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Introduction to Multi-class Classification with GPs

Given xi we want to make predictions about yi 2 {1, . . . ,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max
k

f

k(xi ) for k 2 {1, . . . ,C}

Find p(f|y) = p(y|f)p(f)/p(y) under p(fk) ⇠ GP(0, k(·, ·)).
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Challenges in Multi-class Classification with GPs

Binary classification has received more attention than multi-class!

Challenges in the multi-class case:

1 Approximate inference is more di�cult.

2 C > 2 latent functions instead of just one.

3 Deal with more complicated likelihood factors.

4 More expensive algorithms, computationally.

Most techniques do not scale to large datasets: (Williams & Barber, 1998;

Kim & Ghahramani, 2006; Girolami & Rogers, 2006; Chai, 2012; Riihimäki et al., 2013).

The best cost is O(CNM2), if sparse priors are used.
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Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi ) = (1� ✏)pi +
✏

C � 1
(1� pi ) with pi =

8
<

:
1 if yi = arg max

k
f

k(xi )

0 otherwise

The posterior approximation is q(f) =
R
p(f|f)q(f)df

q(f) =
QC

k=1 N (f
k |µk ,⌃k)

f

k
= (f k(xk1), . . . , f

k(xkM))T X

k
= (xk1 , . . . , x

k
M)T

The number of latent variables goes from CN to CM, with M ⌧ N.

L(q) =
NX

i=1

Eq [log p(yi |fi )]� KL(q|p)

The cost is O(CM3) (uses quadratures)! Can we do that with EP?
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Expectation Propagation (EP)

Let ✓ summarize the latent variables of the model.

Approximates p(✓) / p0(✓)
QN

n=1 fn(✓) with q(✓) / p0(✓)
QN

n=1 f̃n(✓)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(✓) / fn(✓)

Q
j 6=n f̃j(✓)

q(✓) / f̃n(✓)
Q

j 6=n f̃j(✓)
.
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Model Specification

We consider that yi = arg max
k

f

k(xi ), which gives the likelihood:

p(y|f) = QN
i=1 p(yi |fi ) =

QN
i=1

Q
k 6=yi

⇥(f yi (xi )� f

k(xi ))

The posterior approximation is also set to be q(f) =
R
p(f|f)q(f)df.

The posterior over f is:

p(f|y) =
R
p(y|f)p(f|f)dfp(f)

p(y)
⇡ [

QN
i=1

R
p(yi |fi )p(fi |f)dfi ]p(f)

p(y)

where we have used the FITC approximation p(f|f) ⇡ QN
i=1 p(fi |f).

The corresponding likelihood factors are:

�i (f) =

Z hQ
k 6=yi

⇥
�
f

yi
i � f

k
i

�iQC
k=1 p(f

k
i |f

k
)dfi

The integral is intractable and we cannot evaluate �i (f) in closed form!
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Approximate Likelihood Factors

It is possible to show that:

�i (f) = p(f yii > f

1
i , . . . , f

yi
i > f

yi�1
i , f yii > f

yi+1
i , . . . , f yii > f

C
i )

= p(f yii > f

1
i | . . . , f yii > f

yi�1
i , f yii > f

yi+1
i , . . . , f yii > f

C
i )⇥

p(f yii > f

2
i | . . . , f yii > f

yi�1
i , f yii > f

yi+1
i , . . . , f yii > f

C
i )⇥ · · ·

· · ·⇥ p(f yii > f

C�1
i |f yii > f

C
i )⇥ p(f yii > f

C
i )

⇡
Y

k 6=yi

p(f yii > f

k
i ) =

Y

k 6=yi

�(↵k
i )

where �(·) is the cdf of a standard Gaussian and we have defined

↵k
i = (myi

i �m

k
i )/

q
v

yi
i + v

k
i

with m

yi
i , m

k
i , v

yi
i and v

k
i the mean and variances of f yii and f

k
i .
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EP Approximation of the Likelihood Factors

EP approximates each likelihood factor �k
i with a Gaussian factor:

�(↵k
i ) = �k

i (f) ⇡ �̃k
i (f) = s̃i ,k exp

⇢
�1

2
(f

yi )TṼyi
i ,k f

yi + (f
yi )Tm̃yi

i ,k

�
⇥

exp

⇢
�1

2
(f

k
)TṼk

i ,k f
k
+ (f

k
)Tm̃k

i ,k

�

Ṽ

yi
i ,k and Ṽ

k
i ,k are 1-rank matrices. Each �̃k

i only has O(M) parameters.

The posterior approximation is:

q(f) =
1

Zq

NY

i=1

Y

k 6=yi

�̃k
i (f)p(f)

and Zq approximates the marginal likelihood of the model.
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)TṼk

i ,k f
k
+ (f

k
)Tm̃k

i ,k

�

Ṽ
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Approx. Maximization of the Marginal Likelihood

Zq is maximized w.r.t. ⇠k and X

k
to find good hyper-parameters.

If EP converges, the gradient of logZq is given by:

@ logZq

@⇠kj
= ⌘T@✓prior

@⇠kj
� ⌘T

prior

@✓prior
@⇠kj

+
NX

i=1

X

k 6=yi

@ logZi ,k

@⇠kj

where Zi ,k is the normalization constant of �i ,kq
\i ,k with q

\i ,k / q/�̃i ,k .

Hernández-Lobato and Hernández-Lobato, 2016 show convergence is not needed.
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Expectation Propagation using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors �̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ⇠kj and x

k
i ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3). Memory cost is O(NCM).
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Stochastic Expectation Propagation

Li et al., 2015 suggest to store in memory only the product of the �̃k
i :

�̃ =
NY

i=1

Y

k 6=yi

�̃k
i

The cavity distribution is computed as q\i ,k / q/�̃
1

Nfactors .

The memory cost is reduced to O(CM2).
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Baseline Method: Generalized FITC Approximation

• The same likelihood as the proposed method (Kim & Ghahramani, 2006).

•
Original GFITC formulation (Naish-Guzman & Hoden, 2008).

•
Key di↵erence: The latent variables corresponding to the inducing
points f are marginalized out to obtain an approximate prior:

p(f) =

Z
p(f|f)p(f)df ⇡

CY

k=1

N
⇣
f

k |0,Qk
NN � diag

⇣
K

k
NN �Q

k
NN

⌘⌘

• Training costs O(CNM2). Does not allow for scalable training!
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UCI Repository datasets

Initial comparison on small datasets and batch training.

Dataset #Instances #Attributes #Classes

Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3
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UCI Repository (test error)

Problem GFITC EP SEP VI

M
=

5
%

Glass 0.23 ± 0.02 0.31 ± 0.02 0.31 ± 0.02 0.35 ± 0.02
New-thyroid 0.02 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
Satellite 0.12 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 0.12 ± 0.01
Svmguide2 0.2 ± 0.01 0.2 ± 0.01 0.2 ± 0.02 0.19 ± 0.01

Vehicle 0.17 ± 0.01 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01
Vowel 0.05 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.06 ± 0.01
Waveform 0.17 ± 0.01 0.15 ± 0.01 0.16 ± 0.01 0.17 ± 0.01
Wine 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01
Avg. Rank 2.24 ± 0.07 2.33 ± 0.07 2.61 ± 0.06 2.82 ± 0.08
Avg. Time 131 ± 3.11 53.8 ± 0.19 48.5 ± 0.97 157 ± 0.59

M
=

1
0
%

Glass 0.2 ± 0.01 0.29 ± 0.02 0.3 ± 0.02 0.35 ± 0.02
New-thyroid 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
Satellite 0.11 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 0.12 ± 0.01
Svmguide2 0.19 ± 0.02 0.2 ± 0.02 0.2 ± 0.02 0.17 ± 0.02

Vehicle 0.17 ± 0.01 0.16 ± 0.01 0.16 ± 0.01 0.15 ± 0.01

Vowel 0.03 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.06 ± 0.01
Waveform 0.17 ± 0.01 0.16 ± 0.01 0.16 ± 0.01 0.18 ± 0.01
Wine 0.04 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
Avg. Rank 2.4 ± 0.08 2.21 ± 0.07 2.62 ± 0.06 2.76 ± 0.08
Avg. Time 264 ± 6.91 102 ± 0.64 96.6 ± 1.99 179 ± 0.78

M
=

2
0
%

Glass 0.2 ± 0.02 0.28 ± 0.02 0.28 ± 0.02 0.36 ± 0.02
New-thyroid 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
Satellite 0.11 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 0.11 ± 0.01
Svmguide2 0.2 ± 0.01 0.19 ± 0.01 0.2 ± 0.02 0.19 ± 0.02

Vehicle 0.17 ± 0.01 0.16 ± 0.01 0.16 ± 0.01 0.15 ± 0.01

Vowel 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.01
Waveform 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.18 ± 0.01
Wine 0.04 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
Avg. Rank 2.48 ± 0.08 2.06 ± 0.07 2.69 ± 0.07 2.77 ± 0.08
Avg. Time 683 ± 17.3 228 ± 0.78 216 ± 2.88 248 ± 0.66
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UCI Repository (negative test log-likelihood)

Problem GFITC EP SEP VI

M
=

5
%

Glass 0.61 ± 0.05 0.78 ± 0.06 0.77 ± 0.07 2.45 ± 0.14
New-thyroid 0.06 ± 0.01 0.11 ± 0.03 0.06 ± 0.01 0.09 ± 0.02
Satellite 0.33 ± 0.01 0.31 ± 0.01 0.33 ± 0.01 0.61 ± 0.01
Svmguide2 0.63 ± 0.06 0.63 ± 0.06 0.67 ± 0.06 1.03 ± 0.08
Vehicle 0.32 ± 0.01 0.34 ± 0.02 0.34 ± 0.02 0.76 ± 0.05
Vowel 0.16 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.41 ± 0.05
Waveform 0.42 ± 0.01 0.36 ± 0.01 0.39 ± 0.01 0.89 ± 0.02
Wine 0.08 ± 0.02 0.07 ± 0.01 0.08 ± 0.01 0.08 ± 0.02
Avg. Rank 1.92 ± 0.07 2.09 ± 0.07 2.46 ± 0.06 3.52 ± 0.08
Avg. Time 131 ± 3.11 53.8 ± 0.19 48.5 ± 0.97 157 ± 0.59

M
=

1
0
%

Glass 0.58 ± 0.05 0.74 ± 0.06 0.79 ± 0.07 2.18 ± 0.14
New-thyroid 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.05 ± 0.01

Satellite 0.34 ± 0.01 0.30 ± 0.01 0.34 ± 0.01 0.58 ± 0.01
Svmguide2 0.67 ± 0.05 0.67 ± 0.05 0.74 ± 0.07 0.90 ± 0.10
Vehicle 0.33 ± 0.01 0.33 ± 0.02 0.34 ± 0.02 0.72 ± 0.04
Vowel 0.14 ± 0.01 0.19 ± 0.01 0.19 ± 0.01 0.30 ± 0.04
Waveform 0.42 ± 0.01 0.36 ± 0.01 0.41 ± 0.01 0.85 ± 0.01
Wine 0.07 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
Avg. Rank 2.11 ± 0.08 2.01 ± 0.08 2.58 ± 0.07 3.31 ± 0.1
Avg. Time 264 ± 6.91 102 ± 0.64 96.6 ± 1.99 179 ± 0.78

M
=

2
0
%

Glass 0.6 ± 0.07 0.75 ± 0.06 0.81 ± 0.07 2.30 ± 0.15
New-thyroid 0.07 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.05 ± 0.01
Satellite 0.34 ± 0.01 0.30 ± 0.01 0.36 ± 0.01 0.53 ± 0.01
Svmguide2 0.67 ± 0.05 0.65 ± 0.06 0.74 ± 0.07 0.94 ± 0.08
Vehicle 0.33 ± 0.01 0.33 ± 0.02 0.34 ± 0.02 0.63 ± 0.04
Vowel 0.12 ± 0.01 0.16 ± 0.01 0.18 ± 0.01 0.15 ± 0.03
Waveform 0.43 ± 0.01 0.37 ± 0.01 0.45 ± 0.01 0.80 ± 0.01
Wine 0.07 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.06 ± 0.02
Avg. Rank 2.17 ± 0.07 1.91 ± 0.07 2.68 ± 0.06 3.23 ± 0.1
Avg. Time 683 ± 17.3 228 ± 0.78 216 ± 2.88 248 ± 0.66
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Inducing Point Placement Analysis

M = 1 M = 2 M = 4 M = 8 M = 32 M = 128 M = 256
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EP based methods perform inducing point pruning (Bauer et al., 2016)!
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Inducing Point Placement Analysis
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EP based methods perform inducing point pruning (Bauer et al., 2016)!
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Performance in Terms of Time (Satellite Dataset)
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Minibatch Training: MNIST Dataset M = 200
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Minibatch Training: MNIST Dataset M = 200

Method Test Error in % Neg. Test Log-Likelihood

EP 2.10 0.0735
SEP 2.08 0.0725
VI 2.02 0.0682
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Minibatch Training: Airline-delays M = 200
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Minibatch Training: Airline-delays M = 200
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Conclusions

• EP method for multi-class classification using GPs.

•
E�cient training and memory usage with cost O(CM3).

• Extensive experimental comparison with related methods.

• SEP is slightly faster than VI and is quadrature free.

• EP methods carry out inducing point pruning.

• VI sometimes gives bad test log-likelihoods.

Thank you for your attention!
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• Riihimäki, J., Jylänki, P., and Vehtari, A. Nested expectation propagation for Gaussian
process classification with a multinomial probit likelihood. JMLR, 14, 75-109, 2013.

• Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. NIPS
18, pp. 1257-1264, 2006.

• Williams, C. K. I. and Barber, D. Bayesian classification with Gaussian processes. IEEE
PAMI, 20,1342-1351, 1998.

22 / 22


