avg. Rank	2.24 ± 0.07	2.33 ± 0.07	2.61 ± 0.06	2.82 ± 0.08
	Avg. Time	131 ± 3.11	53.8 ± 0.19	48.5 ± 0.97	157 ± 0.59
	Glass	0.2 ± 0.01	0.29 ± 0.02	0.3 ± 0.02	0.35 ± 0.02
~	New-thyroid	0.03 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
õ	Satellite	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
-	Svmguide2	0.19 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.17 ± 0.02
	Vehicle	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.15 ± 0.01
⋝	Vowel	0.03 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
_	Waveform	0.17 ± 0.01	0.16 ± 0.01	0.16 ± 0.01	0.18 ± 0.01
_	VVine	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01
	Avg. Rank	2.4 ± 0.08	2.21 ± 0.07	2.62 ± 0.06	2.76 ± 0.08
	Avg. Time	264 ± 6.91	102 ± 0.64	96.6 ± 1.99	179 ± 0.78
	Glass	0.2 ± 0.02	0.28 ± 0.02	0.28 ± 0.02	0.36 ± 0.02
%	New-thyroid	0.03 ± 0.01	0.02 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
$M = 20^{\circ}$	Satenite	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.11 ± 0.01
	Svinguidez	0.2 ± 0.01	0.19 ± 0.01	0.2 ± 0.02	0.19 ± 0.02
	Venicle	0.17 ± 0.01	0.10 ± 0.01	0.10 ± 0.01	0.13 ± 0.01
	Waveform	0.03 ± 0.01	0.03 ± 0.01	0.05 ± 0.01	0.03 ± 0.01 0.18 ± 0.01
	Wine	0.17 ± 0.01	0.10 ± 0.01	0.17 ± 0.01	0.10 ± 0.01
-	Avg Rank	2.48 ± 0.01	2.06 ± 0.07	2.69 ± 0.01	2.77 ± 0.01
—	Avg. Time	683 ± 173	228 ± 0.07	216 ± 2.88	248 ± 0.66
	····a. · ····c	555 <u>11.5</u>	220 1 0.10	-10 1 2.00	2.0 2 0.00

UCI Repository (negative test log-likelihood)

_	Problem	GFITC	EP	SEP	VI
5%	Glass	0.61 ± 0.05	0.78 ± 0.06	0.77 ± 0.07	2.45 ± 0.14
	New-thyroid	0.06 ± 0.01	0.11 ± 0.03	0.06 ± 0.01	0.09 ± 0.02
	Satellite	0.33 ± 0.01	0.31 ± 0.01	0.33 ± 0.01	0.61 ± 0.01
	Svmguide2	0.63 ± 0.06	0.63 ± 0.06	0.67 ± 0.06	1.03 ± 0.08
	Vehicle	0.32 ± 0.01	0.34 ± 0.02	0.34 ± 0.02	0.76 ± 0.05
⋝	Vowel	0.16 ± 0.01	0.25 ± 0.01	0.25 ± 0.01	0.41 ± 0.05
~	Waveform	0.42 ± 0.01	$\textbf{0.36} \pm \textbf{0.01}$	0.39 ± 0.01	0.89 ± 0.02
	Wine	0.08 ± 0.02	$\textbf{0.07} \pm \textbf{0.01}$	0.08 ± 0.01	0.08 ± 0.02
_	Avg. Rank	1.92 ± 0.07	2.09 ± 0.07	2.46 ± 0.06	3.52 ± 0.08
	Avg. Time	$131~\pm~3.11$	53.8 ± 0.19	$\textbf{48.5} \pm \textbf{0.97}$	157 ± 0.59
	Glass	0.58 ± 0.05	0.74 ± 0.06	0.79 ± 0.07	2.18 ± 0.14
	New-thyroid	0.07 ± 0.01	0.06 ± 0.01	0.06 ± 0.01	0.05 ± 0.01
è	Satellite	0.34 ± 0.01	0.30 ± 0.01	0.34 ± 0.01	0.58 ± 0.01
Ξ	Svmguide2	0.67 ± 0.05	0.67 ± 0.05	0.74 ± 0.07	0.90 ± 0.10
	Vehicle	0.33 ± 0.01	0.33 ± 0.02	0.34 ± 0.02	0.72 ± 0.04
<	Vowel	0.14 ± 0.01	0.19 ± 0.01	0.19 ± 0.01	0.30 ± 0.04
~	Waveform	0.42 ± 0.01	$\textbf{0.36} \pm \textbf{0.01}$	0.41 ± 0.01	0.85 ± 0.01
	Wine	0.07 ± 0.01	$\textbf{0.06} \pm \textbf{0.01}$	0.07 ± 0.01	0.07 ± 0.01
	Avg. Rank	2.11 ± 0.08	$\textbf{2.01} \pm \textbf{0.08}$	2.58 ± 0.07	3.31 ± 0.1
	Avg. Time	264 ± 6.91	102 ± 0.64	$\textbf{96.6} \pm \textbf{1.99}$	179 ± 0.78
	Glass	$0.6\ \pm\ 0.07$	0.75 ± 0.06	0.81 ± 0.07	2.30 ± 0.15
0	New-thyroid	0.07 ± 0.01	0.06 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
M = 20%	Satellite	0.34 ± 0.01	0.30 ± 0.01	0.36 ± 0.01	0.53 ± 0.01
	Svmguide2	0.67 ± 0.05	0.65 ± 0.06	0.74 ± 0.07	0.94 ± 0.08
	Vehicle	0.33 ± 0.01	0.33 ± 0.02	0.34 ± 0.02	0.63 ± 0.04
	Vowel	0.12 ± 0.01	0.16 ± 0.01	0.18 ± 0.01	0.15 ± 0.03
	Waveform	0.43 ± 0.01	0.37 ± 0.01	0.45 ± 0.01	0.80 ± 0.01
	Wine	0.07 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.02
_	Avg. Rank	2.17 ± 0.07	1.91 ± 0.07	2.68 ± 0.06	3.23 ± 0.1
	Avg. Time	683 ± 17.3	228 ± 0.78	$216~\pm~2.88$	248 ± 0.66

UCI Repository (negative test log-likelihood)

Glass 0.01 ± 0.05 0.78 ± 0.06 0.77 ± 0.07	2.45 ± 0.14
New-thyroid 0.06 ± 0.01 0.11 \pm 0.03 0.06 \pm 0.01	0.09 ± 0.02
Satellite 0.33 ± 0.01 0.31 ± 0.01 0.33 ± 0.01	0.61 ± 0.01
Svmguide2 0.63 ± 0.06 0.63 ± 0.06 0.67 ± 0.06	1.03 ± 0.08
Vehicle 0.32 ± 0.01 0.34 ± 0.02 0.34 ± 0.02	$0.76~\pm~0.05$
S Vowel 0.16 ± 0.01 0.25 ± 0.01 0.25 ± 0.01	0.41 ± 0.05
Waveform 0.42 ± 0.01 0.36 ± 0.01 0.39 ± 0.01	0.89 ± 0.02
Wine 0.08 ± 0.02 0.07 \pm 0.01 0.08 \pm 0.01	0.08 ± 0.02
Avg. Rank 1.92 \pm 0.07 2.09 \pm 0.07 2.46 \pm 0.06	3.52 ± 0.08
Avg. Time 131 \pm 3.11 53.8 \pm 0.19 48.5 \pm 0.97	157 ± 0.59
Glass 0.58 ± 0.05 0.74 \pm 0.06 0.79 \pm 0.07	2.18 ± 0.14
New-thyroid 0.07 \pm 0.01 0.06 \pm 0.01 0.06 \pm 0.01	0.05 ± 0.01
Satellite 0.34 ± 0.01 0.30 ± 0.01 0.34 ± 0.01	0.58 ± 0.01
Svmguide2 0.67 ± 0.05 0.67 ± 0.05 0.74 ± 0.07	0.90 ± 0.10
Vehicle $0.33 \pm 0.01 0.33 \pm 0.02 0.34 \pm 0.02 $	0.72 ± 0.04
S ^{Vowel} $0.14 \pm 0.01 0.19 \pm 0.01 0.0$	0.30 ± 0.04
Waveform 0.42 ± 0.01 0.36 ± 0.01 0.41 ± 0.01	0.85 ± 0.01
Wine 0.07 ± 0.01 0.06 \pm 0.01 0.07 \pm 0.01	0.07 ± 0.01
Avg. Rank 2.11 \pm 0.08 2.01 \pm 0.08 2.58 \pm 0.07	3.31 ± 0.1
Avg. Time 264 ± 6.91 102 ± 0.64 96.6 \pm 1.99	$1/9 \pm 0.78$
Glass $0.6 \pm 0.07 0.75 \pm 0.06 0.81 \pm 0.07 0.95 \pm 0.01 0.95 \pm 0.$	2.30 ± 0.15
New-thyroid 0.07 ± 0.01 0.06 ± 0.01 0.05 ± 0.01	0.05 ± 0.01
Satellite 0.34 ± 0.01 0.30 ± 0.01 0.36 ± 0.01	0.53 ± 0.01
(N)SVinguide2 0.07 ± 0.03 0.03 ± 0.00 0.74 ± 0.07	0.94 ± 0.08
$ Venicle 0.55 \pm 0.01 0.55 \pm 0.02 0.54 \pm 0.02 0.54 \pm 0.02 0.54 \pm 0.01 0.16 + 0.01 0.18 + 0.01 0.$	0.05 ± 0.04
S Waveform $0.12 \pm 0.01 \ 0.10 \pm 0.01 \ 0.18 \pm 0.01$	0.15 ± 0.03
Wine 0.43 ± 0.01 0.57 ± 0.01 0.43 ± 0.01 Wine 0.07 ± 0.01 0.05 ± 0.01 0.06 ± 0.01	0.80 ± 0.01
Avg. Rank 2.17 ± 0.07 1.91 \pm 0.07 2.68 \pm 0.06	3.23 ± 0.02
Avg. Time 683 ± 17.3 228 ± 0.78 216 ± 2.88	248 ± 0.66

Inducing Point Placement Analysis

Inducing Point Placement Analysis

EP based methods perform inducing point pruning (Bauer et al., 2016)!

Performance in Terms of Time (Satellite Dataset)

Minibatch Training: MNIST Dataset M = 200

Minibatch Training: MNIST Dataset M = 200

Method	Test Error in %	Neg. Test Log-Likelihood
EP	2.10	0.0735
SEP	2.08	0.0725
VI	2.02	0.0682

Minibatch Training: Airline-delays M = 200

Minibatch Training: Airline-delays M = 200

Training Time in a Log10 Scale

• EP method for **multi-class** classification using GPs.

- EP method for **multi-class** classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}(CM^3)$.

- EP method for **multi-class** classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}(CM^3)$.
- Extensive experimental comparison with related methods.

- EP method for **multi-class** classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}(CM^3)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.

- EP method for **multi-class** classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}(CM^3)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.
- EP methods carry out inducing point pruning.

- EP method for **multi-class** classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}(CM^3)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.
- EP methods carry out inducing point pruning.
- VI sometimes gives bad test log-likelihoods.

- EP method for **multi-class** classification using GPs.
- Efficient training and memory usage with cost $\mathcal{O}(CM^3)$.
- Extensive experimental comparison with related methods.
- SEP is slightly faster than VI and is quadrature free.
- EP methods carry out inducing point pruning.
- VI sometimes gives bad test log-likelihoods.

Thank you for your attention!

References

- Bauer, M., van der Wilk, M., and Rasmussen, C. E. Understanding probabilistic sparse Gaussian process approximations. NIPS 29, pp. 1533-1541. 2016.
- Chai, K. M. A. Variational multinomial logit Gaussian process. JMLR, 13:1745-1808, 2012.
- Girolami, M. and Rogers, S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:1790-1817, 2006.
- Hensman, J., Matthews, A. G., Filippone, M., and Ghahramani, Z. MCMC for variationally sparse Gaussian processes. NIPS 28, pp. 1648-1656. 2015.
- Hernández-Lobato, D. and Hernández-Lobato, J. M. Scal- able Gaussian process classification via expectation propagation. AISTATS, pp. 168-176, 2016.
- Kim, H.-C. and Ghahramani, Z. Bayesian Gaussian process classification with the EM-EP algorithm. IEEE PAMI, 28, 1948-1959, 2006.
- Li, Y., Hernandez-Lobato, J. M., and Turner, R. E. Stochas- tic expectation propagation. NIPS 28, pp. 2323-2331. 2015.
- Naish-Guzman, A. and Holden, S. The generalized FITC approximation. NIPS 20, pp. 1057-1064. 2008.
- Riihimäki, J., Jylänki, P., and Vehtari, A. Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood. JMLR, 14, 75-109, 2013.
- Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. NIPS 18, pp. 1257-1264, 2006.
- Williams, C. K. I. and Barber, D. Bayesian classification with Gaussian processes. IEEE PAMI, 20,1342-1351, 1998.