Motivation Introduction Supervised Factorised Representation Learning Experiments

Feature Selection in GPLVM’s

Carl Henrik Ek
{chek}@csc.kth.se

Royal Institute of Technology

August 15, 2014

Forrs
£ KTH®
W TR &

s

Ek
Feature Selection in GPLVM'’s




Motivation Introduction Supervised Factorised Representation Learning Experiments References

Ek
Feature Selection in GPLVM'’s




Motivation Introduction Supervised Factorised Representation Learning Experiments

Introduction

Setting

« Observed variables Y(V) ¢ R9Y ), Y® c %Y
e Task
> Infer yfz) from y,(.”
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Introduction

Setting

o Observed variables Y(1) Rdg), Y® ¢ R
e Task
> Infer yfz) from y,(.”

Challenge

« Y(") is a high-dimensional, noisy, redundant and sometimes
ambiguous representation of Y(2)
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Modelling paradigm

Generative

p(Y(™), Y@
¢ Jointly models all data, uncertainty in “input”
e High dimensional, parametrise R x R%@)

Discriminative

p(Y® Y1)
e Only model “decision” boundary
« Low dimensional “model” R%@)
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Computer Vision Challenges

e Pascal VOC Challenge [URL]

» Discriminative methods
» Lots of feature engineering to achieve generalisation
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» Discriminative methods

» Lots of feature engineering to achieve generalisation
e ImageNet [URL]

» Feature learning through Neural Networks

» Representation learning tweaks and tricks to explain away
irrelevant variations
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Computer Vision Challenges

e Pascal VOC Challenge [URL]

» Discriminative methods

» Lots of feature engineering to achieve generalisation
e ImageNet [URL]

» Feature learning through Neural Networks

» Representation learning tweaks and tricks to explain away
irrelevant variations

e little success (nor focus) by actual models of images
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Supervised Factorised Representation Learning

Motivation Introduction

The problem with generative models

Variations

e Signal
1. Y informative of Y(®) (Relevant)
2. Y non-informative of Y® (Irrelevant)
3. Y® non-informative of Y(") (Ambiguous)

e Noise in Y(1) and Y(®
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The problem with generative models

Variations
e Signal
1. Y() informative of Y® (Relevant)

2. Y non-informative of Y® (Irrelevant)
3. Y@ non-informative of Y(*) (Ambiguous)

« Noise in Y(V) and Y®
o All variations need to be explained in a model of the data
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The problem with generative models

Approaches
e Heuristics

» Remove non-informative and noise by “hand” from data
(pre-processing)

e Pseudo-heuristics

» similarity engineering
e Full model

» Factorise variations
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References

This Talk

Factorised representation learning as a means of performing
feature selection in a generative model.

e Factor Analysis

e Multiview learning

o GP formulation
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Factorised Representation Learning
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Factorised Representation Learning
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Factor Analysis

yi=AX;+¢
p(y|x) = N(y|Ax, X)

¢ A - factor loadings
e X - latent representation
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Factor Analysis

yi = AX; +¢
p(y|x) = N(y|Ax, X)

A - factor loadings

X - latent representation
Solution not identifiable
Introduce additional information
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Factor Analysis

FA according to Carl

o Structure of factor loadings

0 0 a3 a4 0 ape O
A= | a ap 0 0 ax ax ax
a1 0 as3 as 0 az asy

e Column space structure of loadings
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Factor Analysis

yi=AX;+¢
p(y[x) = N (y|Ax, X)

Covariance
e Isotropic covariance implies PCA/MDS
e Full covariance plus diagonal implies “traditional” factor analysis

Ek
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Factor Analysis

yi=AX;+¢
p(y[x) = N(y|Ax, ¥)

Latent Variable
e Gaussian distribution for PCA and FA
e Non Gaussian for ICA
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Factor Analysis

yi=AX;+¢
p(y|x) = N(y|Ax, X)

Mapping
e Introduce general mapping f

p(ylf, x) = p(yf)p(f(x)
e Gaussian Process prior on mapping

Place a GP-prior over the mapping and get GP-LVM

Ek
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GP-LVM according to Carl

e FA: given the output |y1, ..., yn] how should we associate them
with input [X1, ..., Xn]?

e GP-LVM: assume functional relationship, GP encodes
preference
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GP-LVM according to Car
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e GP-LVM: assume functional relationship, GP encodes
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Variations
e Signal
1. Y informative of Y@ (relevant)

2. Y non-informative of Y®
3. Y@ non-informative of Y()

« Noise in Y(V) and Y® (irrelevant)
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Multiview Factor Analysis

Cannonical Correlation Analysis (Hotelling 1936)

{0, V} = argmaxp(u™X, vTY)
u,v

e Correlation

_ E[(X—pmx))(Y = py))]
VEX—px]E[Y — py]

e Learn a project of the data

p(X,Y)
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Multiview Factor Analysis

Hybrid models

¢ Neuroscale (Lowe and Tipping 1997)

¢ Bottleneck networks (Hinton and Salakhutdinov 2006)
e De-noising Auto-encoders (Vincent et al. 2008)
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Multiview Factor Analysis

p(ylf,x) = p(y|f)p(f|x)
x=g(y)

BC GP-LVM (Lawrence and Quinonero-Candela 2006)
¢ Constrain latent space to reflect similarity in input
e Multi-view constrained (Ek et al. 2007,Snoek et al. 2012)

e Constrain latent space to only represent variation in input space
that exist in output
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Multiview Factor Analysis

BC GP-LVM (Lawrence and Quinonero-Candela 2006)
¢ Constrain latent space to reflect similarity in input
e Multi-view constrained (Ek et al. 2007,Snoek et al. 2012)

e Constrain latent space to only represent variation in input space
that exist in output

Ek

Feature Selection in GPLVM'’s



Supervised Factorised Representation Learning

Ek

Feature Selection in GPLVM'’s



Supervised Factorised Representation Learning

Ek

Feature Selection in GPLVM'’s



Motivation Introduction Supervised Factorised Representation Learning Experiments References

Variations
e Signal
1. Y informative of Y (relevant)

2. Y non-informative of Y® (structured noise)
3. Y@ non-informative of Y(Y) (ambiguities)

« Noise in Y(V) and Y® (irrelevant)
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Inter-Battery Factor Analysis'

Y < (A 4 BMx(m) 5 (m)y
x ~ N(0,1)
x(M ~ N(0,1)

"Tucker 1958.
Ek
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Inter-Battery Factor Analysis'

Y ~ A(AMx 4 BMx(m) 5 (m)y
x ~ N(0,1)
x(M ~ N(0,1)

e Explain away both structured and unstructued noise
e Specific model of ambiguities

"Tucker 1958.
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Inter-Battery Factor Analysis'

Y ~ A(AMx 4 BMx(m) 5 (m)y
x ~ N(0,1)
x(M ~ N(0,1)

e Explain away both structured and unstructued noise
e Specific model of ambiguities
e Even more unidentifiable

» Rank preserving transformations
» Allocations of factors

"Tucker 1958.
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Inter-Battery Factor Analysis'

Yy ~ N (AMx + BMx(M 5 (m)y
x ~ N(0,I)
x(M N(0,1)
e Marginalise view dependent latent variable
vy~ M (AMx, BM(BIMT 1 x(M)

e Full covariance (Bach and Jordan 2005)

"Tucker 1958.
Ek
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Inter-Battery Factor Analysis'

y(™ ~ N(AMx + BMx(M) 5(m)
x ~ N(0,I)
x(M ~ N(0,1)
e Do not want to “explain away” the view dependent variations

p(x, xN,x@ A, A® B(1) BE@ v y@)y() y@)

"Tucker 1958.
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Inter-Battery Factor Analysis'

X=[xxM . xMy=1yy" . yM

A B o0 ... 0
A® o B® ... 0
W= . . ) . .
_AfN) o 0o o B®W
() 0
y=| 0o . 0
0o ™
Y ~ N(WX, X)
1 A 058
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Inter-Battery Factor Analysis'

DO

"Tucker 1958.
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Inter-Battery Factor Analysis'

DO

"Tucker 1958.
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Inter-Battery Factor Analysis'

Other models

e Concatenate model reduces to FA with specific structure of W
e Bayesian FA?: ignore structure of W
o PPCAP®: spherical ©

4Ghahramani and Beal 1999.
bTipping and Bishop 1999.

"Tucker 1958.
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Bayesian IBFA?2

L ~ IW(So, w)

2
p(W) = T p(W™|ag, 5o)

m=1
P(W(™|ag, Bo) = H p(w™ o™ )p(al™ a0, o)
P |ao, Bo) ~ r(ao,m
p(w{™al™) = N (o, (a(k’"))_1 |)

2Klami et al. 2013.
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Bayesian IBFA?2

Factorisation

e Prior on W induces group row-wise sparsity

¢ Jointly encourages shared representation (columns)
¢ Variational inference of parameters

2Klami et al. 2013.
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References

Bayesian IBFA?2

Factorisation

e Prior on W induces group row-wise sparsity

¢ Jointly encourages shared representation (columns)
¢ Variational inference of parameters

e Linear generative mapping

2Klami et al. 2013.
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Non-parametric IBFA3

Next step

e History repeats itself
» MDS/PCA = linear probabilistic = non-linear probabilistic

¢ IBFA with nonparametric mapping allows for non-linearities
®Damianou et al. 2012.
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Non-parametric IBFA3

@Y e
ol ) e

3Damianou et al. 2012.
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Non-parametric IBFA3

Manifold Relevance Determination
o Factorisation inside mapping prior

Y Y 2159w (xg—x o)
KY (xi, X)) = (0)g)2e 2 Zam1 " (Xia=%ia)
e Requires bayesian treatment?

» Encourages reduction of (dimensions of) latent space
» ARD parameters facilitates “turning dimensions off”

e Probabilistic non-linear IBFA

4Titsias and Lawrence 2010.

3Damianou et al. 2012.
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e Feature learning in a generative model can be viewed as factor
analysis

e Feature selection in a generative model can be viewed as
multiview factor analysis or inter battery factor analysis

e GP/GP-LVM framework allows for non-parametric formulation
of inter battery factor analysis
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Yale Faces

e Three faces

e 64 illuminations
o y; c R192x168

e Light alignment
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Experiments

Yale Faces
e Three faces
° 64 i”uminations 12345678 91011121314
o y; € R192x168
e Light alignment

12345678 91011121314
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Experiments

Pose Estimation ()

4Agarwal and Triggs 2003.

Silhouette images
Image features
Estimate 3D pose
Highly Ambigous
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Experiments

Error
Mean Training Pose 6.16
Linear Regression 5.86
GP Regression 4.27
Nearest Neighbour (sil. space) 4.88
Nearest Neighbour with sequences (sil. space) | 4.04
Nearest Neighbour (pose space) 2.08
Shared GP-LVM 5.13
MRD without Dynamics 4.67
MRD with Dynamics 2.94

Ek
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Experiments

Robotic Grasping

e Gripper pose

e Tactile sensor

o Object pose and identity

Ek
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Experiments
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Experiments

gdd 8¢

(40, 27, 33) (67, 20, 13)

(14, 57, 28) (86, 14, 0)
Y v Y
X M X

(12, 35, 53) (59, 23, 18)

(93,7,0) (93,7, 0)
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Experiments
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Bonus: Topic Modelling*

4Zhang et al. 2013.
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Bonus: Topic Modelling*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
bulb
car
duck
mug

4Zhang et al. 2013.
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Bonus: Topic Modelling*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
bulb
car
duck
mug

bulb

car
duck
mug

1 2 38 4 5 6 7 8 9 10 11 12 13 14 15

4Zhang et al. 2013.
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Bonus: Topic Modelling*

4Zhang et al. 2013.
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Supervised Factorised Representation Learning

Motivation Introduction

Future Work

e Approximate marginalisation of latent space

» interesting priors
» auto-encoders
» deep models

e Bigger data-sets
e Automatic alignment
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