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Motivation

I Machine learning has been very successful in providing tools for learning a
function mapping from an input to an output.

y = f (x) + ✏

I The modeling in terms of function mapping assumes a one/many to one mapping
between input and output.

I In other words, ideally the input should contain su�cient information to uniquely
determine/disambiguise the output apart from some sensory noise.



Data: a Combination of Multiple Scenarios

I In most of cases, this assumption does not hold.

I We often collect data as a combination of multiple scenarios, e.g., the voice
recording of multiple persons, the images taken from di↵erent models of cameras.

I We only have some labels to identify these scenarios in our data, e.g., we can
have the names of the speakers and the specifications of the used cameras.

I These labels are represented as categorical data in some database.



How to model these labels?

I A common practice in this case would be to ignore the di↵erence of scenarios, but
fails to model the corresponding variations.

I Model each scenario separately.

I Use a one-hot encoding.

I In both of these cases, generalization/transfer to new scenario is not possible.

I Any better solutions? Latent variable models!



A Toy Problem: The Braking Distance of a Car

I To model the braking distance of a car in a completely data-driven way.

I Input: the speed when starting to brake

I Output: the distance that the car moves before fully stopped

I We know that the braking distance depends on the friction coe�cient.

I We can conduct experiments with a set of di↵erent tyre and road conditions, each
associated with a condition ID.

I How can we model the relation between the speed and distance in a data-driven
way, so that we can extrapolate to a new condition with only one experiment?
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Common Modeling Choices with Non-parametric Regression

I A straight-forward modeling choice to ignore the di↵erence in conditions. The
relation between the speed and distance can be modeled as

y = f (x) + ✏, f ⇠ GP ,

I Alternatively, we can model each condition separately, i.e., fd ⇠ GP , d = 1, . . . ,D.
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Modeling the Conditions Jointly
I A probabilistic approach is to assume a latent variable.
I With a latent variable hd , the relation between speed and distance for the

condition d is, then, modeled as

y = f (x ,hd) + ✏, f ⇠ GP , hd ⇠ N (0, I). (1)

I A special Bayesian GPLVM?
I E�ciency, O(N3D3) or O(NDM2).
I The balance among di↵erent conditions in inference.
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Latent Variable Multiple Output Gaussian Processes (LVMOGP)

I We propose a new model which assumes the covariance matrix can be
decomposed as a Kronecker product of the covariance matrix of the latent
variables KH and the covariance matrix of the inputs KX .

I The probabilistic distributions of LVMOGP is defined as

p(Y:|F:) = N
�
Y:|F:,�

2I
�
, p(F:|X,H) = N

⇣
F:|0,KH ⌦KX

⌘
, (2)

where the latent variables H have unit Gaussian priors, hd ⇠ N (0, I)

I This is a special case of the model in (1).



Scalable Variational Inference

I Sparse GP approximation with U 2 RMX⇥MH :

log p(Y|X,H) � hlog p(Y:|F:)iq(F|U)q(U) +

⌧
log

p(F|U,X,H)p(U)

q(F|U)q(U)

�

q(F|U)q(U)

I Lower bounding the marginal likelihood

log p(Y|X) � F � KL (q(U) k p(U))� KL (q(H) k p(H)) , (3)



Closed-form Variational Lower Bound (SVI-GP)

I It is known that the optimal posterior distribution of q(U) is a Gaussian
distribution [Titsias, 2009, Matthews et al., 2016]. With an explicit Gaussian
definition of q(U) = N

�
U|M,⌃U

�
, the integral in F has a closed-form solution:
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I The computational complexity of the closed-form solution is O(NDM2
XM

2
H).



More E�cient Formulation

I The Kronecker product decomposition of covariance matrices are not exploited.

I Firstly, the expectation computation can be decomposed,
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More E�cient Formulation

I Secondly, we assume a Kronecker product decomposition of the covariance matrix
of q(U), i.e., ⌃U = ⌃H ⌦ ⌃X .

I The number of variational parameters in the covariance matrix from M2
XM

2
H to

M2
X +M2

H .

I The direct computation of Kronecker products is completely avoided.
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Prediction

I Given both a set of new inputs X⇤ with a set of new scenarios H⇤, the prediction
of noiseless observation F⇤ can be computed in closed-form.
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I For a regression problem, we are often more interested in predicting for the
existing condition from the training data. We can approximate the prediction by
integrating the above prediction equation with q(H),

q(F⇤
: |X⇤) =

Z
q(F⇤

: |X⇤,H)q(H)dH.



Missing Data

I The model described previously assumes that for N di↵erent inputs, we observe
them in all the D di↵erent conditions.

I In real world problems, we often collect data at a di↵erent set of inputs for each
scenario, i.e., for each condition d , d = 1, . . . ,D.

I The proposed model can be extended to handle this case by reformulating the F
as
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Related Works

I Multiple Output Gaussian Processes /Multi-task Gaussian proccesses: lvarez et al.
[2012] [Goovaerts, 1997] [Bonilla et al., 2008]

I Our method reduces computationally complexity to
O(max(N,MH)max(D,MX )max(MX ,MH)) when there are no missing data.

I An additional advantage of our method is that it can easily be parallelized using
mini-batches like in [Hensman et al., 2013].

I The idea of modeling latent information about di↵erent conditions jointly with the
modeling of data points is related to the style and content model by Tenenbaum
and Freeman [2000].



Experiments on Synthetic Data

I 100 di↵erent uniformly sampled input locations (50 for training and 50 for
testing), where each corresponds to 40 di↵erent conditions. An observation noise
with variance 0.3 is added onto the training data

I We compare LVMOGP with two other methods: GP with independent output
dimensions (GP-ind) and LMC (with a full rank coregionalization matrix).

I First dataset without missing data.
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Experiments on Synthetic Data with Missing Data
I To generate a dataset with uneven numbers of training data in di↵erent

conditions, we group the conditions into 10 groups. Within each group, the
numbers of training data in four conditions are generated through a three-step
stick breaking procedure with a uniform prior distribution (200 data points in
total).

I We compare LVMOGP with two other methods: GP with independent output
dimensions (GP-ind) and LMC (with a full rank coregionalization matrix).

I GP-ind: 0.43± 0.06, LMC:0.47± 0.09, LVMOGP 0.30± 0.04
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Experiment on Servo Data
I We apply our method to a servo modeling problem, in which the task to predict

the rise time of a servomechanism in terms of two (continuous) gain settings and
two (discrete) choices of mechanical linkages [Quinlan, 1992].

I The two choices of mechanical linkages: 5 types of motors and 5 types of lead
screws.

I We take 70% of the dataset as training data and the rest as test data, and
randomly generated 20 partitions.

I GP-WO: 1.03± 0.20, GP-ind: 1.30± 0.31, GP-OH: 0.73± 0.26,
LMC:0.69± 0.35, LVMOGP 0.52± 0.16
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Experiment on Sensor Imputation
I We apply our method to impute multivariate time series data with massive

missing data. We take a in-house multi-sensor recordings including a list of sensor
measurements such as temperature, carbon dioxide, humidity, etc.
[Zamora-Martnez et al., 2014].

I The measurements are recorded every minutes for roughly a month and smoothed
with 15 minute means.

I We mimic the scenario of massive missing data by randomly taking out 95% of
the data entries and aim at imputing all the missing values.

I GP-ind: 0.85± 0.09, LMC:0.59± 0.21, LVMOGP 0.45± 0.02
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Conclusion

I The common practices such as one-hot encoding cannot e�ciently model the
relation among di↵erent conditions and are not able to generalize to a new
condition at test time.

I We propose to solve this problem in a principled way, where we learn the latent
information of conditions into a latent space as part of the regression model.

I By exploiting the Kronecker product decomposition in the variational posterior,
our inference method are able to achieve the same computational complexity as
sparse GP with independent observations.

I As shown repeatedly in the experiments, the Bayesian inference of the latent
variables in LVMOGP avoids the overfitting problem in LMC.
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