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Goal of this talk
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What form of generative model corresponds to the STFT?

desire: expected value of latent time-frequency coefficients sd,1:T = STFT

• assume y formed by (weighted) superposition of band-limited signals sd,1:T

• linearity of inference can be assured by setting the distributions of each sd,1:T
and the noise to be Gaussian

• time-invariance =⇒ generative model statistically stationary

=⇒ GP prior over STFT coefficients, p(sd,1:T ) = G(sd,1:T ; 0,Γ), stationary

Γt,t′ ≈
T∑
k=1

FT−1t,kγkFTk,t′ where FTk,t=e−2πi(k−1)(t−1)/T
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Time-frequency analysis as inference

• probabilistic models in which inference recovers STFT, filter bank, wavelet
analysis

– unifes a number of existing probabilistic time-series models & connects
to traditional sig. proc.

– can learn window of STFT and frequencies (equivalently filter properties)
– frequency shift relationship mimics classical relationship between these

time-frequency relationships

• hops/down-sampling and finite window used correspond to FITC
(uniformly spaced pseudo-points) and sparse-covariance approximations

– rediscover Nyquist in the context of approximation GPs
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Inference and Learning

• Key Observation – fix envelopes:

– posterior over carriers is Gaussian
– posterior mean given by an (adaptive) filter

• Leads to MAP estimation of the envelopes (or HMCMC), let zlt = log hlt

ZMAP = arg max
Z

p(Z|Y)

p(Z|Y) =
1

Z
p(Z,Y) =

1

Z

∫
dXp(Z,Y,X) =

1

Z
p(Z)

∫
dXp(Y|A,X)p(X)

• Compute integral efficiently using chain stuctured approximation and
Kalman Smoothing

• Leads to gradient based optimisation for transformed amplitudes

• Learning: approximate Maximum Likelihood θ = arg maxθ p(Y|θ)

• NMF: zero-temperature EM, one E-Step, initialise constant envelopes
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Statistical texture synthesis

• Old approach: build detailed physical models (e.g. rain drops)

• New approach

– train model on your favourite texture
– sample from the prior, and then from the likelihood.

• Waveform unique, but statistically matched to original

• Often perceptually indistinguishable



Audio denoising
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Audio missing data imputation
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Unifying classical and probabilistic audio signal processing

Probabilistic 
signal processing

Classical 
signal processing

robustness
adaptation

fast methods
important variables
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