Efficient and principled score estimation Nyström, kernels \& exponential families

Heiko Strathmann, Gatsby unit

Gaussian process approximations workshop, Berlin
May 30, 2017

Joint work!

https://arxiv.org/abs/1705.08360

Frequentist guarantees for Bayesian methods?!?

$$
f(\cdot)=\sum_{i=1}^{n} \alpha_{i} k\left(X_{i}, \cdot\right) \quad \tilde{f}(\cdot)=\sum_{\tilde{X}_{i} \in \text { subset }}^{m} \tilde{\alpha}_{i} k\left(\tilde{X}_{i}, \cdot\right)
$$

- Nystrom approx. kernel matrix, Williams \& Seeger (2000)

- Approx. basis, SoR/DTC, Quiñonero-Candela \& Rasmussen (2005)

Frequentist guarantees for Bayesian methods?!?

At the core of approximate Gaussian processes:

1. Choose computationally effective basis
2. Construct stochastic process that correlates with GP
3. Optimize / minimize KL / variational compression Titsias (2009), Hensman et al (2013), Matthews et al (2016), and many many more

Some questions:

- Consistency when $n, m \rightarrow \infty$?
- How many inducing points, $m\{\ll,<,=\} n$?
- Error guarantees for finite n, m ?
- Trade-off computational savings / error?

Rudi \& Rosasco (2015), Capponetto \& DeVito (2007)

Context here: unnormalised density estimation

- Given iid samples from unknown p_{0}

$$
X=\left\{X_{b}\right\}_{b \in[n]} \subset \mathbb{R}^{d}
$$

- Want to fit model p such that (in some divergence)

$$
p(x) / Z(p) \approx p_{0}(x)
$$

- Related to learning the score itself,

$$
\nabla_{x} \log p(x) \approx \nabla_{x} \log p_{0}(x)
$$

- Not concerned with normaliser $Z(p)$
- MCMC, gradient-free HMC, Strathmann et al (2015)
- Deep / energy-based / autoencoders, LeCun et al (2006), Alain \& Bengio (2014)
- etc...
- Here: $\log p \in \mathcal{H}$, reproducing kernel Hilbert space \mathcal{H}

RKHS exponential families

- Model family by Sriperumbudur et all (2014)

$$
\{p_{f}(x):=\exp (\underbrace{\langle f, k(x, \cdot)\rangle_{\mathcal{H}}}_{=f(x)}-\log Z\left(p_{f}\right)) \mid \quad Z\left(p_{f}\right)<\infty\}
$$

- For certain k, dense in probability densities (KL, TV, ...)
- Crux: fitting - normalising constant is intractable

$$
Z\left(p_{f}\right)=\int \exp (f(x)) \mathrm{d} x
$$

- Maximum likelihood ill-posed, Fukumizu (2009)

Score matching, Hyvärien (2005)

- Instead of ML, minimise Fisher score

$$
J(f)=\frac{1}{2} \int p_{0}(x)\left\|\nabla_{x} \log p_{f}(x)-\nabla_{x} \log p_{0}(x)\right\|_{2}^{2} \mathrm{~d} x
$$

- Remarkable: can rewrite and estimate from X

$$
J(f)=\int p_{0}(x) \sum_{i=1}^{d}\left[\partial_{i}^{2} \log p_{f}(x)+\frac{1}{2}\left(\partial_{i} \log p_{f}(x)\right)^{2}\right] \mathrm{d} x+\mathrm{c}
$$

- Representer theorem, closed form, (nd)-dim linear solve

$$
\begin{aligned}
f_{\lambda, n} & =\underset{f \in \mathcal{H}}{\arg \min } \hat{J}(f)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2} \\
& =\sum_{a=1}^{n} \sum_{i=1}^{d} \beta_{(a, i)} \partial_{i} k\left(X_{a}, \cdot\right)-\frac{1}{\lambda} \xi(\cdot) \\
\beta & =(G+\lambda /)^{-1} h
\end{aligned}
$$

Our algorithm: block-subsampled low rank

- Generalizes ealier approximations, Strathmann et all(2015)
- Nystrom basis $Y \subset X$ (can be any basis!)

$$
\begin{aligned}
f_{\lambda, n}^{m} & =\underset{f \in \mathcal{H}_{Y}}{\arg \min } \hat{J}(f)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2} \\
& =\sum_{a=1}^{m} \sum_{i=1}^{d}\left(\beta_{Y}\right)_{(a, i)} \partial_{i} k\left(Y_{a}, \cdot\right) \\
\beta_{Y} & =-\left(\frac{1}{n} G_{X Y}^{\top} G_{X Y}+\lambda G_{Y Y}\right)^{\dagger} h_{Y}
\end{aligned}
$$

Nystrom gains, here for block sub-sampled G matrix:

- Training time: $\mathcal{O}\left(n m^{2}\right)$ instead of $\mathcal{O}\left(n^{3}\right)$
- Training memory: $\mathcal{O}(n m)$ instead of $\mathcal{O}\left(n^{2}\right)$
- Evaluation of $f: \mathcal{O}(m)$ instread of $\mathcal{O}(n)$
- Only store basis Y after training

High level theory

Assumptions:

- Well specified case: assume $p_{0}=p_{f_{0}}$ for some $f_{0} \in \mathcal{H}$
- Given smoothnes parameter of $p_{0}, \theta \in\left[\frac{1}{3}, \frac{1}{2}\right]$
- Set number of Nystrom basis points $m=\Omega\left(n^{\theta} \log n\right)$

We can bound (as a function of n, m, etc.)

- Difference of estimated and true model in \mathcal{H} (implies KL)

$$
\left\|f_{\lambda, n}^{m}-f_{0}\right\|_{\mathcal{H}}
$$

- Objective function (Fisher score) on test data

$$
J\left(p_{0} \| p_{f_{\lambda, n}^{m}}\right)
$$

The rates match those of the non-approximate estimator

Computational savings $m=\Omega\left(n^{\theta} \log n\right)$

The rates match those of the non-approximate estimator, Sriperumbudur et al (2014), Rudi \& Rosasco (2015), Capponetto \& DeVito (2007)

Proof 'outline'

- Decomposition

$$
\left\|f_{\lambda, n}^{m}-f_{0}\right\|_{\mathcal{H}} \leq \underbrace{\left\|f_{\lambda, n}^{m}-f_{\lambda}^{m}\right\|_{\mathcal{H}}}_{\text {estimation error }}+\underbrace{\left\|f_{\lambda}^{m}-f_{0}\right\|_{\mathcal{H}}}_{\text {approx.error }}
$$

Estimation error

- arises form finite samples
- independent of m
- decreases as $n \rightarrow \infty$
- increases as $\lambda \rightarrow 0$

Approximation error

- arises from $Y \subset X$ and λ
- independent of n
- decreases as $m \rightarrow \infty$
- decreases as $\lambda \rightarrow 0$

Decay optimized for $\lambda=n^{\theta}$
https://arxiv.org/abs/1705.08360

Convergence on synthetic data: Gaussian mixtures

- d component Gaussian mixture in d dimensions
- centered on vertices of d-dimensional hypercube

13

Convergence on synthetic data: ring

Convergence on synthetic data, $\mathrm{n}=500$

Kernel HMC results for UCI glass dataset

Hypothetical acceptance probabilies:

- ARD GP classification, gradient intractable
- fit models/score after (random walk) burn-in
- simulate HMC trajectory using fake gradient
- estimate HMC acceptance rate (peudo-marginal)

Parameter tuning: score on validation data

 Regularization parameter λ and Gaussian kernel parameter σ

- Smooth surface, c.f. marginal likelihood
- Leave-one-out estimates possible in closed form
- Autodiff wrt. hyperparameters straight-forward
- 'Easily optimizable' (work in progress)

Summary

- Efficient
- reduced computational costs
- easy to implement
- Principled
- explicit trade-offs between computation and n, m
- error guarantees, matching the non-approximate version
- Practical
- outperforms earlier kernel models
- outperforms the autoencoder approach

Points for discussion

GP community:

- Rudi \& Rosasco (2015) and presented bounds apply to GP mean
- $\left\|f_{\lambda, n}^{m}-f_{0}\right\|_{\mathcal{H}}$ is related to the RMSE
- Frequentist guarantees for Bayesian methods - connect with the ELBO?

Thanks!

Motivation: gradient-free adaptive (kernel) HMC

- Posterior distribution over intractable GPs' parameters
- Strathmann et al (2015), Filippone \& Girolami (2014)

Motivation: gradient-free adaptive (kernel) HMC

Denoising autoencoders, Alain \& Bengio (2014)

- Autoencoder's reconstruction r_{σ} of noise corrupted input

$$
\left(r_{\sigma}(x)-x\right) / \sigma^{2} \approx \nabla_{x} \log p_{0}(x)
$$

- Relies on universal approximation property
- No theory regarding number of hidden units, σ

(a) $r(x)-x$ vector field, acting as sink, zoomed out

(b) $r(x)-x$ vector field, close-up

Figure 5: The original 2-D data from the data generating density $p(x)$ is plotted along with the vector field defined by the values of $r(x)-x$ for trained auto-encoders (corresponding to the estimation of the score $\left.\frac{\partial \log p(x)}{\partial x}\right)$.

