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Introduction

Setting

• Observed variables Y(1) ∈ Rd (1)
Y , Y(2) ∈ Rd (2)

Y

• Task
I Infer y(2)

i from y(1)
i
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Introduction

Setting

• Observed variables Y(1) ∈ Rd (1)
Y , Y(2) ∈ Rd (2)

Y

• Task
I Infer y(2)

i from y(1)
i

Challenge

• Y(1) is a high-dimensional, noisy, redundant and sometimes
ambiguous representation of Y(2)
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Modelling paradigm

Generative

p(Y(1),Y(2))

• Jointly models all data, uncertainty in “input”
• High dimensional, parametrise Rd

Y (1) × Rd
Y (2)

Discriminative

p(Y(2)|Y(1))

• Only model “decision” boundary
• Low dimensional “model” Rd

Y (2)

Ek KTH
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Computer Vision Challenges
• Pascal VOC Challenge [URL]

I Discriminative methods
I Lots of feature engineering to achieve generalisation

• ImageNet [URL]
I Feature learning through Neural Networks
I Representation learning tweaks and tricks to explain away

irrelevant variations

• little success (nor focus) by actual models of images

Ek KTH
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The problem with generative models

Variations
• Signal

1. Y(1) informative of Y(2) (Relevant)
2. Y(1) non-informative of Y(2) (Irrelevant)
3. Y(2) non-informative of Y(1) (Ambiguous)

• Noise in Y(1) and Y(2)

• All variations need to be explained in a model of the data

Ek KTH
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The problem with generative models

Approaches
• Heuristics

I Remove non-informative and noise by “hand” from data
(pre-processing)

• Pseudo-heuristics
I similarity engineering

• Full model
I Factorise variations

Ek KTH
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This Talk
Factorised representation learning as a means of performing
feature selection in a generative model.
• Factor Analysis
• Multiview learning
• GP formulation

Ek KTH
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Factorised Representation Learning

X

Y(1)

ε
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Factorised Representation Learning

X1

Y(1)

ε
X2
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Factorised Representation Learning

X1

Y(1)

ε
X2 Y(2)
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Factor Analysis

yi = Axi + ε

p(y|x) = N (y|Ax,Σ)

• A - factor loadings
• X - latent representation
• Solution not identifiable
• Introduce additional information

Ek KTH
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Factor Analysis

FA according to Carl
• Structure of factor loadings

A =




0 0 a13 a14 0 a16 0
a21 a22 0 0 a25 a26 a27
a31 0 a33 a34 0 a36 a37




• Column space structure of loadings

Ek KTH
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Factor Analysis

yi = Axi + ε

p(y|x) = N (y|Ax,Σ)

Covariance
• Isotropic covariance implies PCA/MDS
• Full covariance plus diagonal implies “traditional” factor analysis

Ek KTH
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Factor Analysis

yi = Axi + ε

p(y|x) = N (y|Ax,Σ)

Latent Variable
• Gaussian distribution for PCA and FA
• Non Gaussian for ICA

Ek KTH
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Factor Analysis

yi = Axi + ε

p(y|x) = N (y|Ax,Σ)

Mapping
• Introduce general mapping f

p(y|f,x) = p(y|f)p(f|x)

• Gaussian Process prior on mapping

Place a GP-prior over the mapping and get GP-LVM

Ek KTH
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GP-LVM according to Carl
• FA: given the output [y1, . . . ,yN ] how should we associate them

with input [x1, . . . ,xN ]?
• GP-LVM: assume functional relationship, GP encodes

preference

Ek KTH
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Supervised Factorised Representation Learning
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Variations
• Signal

1. Y(1) informative of Y(2) (relevant)
2. Y(1) non-informative of Y(2)

3. Y(2) non-informative of Y(1)

• Noise in Y(1) and Y(2) (irrelevant)
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Y(2)

Y(1)

εY (1)
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X

Y(1)

εY (1)

Y(2)

εY (2)
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Multiview Factor Analysis

Cannonical Correlation Analysis (Hotelling 1936)

{û, v̂} = argmax
u,v

ρ(uTX,vTY)

• Correlation

ρ(X,Y) =
E [(X− µX ))(Y− µY ))]√
E [X− µX ]E [Y− µY ]

• Learn a project of the data

Ek KTH
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Multiview Factor Analysis

Hybrid models
• Neuroscale (Lowe and Tipping 1997)
• Bottleneck networks (Hinton and Salakhutdinov 2006)
• De-noising Auto-encoders (Vincent et al. 2008)

Ek KTH
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Multiview Factor Analysis

p(y|f,x) = p(y|f)p(f|x)

x = g(y)

BC GP-LVM (Lawrence and Quiñonero-Candela 2006)
• Constrain latent space to reflect similarity in input
• Multi-view constrained (Ek et al. 2007,Snoek et al. 2012)
• Constrain latent space to only represent variation in input space

that exist in output

Ek KTH
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Multiview Factor Analysis

X

Y(1)

εY (1)

Y(2)

εY (2)
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X

Y(1)
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X

Y(1)

εY (1)

Y(2)

εY (2)

γY (2) γY (1)
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X

Y(1)

εY (1)

Y(2)

εY (2)

γY (2) γY (1)

Variations
• Signal

1. Y(1) informative of Y(2) (relevant)
2. Y(1) non-informative of Y(2) (structured noise)
3. Y(2) non-informative of Y(1) (ambiguities)

• Noise in Y(1) and Y(2) (irrelevant)

Ek KTH
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Inter-Battery Factor Analysis1

y(m) ∼ N (A(m)x + B(m)x(m),Σ(m))

x ∼ N (0, I)

x(m) ∼ N (0, I)

1Tucker 1958.
Ek KTH
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Inter-Battery Factor Analysis1

X

Y(1)

X(1)

Y(2)

X(2)

Σ(1) Σ(2)

A(1) A(2)

B(1) B(2)

1Tucker 1958.
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Inter-Battery Factor Analysis1

y(m) ∼ N (A(m)x + B(m)x(m),Σ(m))

x ∼ N (0, I)

x(m) ∼ N (0, I)

• Explain away both structured and unstructued noise
• Specific model of ambiguities
• Even more unidentifiable

I Rank preserving transformations
I Allocations of factors

1Tucker 1958.
Ek KTH
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Inter-Battery Factor Analysis1

y(m) ∼ N (A(m)x + B(m)x(m),Σ(m))

x ∼ N (0, I)

x(m) ∼ N (0, I)

• Marginalise view dependent latent variable

y(m) ∼ N (A(m)x,B(m)(B(m))T + Σ(m))

• Full covariance (Bach and Jordan 2005)

1Tucker 1958.
Ek KTH
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Inter-Battery Factor Analysis1

y(m) ∼ N (A(m)x + B(m)x(m),Σ(m))

x ∼ N (0, I)

x(m) ∼ N (0, I)

• Do not want to “explain away” the view dependent variations

p(x,x(1),x(2),A(1),A(2),B(1),B(2),Σ(1),Σ(2)|Y(1),Y(2))

1Tucker 1958.
Ek KTH
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Inter-Battery Factor Analysis1

X = [x,x(1), . . . ,x(N)],Y = [y,y(1), . . . ,y(N)]

W =




A(1) B(1) 0 . . . 0
A(2) 0 B(2) . . . 0

...
...

...
...

...
A(N) 0 0 0 B(N)




Σ =




Σ(1) 0 . . .

0
. . . 0

... 0 Σ(N)




Y ∼ N (WX,Σ)

1Tucker 1958.
Ek KTH
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Inter-Battery Factor Analysis1

X

Y(1) Y(2)

Σ(1) Σ(2)

W(1) W(2)

1Tucker 1958.
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Inter-Battery Factor Analysis1

X

Y(1) Y(2)

Σ(1) Σ(2)

W(1) W(2)

X

Y

Σ W

1Tucker 1958.
Ek KTH
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Inter-Battery Factor Analysis1

Other models
• Concatenate model reduces to FA with specific structure of W
• Bayesian FAa: ignore structure of W
• PPCAb: spherical Σ

aGhahramani and Beal 1999.
bTipping and Bishop 1999.

1Tucker 1958.
Ek KTH
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Bayesian IBFA2

Σ ∼ IW (S0, v0)

p(W) =
2∏

m=1

p(W(m)|α0, β0)

p(W(m)|α0, β0) =
K∏

k=1

p(w (m)
k |α(m)

k )p(α
(m)
k |α0, β0)

p(α
(m)
k |α0, β0) ∼ Γ(α0, β0)

p(w (m)
k |α(m)

k ) = N
(

0,
(
α
(m)
k

)−1
I
)

2Klami et al. 2013.
Ek KTH
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Bayesian IBFA2

Factorisation
• Prior on W induces group row-wise sparsity
• Jointly encourages shared representation (columns)
• Variational inference of parameters
• Linear generative mapping

2Klami et al. 2013.
Ek KTH
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Non-parametric IBFA3

X = WY

X

Y

W

X

fi

yi

θ

Next step
• History repeats itself

I MDS/PCA⇒ linear probabilistic⇒ non-linear probabilistic

• IBFA with nonparametric mapping allows for non-linearities
3Damianou et al. 2012.

Ek KTH
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Non-parametric IBFA3

X

f (1) f (2)

Y(1) Y(2)

θ(1) θ(2)

Σ(1) Σ(2)

W (1) W (2)

3Damianou et al. 2012.
Ek KTH
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Non-parametric IBFA3

Manifold Relevance Determination
• Factorisation inside mapping prior

kY (xi ,xj
)

= (σY
ard )2e− 1

2
∑Q

q=1 wY
q (xi,q−xj,q)

2

• Requires bayesian treatmenta
I Encourages reduction of (dimensions of) latent space
I ARD parameters facilitates “turning dimensions off”

• Probabilistic non-linear IBFA
aTitsias and Lawrence 2010.

3Damianou et al. 2012.
Ek KTH
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Summary
• Feature learning in a generative model can be viewed as factor

analysis
• Feature selection in a generative model can be viewed as

multiview factor analysis or inter battery factor analysis
• GP/GP-LVM framework allows for non-parametric formulation

of inter battery factor analysis

Ek KTH
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Introduction

Supervised Factorised Representation Learning

Experiments
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Experiments

Yale Faces
• Three faces
• 64 illuminations
• yi ∈ R192×168

• Light alignment

Ek KTH
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Experiments

Yale Faces
• Three faces
• 64 illuminations
• yi ∈ R192×168

• Light alignment

Subset 1.

Subset 2.

Subset 3.

Subset 4.

Figure 1: Example images of a single individual in frontal pose from the Yale Face Database
B showing the variability due to illumination. The images have been divided into four subsets
according to the angle the light source direction makes with the camera axis—Subset 1 (up to ),
Subset 2 (up to ), Subset 3 (up to ), and Subset 4 (up to ).
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Experiments

Yale Faces
• Three faces
• 64 illuminations
• yi ∈ R192×168

• Light alignment

‘ 6

1 3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

(b)
0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)
0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d)
0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e)

Fig. 3. The figure above shows the results of applying the MRD model to the toy data set. The left most image (a) shows the eigenspectrum
of the observed data generated by transforming the generating signals showing three clear variates. The bar plot in image (b) shows the
scales of the ARD parameters after learning the model. Initialized with 8 latent dimensions the model have switched off all dimensions except
for three, one private for each observation space and one shared which corresponds well to (a). The signals on the left depicts the recovered
latent signals in red and the generating signals in blue. The left most plot (c) is the shared signal and the two following shows the private
signals (d) and (e). The signals have been preprocessed to remove the scale degree of freedom such that the learnt latent space matches the
generating signals to make interpretation of the results easier.

controlled lighting conditions. The dataset contains 10
individuals in 9 different poses each lighted from 64
different directions. The different lighting directions are
positions on a half sphere as can be seen in Figure 4.
The images for a specific pose is captured in rapid
procession such that the variations in the image for a
specific person and pose should mainly be generated by
the light direction. This makes the data interesting from
a dimensionality reduction point of view as the represen-
tation is very high-dimensional, 192⇥168 = 32256, while
the generating parameters i.e. the lighting directions and
pose paramaters is very low dimensional.

(a) (b) (c)

Fig. 5. Latent space learned by the standard Bayesian GP-LVM for
a single face dataset. The weight set w associated with the learned
latent space is shown in (a). In figures (b) and (c) we plotted pairs of
the 3 dominant latent dimensions against each other. Dimensions 4, 5
and 6 have a very small but not negligible weight and represent other
minor differences between pictures of the same face, as the subjects
often blink, smile etc.

There are several different possibilities to use this
data in the MRD framework dependent on which cor-
respondence is used to align the different views. We
chose to use all illuminations for a single pose. We
generate two separate datasets Y(1) and Y(2) by split-
ting the images into two sets such that the two views
contain three different subjects. The order of the data
was such that the lighting direction of y

(1)
i matched that

of y
(2)
i while the subjects where random such that no

correspondence was induced between different faces. As
such the model should learn a latent structure factorized
into lighting parameters (a point on a half-sphere) and
subject parameters where the first are shared and the
latter private to each observation space. In Figure 6
the weight associated with the different dimensions are

shown. The model learns three shared dimensions and
four respectively five private dimensions to represent
the data. In Figure 7 the projection of the latent space
onto the shared dimensions are shown. Even though
not obvious from the two-dimensional images the shared
latent space has the structure of a half sphere recovering
the structure of the generating signal from Figure 4. We
also show the projection of the data onto the two latent
dimension deemed most important by the model. The
data clusters into three separate groups indicating that
the model, once the variations generated by the lighting
direction have been removed, separately represents each
of the three subjects in the observations.

(a) (b)

Fig. 6. The relevance weights for the faces data. Despite allow-
ing for soft sharing, the first 3 dimensions are switched on with
approximately the same weight for both views of the data. Most of
the remaining dimensions are used to explain private variance.

(a) (b) (c)

Fig. 7. Projection of the shared latent space into dimensions {1, 2}
and {1, 3} (figures (a) and (b)) and projection of the Y �private
dimensions {5, 14} (figure (c)). It is clear how the latent points in
figure (c) form three clusters, each responsible for modelling one of
the three faces in Y .

In order to evaluate the modelling power of the MRD
and to interpret the factorization we pick an image
y

(1)
i find its associated latent location and perform a
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scales of the ARD parameters after learning the model. Initialized with 8 latent dimensions the model have switched off all dimensions except
for three, one private for each observation space and one shared which corresponds well to (a). The signals on the left depicts the recovered
latent signals in red and the generating signals in blue. The left most plot (c) is the shared signal and the two following shows the private
signals (d) and (e). The signals have been preprocessed to remove the scale degree of freedom such that the learnt latent space matches the
generating signals to make interpretation of the results easier.

controlled lighting conditions. The dataset contains 10
individuals in 9 different poses each lighted from 64
different directions. The different lighting directions are
positions on a half sphere as can be seen in Figure 4.
The images for a specific pose is captured in rapid
procession such that the variations in the image for a
specific person and pose should mainly be generated by
the light direction. This makes the data interesting from
a dimensionality reduction point of view as the represen-
tation is very high-dimensional, 192⇥168 = 32256, while
the generating parameters i.e. the lighting directions and
pose paramaters is very low dimensional.

(a) (b) (c)

Fig. 5. Latent space learned by the standard Bayesian GP-LVM for
a single face dataset. The weight set w associated with the learned
latent space is shown in (a). In figures (b) and (c) we plotted pairs of
the 3 dominant latent dimensions against each other. Dimensions 4, 5
and 6 have a very small but not negligible weight and represent other
minor differences between pictures of the same face, as the subjects
often blink, smile etc.

There are several different possibilities to use this
data in the MRD framework dependent on which cor-
respondence is used to align the different views. We
chose to use all illuminations for a single pose. We
generate two separate datasets Y(1) and Y(2) by split-
ting the images into two sets such that the two views
contain three different subjects. The order of the data
was such that the lighting direction of y

(1)
i matched that

of y
(2)
i while the subjects where random such that no

correspondence was induced between different faces. As
such the model should learn a latent structure factorized
into lighting parameters (a point on a half-sphere) and
subject parameters where the first are shared and the
latter private to each observation space. In Figure 6
the weight associated with the different dimensions are

shown. The model learns three shared dimensions and
four respectively five private dimensions to represent
the data. In Figure 7 the projection of the latent space
onto the shared dimensions are shown. Even though
not obvious from the two-dimensional images the shared
latent space has the structure of a half sphere recovering
the structure of the generating signal from Figure 4. We
also show the projection of the data onto the two latent
dimension deemed most important by the model. The
data clusters into three separate groups indicating that
the model, once the variations generated by the lighting
direction have been removed, separately represents each
of the three subjects in the observations.

(a) (b)

Fig. 6. The relevance weights for the faces data. Despite allow-
ing for soft sharing, the first 3 dimensions are switched on with
approximately the same weight for both views of the data. Most of
the remaining dimensions are used to explain private variance.

(a) (b) (c)

Fig. 7. Projection of the shared latent space into dimensions {1, 2}
and {1, 3} (figures (a) and (b)) and projection of the Y �private
dimensions {5, 14} (figure (c)). It is clear how the latent points in
figure (c) form three clusters, each responsible for modelling one of
the three faces in Y .

In order to evaluate the modelling power of the MRD
and to interpret the factorization we pick an image
y

(1)
i find its associated latent location and perform a
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Pose Estimation (a)
aAgarwal and Triggs 2003.

• Silhouette images
• Image features
• Estimate 3D pose
• Highly Ambigous

Manifold Relevance Determination

found to model the overall brightness. The sampling pro-
cedure can intuitively be thought as a walk in the space
shown in figure 3(b) from left to right and from the bottom
to the top. Although the set of learned latent inputs is dis-
crete, the corresponding latent subspace is continuous, and
we can interpolate images in new illumination conditions
by sampling from areas where there are no training inputs
(i.e. in between the red crosses shown in figure 3).

Similarly, we can sample from the private subspaces and
obtain novel outputs which interpolate the non-shared char-
acteristics of the involved data. This results in a morphing
effect across different faces, which is shown in the last row
of figure 5. Example videos can be found in the supple-
mentary material.

As a final test, we confirm the efficient segmentation of
the latent space into private and shared parts by automat-
ically recovering all the illumination similarities found in
the training set. More specifically, given a datapoint yn

from the first dataset, we search the whole space of train-
ing inputs X to find the 6 Nearest Neigbours to the latent
representation xn of yn, based only on the shared dimen-
sions. From these latent points, we can then obtain points in
the output space of the second dataset, by using the likeli-
hood p(Z|X). As can be seen in figure 6, the model returns
images with matching illumination condition. Moreover,
the fact that, typically, the first neighbours of each given
point correspond to outputs belonging to different faces,
indicates that the shared latent space is “pure”, and is not
polluted by information that encodes the face appearance.

Figure 6. Given the images of the first column, the model
searches only in the shared latent space to find the pictures of
the opposite dataset which have the same illumination condition.
The images found, are sorted in columns 2 - 7 by relevance.

Human motion data: For our second experiment, we con-
sider a set of 3D human poses and associated silhouettes,
coming from the dataset of Agarwal and Triggs (Agarwal &
Triggs, 2006). We used a subset of 5 sequences, totalling

649 frames, corresponding to walking motions in various
directions and patterns. A separate walking sequence of
158 frames was used as a test set. Each pose is repre-
sented by a 63�dimensional vector of joint locations and
each silhouette is represented by a 100�dimensional vec-
tor of HoG (histogram of oriented gradients) features.

Given the test silhouette features, we used our model to
generate the corresponding poses. This is challenging, as
the data are multi-modal, i.e. a silhouette representation
may be generated from more than one poses (e.g. fig. 7).

Figure 7. Although the two poses in the second column are very
dissimilar, they correspond to resembling silhouettes that have
similar feature vectors. This happens because the 3D information
is lost in the silhouette space, as can also be seen in the third col-
umn, depicting the same poses from the silhouettes’ viewpoint.

As described in the inference section, given y⇤, one of the
N⇤ test silhouettes, our model optimises a test latent point
x⇤ and finds a series of K candidate initial training inputs
{x(k)

NN}K
k=1, sorted according to their similarity to x⇤, tak-

ing into account only the shared dimensions. Based on
these initial latent points, it then generates a sorted series
of K novel poses {z(k)}K

k=1. For the dynamical version
of our model, all test points are considered together and
the predicted N⇤ outputs are forced to form a smooth se-
quence. Our experiments show that the initial training in-
puts xNN typically correspond to silhouettes similar to the
given one, something which confirms that the segmentation
of the latent space is efficient. However, when ambiguities
arise, as the example shown in figure 7, the non-dynamical
version of our model has no way of selecting the correct
input, since all points of the test sequence are treated inde-
pendently. But when the dynamical version is employed,
the model forces the whole set of training and test inputs to
create smooth paths in the latent space. In other words, the
dynamics disambiguate the model.

Indeed, as can be seen in figure 8, our method is forced
to select a candidate training input xNN for initialisation
which does not necessarily correspond to the training sil-
houette that is most similar to the test one. What is more,
if we assume that the test pose z⇤ is known and seek for
its nearest training neighbour in the pose space, we find
that the corresponding silhouette is very similar to the one
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Fig. 10. Although the two poses in the second column are very
dissimilar, they correspond to resembling silhouettes that have similar
feature vectors. This happens because the 3D information is lost in
the silhouette space, as can also be seen in the third column, depicting
the same poses from the silhouettes’ viewpoint.

is relevant the information placed in the private space,
which is used by the normal nearest neighbor, should
not contain any information about the class. In Figure 12
the result of the comparison shows that performing
the classification by only looking at shared variations
slightly improves the results.

5.4 Multiview models and data exploration
We have so far demonstrated MRD in datasets with two
modalities. However, there is no theoretical constraint
on the number of modalities that can be handled by
MRD. In this section we will use the AVletters database
[24] to generate multiple views of data. This audio-visual
dataset was generated by recording the audio and visual
signals of 10 speakers that uttered the letters A to Z
three times each. The audio signal was processed to
obtain a 299� dimensional vector per utterance. The
video signal per utterance is a sequence of 24 frames,
each being represented by the raw values of the 60⇥ 80
pixels around the lips, as can be seen in figure 13. Thus,
a single instance of the video modality of this dataset is
a 115200� dimensional vector.

Depending on the desired predictive or exploratory
task, different subsets of the data can be split across
different views. In order to explore the connections and
commonalities in the information encoded in different
subjects, letters and type of signal (video or audio),
we first performed data exploration by considering the
following generic setting: we created a dataset where
the modalities were split across all subjects and across
type of signal. Thus, we ended up with 16 different
modalities, where modalities i, i + 1 contained the video
and audio signal respectively for the i�th subject. The
alighment was therefore made with respect to the dif-
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Fig. 11. Given the HoG features for the test silhouette in column
one, we predict the corresponding pose using the dynamical version of
MRD and Nearest Neighbour (NN) in the silhouette space obtaining
the results in the first row, columns 2 and 3 respectively. The last
row is the same as the first one, but the poses are rotated to highlight
the ambiguities. Notice that the silhouette shown in the second row
for MRD does not correspond exactly to the pose of the first row,
as the model generates only a novel pose given a test silhouette.
Instead, it is the training silhouette found by performing NN in the
shared latent space. The NN of the training pose given the test pose
is shown in column 4.

Fig. 12. Accuracy obtained after testing MRD and NN on the full
test set of the ‘oil’ dataset.

ferent letters. We used all three available trials but
letters “B”, “M” and “T” were left out of the training
set completely. We applied MRD to reveal the strength
of commonality between different subjects of the full
database. The visualisation of the latent weights can be
seen in figure 14.

This figure shows that similar latent weights are typi-
cally found for modalities 1, 3, 5, ..., i.e. for the ones that
correspond to the video signal. This means that if, for
example, one would like to predict the lip movements
in a test scenario, the other pieces of information that
can help the most in predicting is the lip movements
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Figure 5. Sampling inputs to produce novel outputs. First row shows interpolation between positions of the light source in the x
coordinate and second row in the y coordinate (elevation). Last row shows interpolation between face characteristics to produce a
morphing effect. Note that these images are presented scaled here, see suppl. material for the original 32, 256-dimensional ones.

found by our model, which is only given information in the
silhouette space.

 







Figure 8. Given the HoG features for the test silhouette in column
one, we predict the corresponding pose using the dynamical ver-
sion of MRD and Nearest Neighbour (NN) in the silhouette space
obtaining the results in the first row, columns 2 and 3 respectively.
The last row is the same as the first one, but the poses are rotated
to highlight the ambiguities. Notice that the silhouette shown in
the second row for MRD does not correspond exactly to the pose
of the first row, as the model generates only a novel pose given a
test silhouette. Instead, it is the training silhouette found by per-
forming NN in the shared latent space. The NN of the training
pose given the test pose is shown in column 4.

Given the above, we quantify the results and compare our
method with linear and Gaussian process regression and
Nearest Neighbour in the silhouette space. We also com-
pared against the shared GP-LVM (Ek et al., 2008; Ek,
2009) which optimises the latent points using MAP and,
therefore, requires an initial factorisation of the inputs to
be given a priori. Finally, we compared to a dynamical ver-

sion of Nearest Neighbour where we kept multiple nearest
neighbours and selected the coherent ones over a sequence.
The errors shown in table 1 as well as the video provided
as supplementary material show that MRD performs better
than the other methods in this task.

Table 1. The mean of the Euclidean distances of the joint lo-
cations between the predicted and the true poses. The Nearest
Neighbour in the pose space is not a fair comparison, but is re-
ported here as it provides some insight about the lower bound on
the error that can be achieved for this task.

Error
Mean Training Pose 6.16
Linear Regression 5.86
GP Regression 4.27
Nearest Neighbour (sil. space) 4.88
Nearest Neighbour with sequences (sil. space) 4.04
Nearest Neighbour (pose space) 2.08
Shared GP-LVM 5.13
MRD without Dynamics 4.67
MRD with Dynamics 2.94

Classification: As a final experiment, we demonstrate
the flexibility of our model in a supervised dimensional-
ity reduction scenario for a classification task. The train-
ing dataset was created such that a matrix Y contained
the actual observations and a matrix Z the correspond-
ing class labels in 1-of-K encoding. We used the ‘oil’
database (Bishop & James, 1993) which contains 1000
12�dimensional examples split in 3 classes. We selected
10 random subsets of the data with increasing number of
training examples and compared to the nearest neighbor
(NN) method in the data space. As can be seen in figure 9,
MRD successfully determines the shared information be-
tween the data and the label space and outperforms NN.
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Robotic Grasping
• Gripper pose
• Tactile sensor
• Object pose and identity

data we only need to alter the factors that are relevant to make
the grasp stable, by using several views we can constrain the
prediction further implementing a natural approach of merging
different information and finally due to the alignment of the
data we can exploit previous knowledge. We will now proceed
to describe the experimental evaluation of the model showing
not only how unstable grasp can be corrected but also how
other tasks can be performed within the same model.

IV. EXPERIMENTAL EVALUATION

Our aim is to learn models that would allow us to generate
stable grasps given unstable ones. The models will be trained
on data that includes both stable and unstable grasps obtained
during an exploration phase where the robot explores objects
around grasps given by a human teacher. In this section, we
will first describe our setup then the data collection procedure
and finally present results achieved with the trained models.

A. Experimental Setup

We aim at designing a predictor that is independent of the
pose of an object. For this reason, we do not predict from the
manipulator and object poses directly. Instead, we base our
predictions on the relative object-manipulator pose. Object-
relative manipulator configurations allow our system to encode
notions such as “grasping a bottle from the side is better than
grasping it from the top.” However, stability will often not only
depend on the relative object-gripper configuration, but also
on the absolute orientation of the object. When an elongated
object lies on a flat surface, it is generally better to grasp
it close to its center of mass. Yet, if the object is standing,
grasping it near its tip is acceptable. As a result, we also base
our predictions on the angle between the gripper’s approach
vector and a direction aligned with gravity.

Through visual and proprioceptive feedback, our robot
(Figure 3) is able to acquire object and gripper poses in real
time. Gripper poses are simply obtained from the kinematics
of the robot. Obtaining object pose is more challenging. An
object will often move while the robot is closing its hand to
grasp it. Therefore, the robot needs to compute the pose of
the object after having closed the hand around it.

This computation is made difficult by the partial object
occlusions effected by the hand. We address this issue by
tracking the movement of the object for the complete duration
of the grasp. Tracking (Figure 4) is more robust than per-
forming pose estimation at the end of the movement, since it
uses all previous frames to make an estimate. We use a system
which tracks the pose of a textured CAD model in a monocular
video stream [16]. Tracking object textures greatly helps
handling partial object occlusions and distractions induced by
the hand. Our aim however is not to get perfectly accurate
pose information, but rather a rough idea of how the object is
approached.

The robot can acquire tactile imprints via Weiss Robotics
pressure sensitive tactile pads [1] mounted on the Schunk
hand’s fingers. Each finger of the hand has 2 tactile sensor

Fig. 3: Experimental robot platform, composed of a Kuka
industrial arm, a three-finger Schunk Dextrous hand equipped
with tactile sensing arrays, and a monocular camera.

arrays that are composed of 6x13 and 6x14 texels (Figure 3).

B. Data Acquisition

In our grasping experiments, we used the four home-
environment objects shown in Figure 4: a box, and three
bottles of different shapes that we call the spray bottle, the
cylindrical bottle and the oval bottle. We chose these objects
because of several reasons. These objects were large enough
for the Schunk hand to grasp with three fingers The objects
were similar in weight and had different geometrical features
and deformation properties. For example, the spray bottle
had a less regular shape compared to the other objects, the
cylindrical bottle was the most deformable object and the
box was the least deformable among all the objects. The
pose tracking was equally successful for each object during
grasping and manipulation experiments. In order to learn the
correlation between the tactile and visual measurements and
the success/failure in grasping, we let our robot gather percep-
tual data based on exploration of the objects by grasping and
lifting. However the exploration cannot be done exhaustively.
To make the experiments feasible, we focused on certain
regions of objects and generated a set of grasps to execute
on these regions. Grasps for a region were generated by
randomly sampling a distribution centered around an initial
grasp gi. Therefore a random grasp ĝr was obtained from
P (gr|gi) / Kg(gi, gr)

1. Resulting grasps were distributed
a few centimeters/degrees away from gi. In this way, by
executing multiple grasps in a region the robot could also
learn the effect of small differences in hand positioning. In
a real-world scenario it is important for the robot to learn the

1The gripper pose kernel Kg is defined as the product of a position and an
orientation kernel. Let us denote the decomposition of a pose g into position
and orientation by p and o respectively. We define Kg with

Kg(g1, g2) = N (p1; p2,�2
pI)

e�o oT
1 o2 + e��o oT

1 o2

2
(3)

where N is a trivariate isotropic Gaussian kernel, the fraction corresponds to
a pair of antipodal von-Mises Fisher distributions (Gaussian-like distribution
on the rotation group [8, 27]).
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Abstract—We present a probabilistic learning framework for
joint representation of several different sensory modalities in a
grasping scenario. The model allows us to pose different questions
such as how to correct an unstable grasp based on previous
experiences. Once a robot discovers that a grasp is likely to fail,
it can trigger a recovery plan that involves corrective movements
to reach a better grasping configuration. Our approach is based
on learning the associations between stable and unstable grasps
that the robot experienced during an exploration phase. Using
trained models, we show that given unstable grasps, one can
infer stable grasps in the neighborhood of those unstable grasps
and perform correction. The success rate of the corrected grasps
when executed on the real platform is 75%, whereas experiments
with a standard regression technique only reach 38% on the
same test set of unstable grasps. In addition to modeling the
relationship between stable and unstable grasps we merge tactile
and object information with the grasp parameters such that they
can be inferred from each other. This allows for predicting how
a certain object would “feel” if it were to be grasped in a specific
pose and classify the object type based on tactile information.

I. INTRODUCTION

Grasping plays a central role in our interaction with the
environment and we use different sensory information and
past experiences in grasp execution. In many aspects today’s
robots are significantly inferior to humans, however if we only
consider the sensory aspect robots today have access to infor-
mation which are beyond the capabilities in several aspects to
human sensory. Although grasping has been studied in depth
during the last few decades [3, 4, 15, 19, 20, 23, 24, 26],
current systems have severe limitations in terms of dealing
with novelty, uncertainty and unforeseen situation. The reason
why grasping is still a very challenging problem in robotics
is not only due to the lack or quality of sensory information
of the environment but also how these multiple sources of
information are combined and how previous experiences can
be related and provide information about future events.

Our view is that humans excel robots in three important
aspects of reasoning; first selecting the relevant information
from the environment, secondly merging different sources of
information to reduce uncertainty and finally making better
use of experience by relating to previous knowledge. In this
paper we propose the use of a factorized latent variable
model which aims to address these three aspects of human
reasoning to make it viable on a robot platform. Given different
sources of sensory information we propose a model capable
of automatically learning how and what part of each source
contains shared information about other sources.

In this paper we will focus on the problem of grasping and
from the scene we will observe hand pose, tactile information,

Fig. 1: Our learning method enables us to infer better grasping
poses (right) given that the current pose (left) is predicted to
lead to failure (rotation during lifting).

the type of object and its orientation. We will use previous
experience by knowing if the grasp was successful or not and
for the unsuccessful observing how it was altered in order
to correct it. Each of the modalities above are considered as
views or projections of the same latent variable. We learn
such a representation using Manifold Relevance Determination
(MRD) [5]. As the same model represents all the observation
we refer to this process as a consolidation of the different
modalities. The models automatically infers from the data
which portions of each view that contains shared information.
This means that we can ask questions such as: “how and what
portion of the tactile sensory is determined by the gripper
position?” or “what do I know about the object type given
the tactile sensory and the gripper position?”. This means that
we have factorized the information in such a manner that we
acquired knowledge of what the relevant information is, and
have the facilities of merging several different views. Further,
as we have both successful and unsuccessful variations we can
exploit this and transfer or correct a grasp within the model,
i.e. use previous knowledge.

The reminder of the paper is structured as follows: in the
next section we describe the related work and state explicitly
our contributions. We proceed to describe the model and the
methodology in Section III and then show how the model
is capable of performing different tasks in Section IV. We
conclude the paper with a discussion of future work and a
concluding summary.

II. RELATED WORK AND CONTRIBUTIONS

Various approaches for avoiding or recovering unsuitable or
potentially failing grasps have been proposed in the literature.
Recovery of stable grasps by adaptation to local geometry
using the force-closure criterion is proposed in [10]. Here,
contact positions are transferred between objects of the same
functional class by surface geometry warping. Grasps are
adapted by moving individual finger-contact on the object
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addative gaussian noise,

y(i)
n = f (i)(xn) + ✏, (1)

where ✏ is normally distributed with a spherical covariance. By
assuming that each view is independent given the latent space
and placing a GP-prior over the mappings we can formulate
the marginal likelihood of the model:

p(Y|X, ✓) =

KY

k=1

Z
p(Y(k)|F(k))p(F(k)|X, ✓)dF(k) (2)

where F(i) is the realization of the mapping and ✓ are hyper-
parameters defining the form of the prior. Different shared
GP-LVM papers make different approaches when learning X
from Eq. 2 and add different types of constraints on both X.
What makes the MRD different from other shared GP-LVM
models is that it allows for feature selection on the latent
space. This means that when generating view (i) the mapping
f (i) can select the dimensions of X which are relevant for
encoding the variations in Y(i). This is referred to as a
factorized latent representation where a latent dimensions can
be responsible for encoding any combination of views. We will
refer to a dimension which generates several views as shared
between those views. This feature selection is implemented
by selecting a Automatic Relevance Determination (ARD) [17]
prior for the mappings by associating each view with a weight
vector W(i) 2 Rd such that w

(i)
j determines the relevance of

dimension j for generating view i, e.g. if w
(i)
j = 0 dimension

j is independent of Y(i). We say that the set of weight vectors
W = {W(k)}K

k=1 factorizes the latent space. In Figure 2
the graphical model describing the MRD formulated for our
specific problem is shown.

The ARD prior introduces several new parameters into
the model. This makes the model much less constrained. In
the original GP-LVM model [14] learning was done through
gradient based optimization of the marginal likelihood. This
approach was also initially suggested in the shared scenario
[25] but when adding factorization the problem become too
relaxed. In order to proceed several heuristic regularisers have
been suggested [7, 21]. The benefit of the MRD compared to
these works is that rather than using a maximum likelihood
estimate it adopts fully Bayesian learning by incorporating the
variational approach proposed by Titsias and Lawrence[31] to
approximately marginalize out the latent space from the model.
This means that both the ARD weights and the latent space can
be learned from data providing a natural factorization without
relying on heuristic regularizers.

A. Inference

A trained model implies that we have learned the latent
representation X the hyper-parameters defining the character-
istics of each generating mapping ✓(i) and the weights w(i)

which select the relevant generating parameters of X for each
view. Given a grasp y

(i)
⇤ which we believe will lead to a failed

execution we now wish to use the model to automatically alter
the relevant parameters of the grasp such that it will result in

X

✓x

Y(1)

✓(1)

w(1)

Y(2)

✓(2)

w(2)

Y(3)

✓(3)

w(3)

Y(4)

✓(4)

w(4)

Y(5)

✓(5) w(5)

Y(6)

✓(6)w(6)

Fig. 2: Graphical model depicting the application of the Man-
ifold Relevance Determination model for grasp correction.
The objective is to learn a single latent variable X capable
of representing each view Y(i) of the data. In addition to
learning X we also, simultaneously, perform feature selection
on the latent representation individually for each view and
learn a weight vector w(i) that select the importance of each
latent dimension to represent view i. Each generative mapping
is modeled using a separate GP-prior with hyper-parameters
✓(i). In the figure above the red and the green block depicts the
successful and the unsuccessful tactile and pose parameters
and Y(5) and Y(6) the object identity and its orientation
respectively.

a stable grasp, i.e. we want to infer or transfer one modality
from another. In specific, given a previously unseen unstable
grasp y

(1)
⇤ we wish infer a stable version y

(3)
⇤ . This is done

using a three step process.
In the first step we determine the latent representation x⇤

corresponding to y
(1)
⇤ this is done using a approximation of

the true posterior p(x⇤|y(1)
⇤ Y(1)). Due to the factorization

of X we will only be able to determine the latent location
of the relevant dimensions for the unstable grasp. In order
to determine the stable grasps we need to also find the
dimensions, if any, that are relevant for the stable grasp but
irrelevant for the unstable. To do so we perform a nearest
neighbor search in the subspace which is shared between the
views to recover the closest point in the training data to x⇤.
In the last step we replace the non-shared dimensions of x⇤
with those of the nearest neighbor. This is the same process
as described in [5]. Importantly this means that we let the
unstable grasp constrain the stable grasp by the factors which
they share and then alter, through the nearest neighbor search,
the factors required to make the grasp stable. If we are given
observations from more than one view simultaneously we can
find x⇤ through the joint posterior. As different modalities
are likely to provide different information this should increase
the number of latent dimensions which constrains the output
further. Importantly this means that we have implemented the
three aspects of reasoning we aimed for; by factorizing the

data we only need to alter the factors that are relevant to make
the grasp stable, by using several views we can constrain the
prediction further implementing a natural approach of merging
different information and finally due to the alignment of the
data we can exploit previous knowledge. We will now proceed
to describe the experimental evaluation of the model showing
not only how unstable grasp can be corrected but also how
other tasks can be performed within the same model.

IV. EXPERIMENTAL EVALUATION

Our aim is to learn models that would allow us to generate
stable grasps given unstable ones. The models will be trained
on data that includes both stable and unstable grasps obtained
during an exploration phase where the robot explores objects
around grasps given by a human teacher. In this section, we
will first describe our setup then the data collection procedure
and finally present results achieved with the trained models.

A. Experimental Setup

We aim at designing a predictor that is independent of the
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grasping it near its tip is acceptable. As a result, we also base
our predictions on the angle between the gripper’s approach
vector and a direction aligned with gravity.

Through visual and proprioceptive feedback, our robot
(Figure 3) is able to acquire object and gripper poses in real
time. Gripper poses are simply obtained from the kinematics
of the robot. Obtaining object pose is more challenging. An
object will often move while the robot is closing its hand to
grasp it. Therefore, the robot needs to compute the pose of
the object after having closed the hand around it.

This computation is made difficult by the partial object
occlusions effected by the hand. We address this issue by
tracking the movement of the object for the complete duration
of the grasp. Tracking (Figure 4) is more robust than per-
forming pose estimation at the end of the movement, since it
uses all previous frames to make an estimate. We use a system
which tracks the pose of a textured CAD model in a monocular
video stream [16]. Tracking object textures greatly helps
handling partial object occlusions and distractions induced by
the hand. Our aim however is not to get perfectly accurate
pose information, but rather a rough idea of how the object is
approached.

The robot can acquire tactile imprints via Weiss Robotics
pressure sensitive tactile pads [1] mounted on the Schunk
hand’s fingers. Each finger of the hand has 2 tactile sensor

Fig. 3: Experimental robot platform, composed of a Kuka
industrial arm, a three-finger Schunk Dextrous hand equipped
with tactile sensing arrays, and a monocular camera.

arrays that are composed of 6x13 and 6x14 texels (Figure 3).

B. Data Acquisition

In our grasping experiments, we used the four home-
environment objects shown in Figure 4: a box, and three
bottles of different shapes that we call the spray bottle, the
cylindrical bottle and the oval bottle. We chose these objects
because of several reasons. These objects were large enough
for the Schunk hand to grasp with three fingers The objects
were similar in weight and had different geometrical features
and deformation properties. For example, the spray bottle
had a less regular shape compared to the other objects, the
cylindrical bottle was the most deformable object and the
box was the least deformable among all the objects. The
pose tracking was equally successful for each object during
grasping and manipulation experiments. In order to learn the
correlation between the tactile and visual measurements and
the success/failure in grasping, we let our robot gather percep-
tual data based on exploration of the objects by grasping and
lifting. However the exploration cannot be done exhaustively.
To make the experiments feasible, we focused on certain
regions of objects and generated a set of grasps to execute
on these regions. Grasps for a region were generated by
randomly sampling a distribution centered around an initial
grasp gi. Therefore a random grasp ĝr was obtained from
P (gr|gi) / Kg(gi, gr)

1. Resulting grasps were distributed
a few centimeters/degrees away from gi. In this way, by
executing multiple grasps in a region the robot could also
learn the effect of small differences in hand positioning. In
a real-world scenario it is important for the robot to learn the

1The gripper pose kernel Kg is defined as the product of a position and an
orientation kernel. Let us denote the decomposition of a pose g into position
and orientation by p and o respectively. We define Kg with

Kg(g1, g2) = N (p1; p2,�2
pI)

e�o oT
1 o2 + e��o oT

1 o2

2
(3)

where N is a trivariate isotropic Gaussian kernel, the fraction corresponds to
a pair of antipodal von-Mises Fisher distributions (Gaussian-like distribution
on the rotation group [8, 27]).
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Fig. 7: Predicted grasps with associated model uncertainty.
From left to right the uncertainty in the model is shown for
each prediction in the training data set. For the four grasps
the model is most uncertain we show the executed correction.

acquire almost perfect classification rates using only stable or
unstable grasping poses. However, there are also exceptional
cases where stability outcomes of different grasps are shared
across different objects. For example, the spray bottle has an
uneven weight distribution - lighter around the top, which
results in most stable grasps being around the bottom closer to
the object compared to the unstable ones. In terms of weight
distribution, the oval bottle is the most similar object to the
spray bottle however the weight difference is not as large as
the spray bottle.

V. CONCLUSION

This paper addressed the problem of learning from stable
and unstable grasping examples in order to be able to re-
plan a grasping strategy when a grasp is estimated to fail.
Several objects were explored by grasping and lifting them in
order to acquire perceptual data along with the corresponding
stability outcomes and learn the correlations between them. We
presented a learning approach based on Manifold Relevance
Determination. We built stable and unstable training pairs
based on Self Organizing Maps in an unsupervised way. The
input features for learning were object-gripper configurations
extracted from known hand poses and vision-based object
pose estimates, tactile descriptions of contacts between the
hand and the object, discrete object identity and standing/lying
configuration.

Experimental results demonstrated that the proposed learn-
ing method is capable of generating stable grasping configu-
rations given object identity and unstable grasps. We achieved
75% success rate on 60 unstable grasps while a traditional
regression approach could only provide up to 38% success
rate. Our method allows inference of any variable given
any subset of observed variables without retraining, therefore

(14, 57, 28) (86, 14, 0)

(93, 7, 0) (93, 7, 0)

(40, 27, 33) (67, 20, 13)

(12, 35, 53) (59, 23, 18)

Fig. 8: Grasping experiments with rates of stable, unstable
and not applicable grasps (from left to right): Training set,
resulting grasps from the predictions based on GP regression
given unstable grasp pose and object identity, and results
based on MRD given pose and object identity
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Fig. 10: The above image shows the confusion matrices when
we use the MRD model to infer the object identity from
different modalities. From left to right the matrices depicts
the results from inferring the object identity from tactile,
successful grasp position and unsuccessful grasp position
respectively. As can be seen the model is capable to encode
the relationship between the modalities well as for example
given the tactile information of a grasp can with 86% average
accuracy determine the object identity.
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Fig. 9: The figure above shows the tactile modality associated with the corrected graph predicted under the model. The left
most plot shows the uncertainty in the predictions in the model. The top row in the right pane depict the tactile data from the
real execution while the bottom row shows the model predictions.

another useful application of it is to generate expected tactile
measurements given a grasping pose. Hence, a future direction
is to exploit predicted tactile measurements for force control
during manipulation. We also plan to extend the models to
involve task parameters such as different hand preshapes,
geometric and semantic task constraints, e.g., grasping only
from the handle for certain tasks. Another future direction
is to investigate online learning to be able to update models
to involve more tasks and objects. In this paper, we focused
on real data which cannot be as abundant as simulated data
since the real data collection is expensive. Therefore, we
have not presented experiments regarding generalization across
different and possibly novel objects which is left as a future
work.
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Figure 2: All the instances in the toy object dataset.

(a) θclass with regular LDA (b) θclass with SLDA (c) θclass with factorized LDA

Figure 3: Toy object dataset. (a) Regular LDA topic distribution marginalized over class θclass, topics sorted
in ascending order of class-specificity. (b) SLDA topic distribution marginalized over class θclass, topics sorted
in ascending order of class-specificity. (c) Factorized LDA topic distribution marginalized over class θclass,
topics sorted in ascending order of class-specificity, red line indicating partition between θp and θs.

the backgrounds in natural scenes are often complex and varying, introducing even more variation
among training data for a class.

SIFT features on two different scales are densely extracted from all images, and a 64-word vocabu-
lary is learned in which all SIFT features are represented. Thus, each image is represented by a bag
of visual words in this vocabulary.

The experiment is performed in a hold-one-out manner, where each image in turn is classified using
a model trained on the other 31 images. In the following, we will by “regular LDA”mean the regular
LDA with upstream supervision presented in [8], but trained using Gibbs sampling in the same way
as our model, with the same value of α for all documents. With ”SLDA”, we mean the more strongly
supervised LDA variant with downstream supervision presented in [3], implemented by Blei et al.

Our proposed factorized LDA, as well as regular LDA and SLDA, are trained with 15 topics, α =
0.1 and π = 0.2. The classification performance for each class is found by averaging over the
performances for the 8 images of that class.

It should be noted that the test image always will have a texture that is different from the training
images of that class. However, the same texture can be found in other classes. A classifier that
tries to explain all variation in the data in terms of class variation will therefore have difficulties
in modeling this data set; a regular LDA or SLDA model trained with this data will be forced to
represent texture as well as shape in the same topics, since the Dirichlet prior will promote topic
sparsity. Thus, very few topics will purely represent one class, as shown in Figures 3(a) and 3(b).

However, our model, which explicitly factorizes the topics into those private to a certain class and
those shared between all classes, will allow the relevant shape variation to be represented separately
from the texture variation, which will just confuse the classification in this case. Figure 3(c) shows
the factorized topic distribution; it is clear that the topics in θp are private to a certain class, while the
noise topics in θs are shared equally over all classes; all the structured noise has thus been pushed
into θs. Thus, even though the full topic space is used for classification, it is effectively only based
on θp, while the shared topics θs (right of the red line in Figure 3(c)) are effectively disregarded in
the classification since they appear with equal probability in all classes.

As expected, the explicit noise model greatly improves classification on this dataset: the factorized
LDA reaches 81.25%, while a regular LDA reaches a classification rate of 34.38%, only slightly

6
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Future Work

• Approximate marginalisation of latent space
I interesting priors
I auto-encoders
I deep models

• Bigger data-sets
• Automatic alignment
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