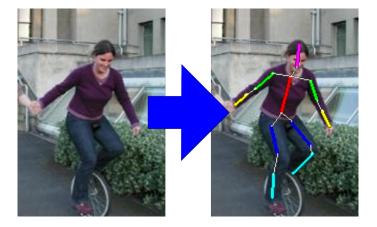
Feature Selection in GPLVM's

Carl Henrik Ek {chek}@csc.kth.se

Royal Institute of Technology

August 15, 2014



Introduction

Setting

- Observed variables $\mathbf{Y}^{(1)} \in \mathbb{R}^{d_Y^{(1)}}, \, \mathbf{Y}^{(2)} \in \mathbb{R}^{d_Y^{(2)}}$
- Task
 - Infer $\mathbf{y}_i^{(2)}$ from $\mathbf{y}_i^{(1)}$

Introduction

Setting

- Observed variables $\bm{Y}^{(1)} \in \mathbb{R}^{d_Y^{(1)}},\, \bm{Y}^{(2)} \in \mathbb{R}^{d_Y^{(2)}}$
- Task
 - Infer $\mathbf{y}_i^{(2)}$ from $\mathbf{y}_i^{(1)}$

Challenge

• **Y**⁽¹⁾ is a high-dimensional, noisy, redundant and sometimes ambiguous representation of **Y**⁽²⁾

Modelling paradigm

Generative

 $p(\mathbf{Y}^{(1)}, \mathbf{Y}^{(2)})$

- · Jointly models all data, uncertainty in "input"
- High dimensional, parametrise $\mathbb{R}^{d_{Y^{(1)}}} imes \mathbb{R}^{d_{Y^{(2)}}}$

Discriminative

$$p(\mathbf{Y}^{(2)}|\mathbf{Y}^{(1)})$$

- Only model "decision" boundary
- Low dimensional "model" $\mathbb{R}^{d_{Y^{(2)}}}$

Computer Vision Challenges

- Pascal VOC Challenge [URL]
 - Discriminative methods
 - Lots of feature engineering to achieve generalisation

ImageNet [URL]

- Feature learning through Neural Networks
- Representation learning tweaks and tricks to explain away irrelevant variations
- little success (nor focus) by actual models of images

Computer Vision Challenges

- Pascal VOC Challenge [URL]
 - Discriminative methods
 - Lots of feature engineering to achieve generalisation
- ImageNet [URL]
 - Feature learning through Neural Networks
 - Representation learning tweaks and tricks to explain away irrelevant variations
- little success (nor focus) by actual models of images

Computer Vision Challenges

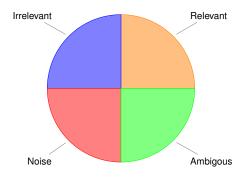
- Pascal VOC Challenge [URL]
 - Discriminative methods
 - Lots of feature engineering to achieve generalisation
- ImageNet [URL]
 - Feature learning through Neural Networks
 - Representation learning tweaks and tricks to explain away irrelevant variations
- little success (nor focus) by actual models of images

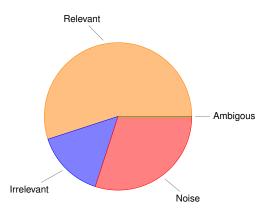
Variations

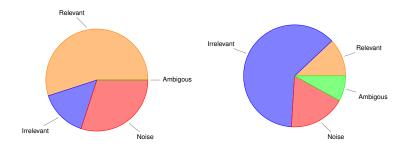
- Signal
 - 1. $\mathbf{Y}^{(1)}$ informative of $\mathbf{Y}^{(2)}$ (Relevant)
 - 2. $\mathbf{Y}^{(1)}$ non-informative of $\mathbf{Y}^{(2)}$ (Irrelevant)
 - 3. $\mathbf{Y}^{(2)}$ non-informative of $\mathbf{Y}^{(1)}$ (Ambiguous)
- Noise in $\mathbf{Y}^{(1)}$ and $\mathbf{Y}^{(2)}$
- All variations need to be explained in a model of the data

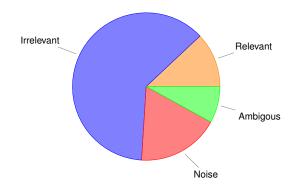
Variations

- Signal
 - 1. $\mathbf{Y}^{(1)}$ informative of $\mathbf{Y}^{(2)}$ (Relevant)
 - 2. $\mathbf{Y}^{(1)}$ non-informative of $\mathbf{Y}^{(2)}$ (Irrelevant)
 - 3. $\mathbf{Y}^{(2)}$ non-informative of $\mathbf{Y}^{(1)}$ (Ambiguous)
- Noise in $\mathbf{Y}^{(1)}$ and $\mathbf{Y}^{(2)}$
- All variations need to be explained in a model of the data









Approaches

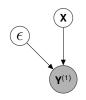
- Heuristics
 - Remove non-informative and noise by "hand" from data (pre-processing)
- Pseudo-heuristics
 - similarity engineering
- Full model
 - Factorise variations

This Talk

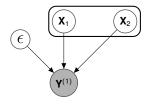
Factorised representation learning as a means of performing *feature selection* in a generative model.

- Factor Analysis
- Multiview learning
- GP formulation

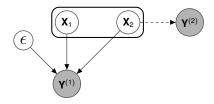
Factorised Representation Learning



Factorised Representation Learning



Factorised Representation Learning



$$egin{aligned} \mathbf{y}_i &= \mathbf{A}\mathbf{x}_i + \epsilon \ \mathcal{p}(\mathbf{y}|\mathbf{x}) &= \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x}, \Sigma) \end{aligned}$$

- A factor loadings
- X latent representation
- Solution not identifiable
- Introduce additional information

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \epsilon$$
 $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x}, \Sigma)$

- A factor loadings
- X latent representation
- Solution not identifiable
- Introduce additional information

FA according to Carl

Structure of factor loadings

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & a_{13} & a_{14} & 0 & a_{16} & 0 \\ a_{21} & a_{22} & 0 & 0 & a_{25} & a_{26} & a_{27} \\ a_{31} & 0 & a_{33} & a_{34} & 0 & a_{36} & a_{37} \end{bmatrix}$$

Column space structure of loadings

 $\begin{aligned} \mathbf{y}_i &= \mathbf{A}\mathbf{x}_i + \epsilon \\ p(\mathbf{y}|\mathbf{x}) &= \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x}, \Sigma) \end{aligned}$

Covariance

- Isotropic covariance implies PCA/MDS
- Full covariance plus diagonal implies "traditional" factor analysis

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \epsilon$$
 $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x}, \Sigma)$

Latent Variable

Gaussian distribution for PCA and FA

I

Non Gaussian for ICA

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \epsilon$$
 $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x}, \Sigma)$

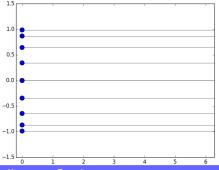
Mapping

• Introduce general mapping f

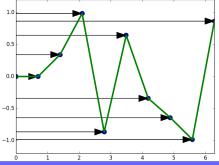
$$\rho(\mathbf{y}|\mathbf{f},\mathbf{x}) = \rho(\mathbf{y}|\mathbf{f})\rho(\mathbf{f}|\mathbf{x})$$

Gaussian Process prior on mapping

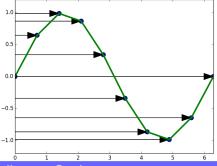
Place a GP-prior over the mapping and get GP-LVM



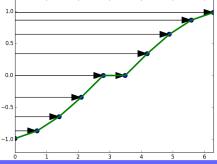
- FA: given the output [**y**₁,..., **y**_N] how should we associate them with input [**x**₁,..., **x**_N]?
- GP-LVM: assume functional relationship, *GP* encodes preference



- FA: given the output [**y**₁,..., **y**_N] how should we associate them with input [**x**₁,..., **x**_N]?
- GP-LVM: assume functional relationship, *GP* encodes preference



- FA: given the output [**y**₁,..., **y**_N] how should we associate them with input [**x**₁,..., **x**_N]?
- GP-LVM: assume functional relationship, *GP* encodes preference



- FA: given the output [**y**₁,..., **y**_N] how should we associate them with input [**x**₁,..., **x**_N]?
- GP-LVM: assume functional relationship, *GP* encodes preference

Motivation

Introduction

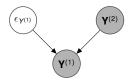
Supervised Factorised Representation Learning

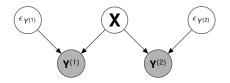
Experiments

Variations

Signal

- 1. $\mathbf{Y}^{(1)}$ informative of $\mathbf{Y}^{(2)}$ (relevant)
- 2. $\mathbf{Y}^{(1)}$ non-informative of $\mathbf{Y}^{(2)}$
- 3. $\mathbf{Y}^{(2)}$ non-informative of $\mathbf{Y}^{(1)}$
- Noise in $\mathbf{Y}^{(1)}$ and $\mathbf{Y}^{(2)}$ (irrelevant)





Multiview Factor Analysis

Cannonical Correlation Analysis (Hotelling 1936)

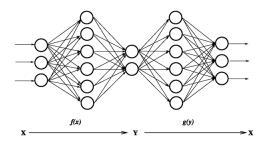
$$\{\hat{\mathbf{u}}, \hat{\mathbf{v}}\} = \operatorname*{argmax}_{\mathbf{u}, \mathbf{v}}
ho(\mathbf{u}^{\mathrm{T}}\mathbf{X}, \mathbf{v}^{\mathrm{T}}\mathbf{Y})$$

Correlation

$$\rho(\mathbf{X}, \mathbf{Y}) = \frac{\mathbb{E}\left[(\mathbf{X} - \mu_X)(\mathbf{Y} - \mu_Y)\right]}{\sqrt{\mathbb{E}\left[\mathbf{X} - \mu_X\right]\mathbb{E}\left[\mathbf{Y} - \mu_Y\right]}}$$

Learn a project of the data

Multiview Factor Analysis



Hybrid models

- Neuroscale (Lowe and Tipping 1997)
- Bottleneck networks (Hinton and Salakhutdinov 2006)
- De-noising Auto-encoders (Vincent et al. 2008)

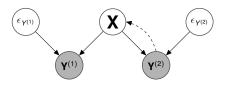
Multiview Factor Analysis

 $egin{aligned} &
ho(\mathbf{y}|\mathbf{f},\mathbf{x}) =
ho(\mathbf{y}|\mathbf{f})
ho(\mathbf{f}|\mathbf{x}) \ & \mathbf{x} = g(\mathbf{y}) \end{aligned}$

BC GP-LVM (Lawrence and Quiñonero-Candela 2006)

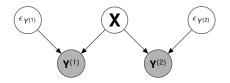
- · Constrain latent space to reflect similarity in input
- Multi-view constrained (Ek et al. 2007, Snoek et al. 2012)
- Constrain latent space to only represent variation in input space that exist in output

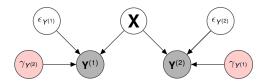
Multiview Factor Analysis

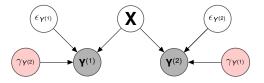


BC GP-LVM (Lawrence and Quiñonero-Candela 2006)

- · Constrain latent space to reflect similarity in input
- Multi-view constrained (Ek et al. 2007, Snoek et al. 2012)
- Constrain latent space to only represent variation in input space that exist in output





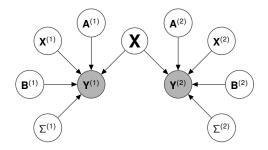


Variations

- Signal
 - 1. $\mathbf{Y}^{(1)}$ informative of $\mathbf{Y}^{(2)}$ (relevant)
 - 2. $\mathbf{Y}^{(1)}$ non-informative of $\mathbf{Y}^{(2)}$ (structured noise)
 - 3. $\mathbf{Y}^{(2)}$ non-informative of $\mathbf{Y}^{(1)}$ (ambiguities)
- Noise in **Y**⁽¹⁾ and **Y**⁽²⁾ (irrelevant)

$$\begin{split} \mathbf{y}^{(m)} &\sim \mathcal{N}(\mathbf{A}^{(m)}\mathbf{x} + \mathbf{B}^{(m)}\mathbf{x}^{(m)}, \boldsymbol{\Sigma}^{(m)}) \\ \mathbf{x} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \mathbf{x}^{(m)} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{split}$$

¹Tucker 1958.



¹Tucker 1958.

$$\begin{split} \textbf{y}^{(m)} &\sim \mathcal{N}(\textbf{A}^{(m)}\textbf{x} + \textbf{B}^{(m)}\textbf{x}^{(m)}, \boldsymbol{\Sigma}^{(m)}) \\ \textbf{x} &\sim \mathcal{N}(\textbf{0}, \textbf{I}) \\ \textbf{x}^{(m)} &\sim \mathcal{N}(\textbf{0}, \textbf{I}) \end{split}$$

- Explain away both structured and unstructued noise
- Specific model of ambiguities
- Even more unidentifiable
 - Rank preserving transformations
 - Allocations of factors

$$\begin{split} \mathbf{y}^{(m)} &\sim \mathcal{N}(\mathbf{A}^{(m)}\mathbf{x} + \mathbf{B}^{(m)}\mathbf{x}^{(m)}, \boldsymbol{\Sigma}^{(m)}) \\ \mathbf{x} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \mathbf{x}^{(m)} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{split}$$

- Explain away both structured and unstructued noise
- Specific model of ambiguities
- Even more unidentifiable
 - Rank preserving transformations
 - Allocations of factors

$$\begin{split} \textbf{y}^{(m)} &\sim \mathcal{N}(\textbf{A}^{(m)}\textbf{x} + \textbf{B}^{(m)}\textbf{x}^{(m)}, \boldsymbol{\Sigma}^{(m)}) \\ \textbf{x} &\sim \mathcal{N}(\textbf{0}, \textbf{I}) \\ \textbf{x}^{(m)} &\sim \mathcal{N}(\textbf{0}, \textbf{I}) \end{split}$$

Marginalise view dependent latent variable

$$\boldsymbol{y}^{(m)} \sim \mathcal{N}(\boldsymbol{A}^{(m)}\boldsymbol{x}, \boldsymbol{B}^{(m)}(\boldsymbol{B}^{(m)})^{T} + \boldsymbol{\Sigma}^{(m)})$$

• Full covariance (Bach and Jordan 2005)

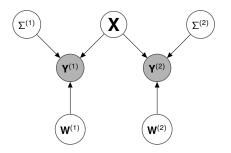
$$\begin{split} \textbf{y}^{(m)} &\sim \mathcal{N}(\textbf{A}^{(m)}\textbf{x} + \textbf{B}^{(m)}\textbf{x}^{(m)}, \boldsymbol{\Sigma}^{(m)}) \\ \textbf{x} &\sim \mathcal{N}(\textbf{0}, \textbf{I}) \\ \textbf{x}^{(m)} &\sim \mathcal{N}(\textbf{0}, \textbf{I}) \end{split}$$

· Do not want to "explain away" the view dependent variations

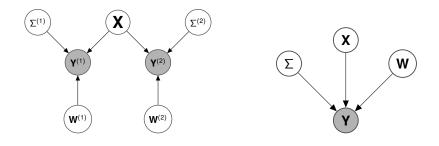
$$p(\mathbf{x}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \boldsymbol{\Sigma}^{(1)}, \boldsymbol{\Sigma}^{(2)} | \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)})$$

¹Tucker 1958.

$$\begin{split} \mathbf{X} &= [\mathbf{x}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}], \mathbf{Y} = [\mathbf{y}, \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)}] \\ \mathbf{W} &= \begin{bmatrix} \mathbf{A}^{(1)} & \mathbf{B}^{(1)} & 0 & \dots & 0 \\ \mathbf{A}^{(2)} & 0 & \mathbf{B}^{(2)} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{A}^{(N)} & 0 & 0 & 0 & \mathbf{B}^{(N)} \end{bmatrix} \\ \mathbf{\Sigma} &= \begin{bmatrix} \Sigma^{(1)} & 0 & \dots \\ 0 & \ddots & 0 \\ \vdots & 0 & \Sigma^{(N)} \end{bmatrix} \\ \mathbf{Y} \sim \mathcal{N}(\mathbf{W}\mathbf{X}, \Sigma) \end{split}$$



¹Tucker 1958.



¹Tucker 1958.

Other models

- Concatenate model reduces to FA with specific structure of W
- Bayesian FA^a: ignore structure of W
- PPCA^b: spherical Σ

^aGhahramani and Beal 1999. ^bTipping and Bishop 1999.

Bayesian IBFA²

$$\begin{split} \boldsymbol{\Sigma} &\sim I \mathcal{W}(\mathbf{S}_{0}, v_{0}) \\ p(\mathbf{W}) &= \prod_{m=1}^{2} p(\mathbf{W}^{(m)} | \alpha_{0}, \beta_{0}) \\ p(\mathbf{W}^{(m)} | \alpha_{0}, \beta_{0}) &= \prod_{k=1}^{K} p(\boldsymbol{w}_{k}^{(m)} | \alpha_{k}^{(m)}) p(\boldsymbol{\alpha}_{k}^{(m)} | \alpha_{0}, \beta_{0}) \\ p(\boldsymbol{\alpha}_{k}^{(m)} | \alpha_{0}, \beta_{0}) &\sim \boldsymbol{\Gamma}(\boldsymbol{\alpha}_{0}, \beta_{0}) \\ p(\boldsymbol{w}_{k}^{(m)} | \alpha_{k}^{(m)}) &= \mathcal{N}\left(\mathbf{0}, \left(\boldsymbol{\alpha}_{k}^{(m)}\right)^{-1}\mathbf{I}\right) \end{split}$$

²Klami *et al.* 2013.

Ek

Bayesian IBFA²

Factorisation

- Prior on W induces group row-wise sparsity
- · Jointly encourages shared representation (columns)
- Variational inference of parameters
- Linear generative mapping

²Klami *et al.* 2013.

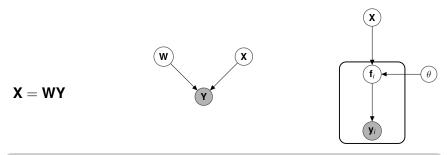
Bayesian IBFA²

Factorisation

- Prior on W induces group row-wise sparsity
- · Jointly encourages shared representation (columns)
- Variational inference of parameters
- Linear generative mapping

²Klami *et al.* 2013.

Non-parametric IBFA³

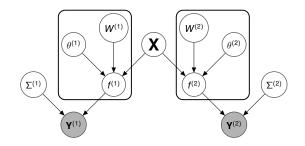


Next step

- History repeats itself
 - ▶ MDS/PCA \Rightarrow linear probabilistic \Rightarrow non-linear probabilistic
- · IBFA with nonparametric mapping allows for non-linearities

³Damianou *et al.* 2012.

Non-parametric IBFA³



³Damianou et al. 2012.

Non-parametric IBFA³

Manifold Relevance Determination

Factorisation inside mapping prior

$$k^{Y}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = (\sigma_{ard}^{Y})^{2} e^{-\frac{1}{2}\sum_{q=1}^{Q} w_{q}^{Y}\left(x_{i,q}-x_{j,q}\right)^{2}}$$

- Requires bayesian treatment^a
 - Encourages reduction of (dimensions of) latent space
 - ARD parameters facilitates "turning dimensions off"
- Probabilistic non-linear IBFA

^aTitsias and Lawrence 2010.

³Damianou et al. 2012.

Summary

- Feature *learning* in a generative model can be viewed as factor analysis
- Feature *selection* in a generative model can be viewed as multiview factor analysis or inter battery factor analysis
- GP/GP-LVM framework allows for non-parametric formulation of inter battery factor analysis

Introduction

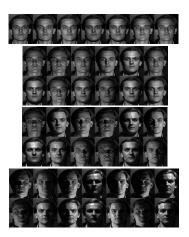
Supervised Factorised Representation Learning

Yale Faces

- Three faces
- 64 illuminations
- $\mathbf{y}_i \in \mathbb{R}^{192 \times 168}$
- Light alignment

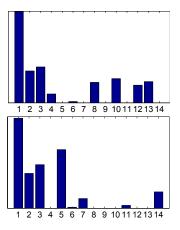
Yale Faces

- Three faces
- 64 illuminations
- $\mathbf{y}_i \in \mathbb{R}^{192 \times 168}$
- Light alignment



Yale Faces

- Three faces
- 64 illuminations
- $\mathbf{y}_i \in \mathbb{R}^{192 \times 168}$
- Light alignment

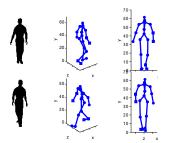


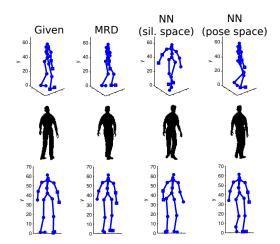
Loading video

Pose Estimation (a)

^aAgarwal and Triggs 2003.

- Silhouette images
- Image features
- Estimate 3D pose
- Highly Ambigous

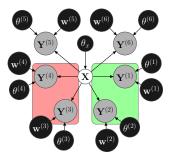


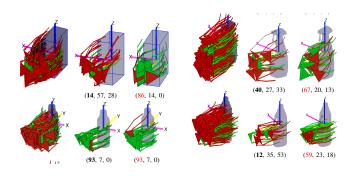


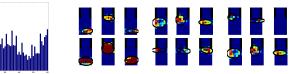
	Error
Mean Training Pose	6.16
Linear Regression	5.86
GP Regression	4.27
Nearest Neighbour (sil. space)	4.88
Nearest Neighbour with sequences (sil. space)	4.04
Nearest Neighbour (pose space)	2.08
Shared GP-LVM	5.13
MRD without Dynamics	4.67
MRD with Dynamics	2.94

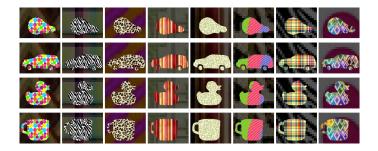
Robotic Grasping

- Gripper pose
- Tactile sensor
- Object pose and identity

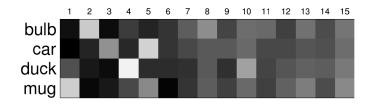




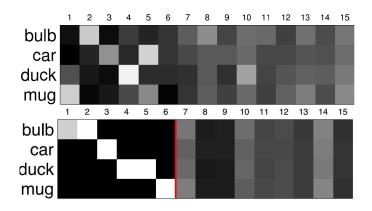




⁴Zhang *et al.* 2013.



⁴Zhang *et al.* 2013.



⁴Zhang *et al.* 2013.

0.25	0.13	0.5	0.13	0.88	0	0.13	0
0.13	0.5	0.25	0.13	0.25	0.75	0	0
0.25	0.13	0.5	0.13	0	0.13	0.88	0
0.13	0.25	0.5	0.13	0.13	0	0.13	0.75

⁴Zhang *et al.* 2013.

Future Work

- Approximate marginalisation of latent space
 - interesting priors
 - auto-encoders
 - deep models
- Bigger data-sets
- Automatic alignment

	Experiments	

e.o.f.

References I

- H Hotelling. "Relations between two sets of variates". In: *Biometrika* 28.3/4 (1936), pp. 321–377.
- D. Lowe and Michael E Tipping. "NeuroScale: Novel topographic feature extraction using RBF networks". In: *Advances in Neural Information Processing Systems* (1997), pp. 543–549.
- Geoffrey E Hinton and Ruslan R Salakhutdinov. "Reducing the Dimensionality of Data with Neural Networks". In: *Science* 313.5786 (July 2006), pp. 504–507.

References II

- Pascal Vincent et al. "Extracting and composing robust features with denoising autoencoders". In: International Conference on Machine Learning. New York, USA: ACM Press, 2008, pp. 1096–1103.
- Neil D Lawrence and J Quiñonero-Candela. "Local distance preservation in the GP-LVM through back constraints". In: *Proceedings of the 23rd international conference on Machine learning* (2006), pp. 513–520.
- Carl Henrik Ek et al. "Gaussian process latent variable models for human pose estimation". In: International conference on Machine learning for multimodal interaction (2007), pp. 132–143.

References III

- Jasper Snoek *et al.* "Nonparametric guidance of autoencoder representations using label information". In: *Journal of Machine Learning Research* 13 (2012), pp. 2567–2588.
- Ledyard R Tucker. "An Inter-Battery Method of Factory Analysis". In: *Psychometrika* 23 (June 1958).
- Francis R Bach and Michael I Jordan. A probabilistic interpretation of canonical correlation analysis. Tech. rep. 2005.

References IV

- Zoubin Ghahramani and Matthew J Beal. "Variational Inference for Bayesian Mixtures of Factor Analysers." In: Advances in Neural Information Processing Systems. Dec. 1999, pp. 449–455.
- Michael E Tipping and C.M. Bishop. "Probabilistic principal component analysis". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61.3 (1999), pp. 611–622.
- Arto Klami et al. "Bayesian Canonical Correlation Analysis". In: The Journal of Machine Learning Research 14 (Apr. 2013), pp. 965–1003.

References V

- Andreas C Damianou *et al.* "Manifold Relevance Determination". In: *International Conference on Machine Learning*. June 2012, pp. 145–152.
- Michalis Titsias and Neil D Lawrence. "Bayesian Gaussian Process Latent Variable Model". In: International Conference on Airtificial Inteligence and Statistical Learning. 2010, pp. 844–851.
- A Agarwal and B Triggs. "3D human pose from silhouettes by relevance vector regression". In: IEEE Conference on Computer Vision and Pattern Recognition. Dec. 2003, pp. II–I2.

References VI

Cheng Zhang *et al.* "Factorized Topic Models". In: International Conference on Learning Representations. Apr. 2013.