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In Gaussian process regression, both the basis functions and their prior distri-
bution are simultaneously specified by the choice of the covariance function.
In certain problems one would like to choose the covariance independently
of the basis functions (e. g., in polynomial signal processing or Wiener and
Volterra analysis). We propose a solution to this problem that approximates
the desired covariance function at a finite set of input points for arbitrary
choices of basis functions. Our experiments show that this additional degree
of freedom can lead to improved regression performance.

1. Introduction

A Gaussian process is completely specified by its mean functionm(x) and co-
variance functionk(x,x′). The choice of the covariance function defines both the
space of functions that can be generated by the Gaussian process, and a probability
measure on that space. It also determines the function basis in which the regression
solutions are expressed since all solutionsf(x) are linear combinations ofkernel
functionsk(·,xi) with some expansion coefficientsαi

f(x) =
n∑

i=1

αik(x,xi). (1)

Consequently, the choice of the basis and the probability space aretightly coupled
in the standard Gaussian process formulation.

In certain problems one would like to have the freedom of choosing the covari-
ance function independently of the function basis, i.e., we would like to express
our solution in some basis of kernel functionsk(·,xi), but with a different prior
covariance functionkGP(·,xi) for the Gaussian process. This situation occurs, for
instance, in classical nonlinear system identification where the transfer function
f(x) of the unknown system is modeled as a discretized Volterra or Wiener series.
A recent study has shown that Volterra and Wiener series can be efficiently esti-
mated by a regression in polynomial kernel functions (Franz & Schölkopf, 2006).
Polynomial covariance functions, however, are often not very suitable for describ-
ing real-world problems as they imply a high covariance for distant inputs. In most
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problems we have the reverse situation, i.e. nearby inputs typically result in sim-
ilar outputs. This often leads to an inferior prediction performance of polynomial
regression as compared to other, more localized covariance functions.

Here, we propose a method for decoupling the choice of the basis and covari-
ance in Gaussian process regression. This is done by using both the weight space
view and the function space view of Gaussian processes (Rasmussen & Williams,
2006) to make the contributions of the basis and the probability measure explicit.
The proposed approach allows for approximating arbitrary covariance functions on
a finite set of input points, without the need of changing the basis functions. As a
proof of concept, we show that the typical disadvantages of polynomial covariance
functions can be compensated.

2. Decoupling the covariance and basis

Instead of directly specifying the prior covariancek(x,x′) for solving the regres-
sion problem (often referred to as thefunction spaceview of Gaussian processes,
see Rasmussen & Williams, 2006), there exists an alternative derivation, called
the weight-space view. Here, one assumes that the regression solutionf(x) can
be represented as weighted sumf(x) = φ(x)>w of m basis functionsφ(x) =
(ϕ1(x), ϕ2(x), . . . , ϕm(x))>, where the weightsw from Rm are distributed ac-
cording toN (0, Σw). This again defines a covariance function of the form

k(xi,xj) = φ(xi)>Σwφ(xj). (2)

The two alternative views of Gaussian processes give us a handle on how to de-
couple the covariance and basis: we have to construct a suitable basisφ(x) from
the kernel functionsk(·,xi) along with a weight covarianceΣw such that their
covariance functionφ(xi)>Σwφ(xj) assumes the desired formkGP(xi,xj). Of
course, we cannot hope to approximatekGP(xi,xj) at all possible input pairs, but
the computation of the predictive mean and variance requires only evaluating the
covariance function at either training or test inputs. Consequently, we have to ap-
proximate our desired covariance only at a finite set of input points.

An obvious choice forφ(x) would be the kernel functions themselves (the
empirical kernel map, see Scḧolkopf & Smola, 2002), but here we consider only
theKernel PCA Map(Scḧolkopf & Smola, 2002)

φ(x) = K− 1
2 (k(x, x1), k(x, x2), . . . , k(x, xn))> (3)

which usually leads to a better conditioned regression problems in other contexts.
Having specified our basis, we have to find a suitableΣw to approximatekGP(xi,xj)
on a finite setS = {x1, . . . , xp} of input points. Formally, we have a set ofp2 lin-
ear equations

kGP(xi, xj) = φ(xi)>Σwφ(xj) ∀xi, xj ∈ S (4)

which, in general, cannot be solved exactly. An approximate solution is given by

Σw = ([φ(x1), . . . , φ(xp)]>)+KGP(S)[φ(x1), . . . , φ(xp)]+, (5)
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dataset kgauss kihp Strain Strain∪ Stest

Boston housing train 3.58 5.11 3.58 3.59
test 8.36 9.79 9.53 8.3

KIN40K train 0.59 9.84 0.59 2.57
test 10.41 21.07 114 13.76

Stereo train 1.80 2.55 1.80 1.80
test 3.26 3.38 3.30 3.25

Table 1: Averaged mean squared error on training and test set (10 folds for Boston, 5
for KIN40K, 3 for Stereo). For the inhomogeneous polynomial kernel with approximated
Gaussian covariance,Σw is computed either on the training inputs only (Strain), or on both
training and test inputs (Strain∪ Stest).

whereKGP(S) = (kGP(xi, xj))ij ∀xi, xj ∈ S andA+ denotes the Moore-Penrose
pseudoinverse ofA. The approximation accuracy clearly depends on the choice
of the setS which describes the input region in which one wants to mimic the
covariance functionCGP . For prediction purposes it is at hand to use the training
and, if available, the test inputs in the calculation ofΣw. Note that no output values
enter Equation (5), so we can use any possible input set from the region of interest,
not necessarily from the training or test set.

3. Experiments

The decoupling approach was evaluated on three regression datasets: Boston Hous-
ing (Harrison & Rubinfeld, 1978), KIN40K (Schwaighofer & Tresp, 2003), and
Stereopsis (Sinz, Quiñonero-Candela, Bakır, Rasmussen, & Franz, 2004). The
application scenario for our decoupling technique are cases where the regression
performance of the chosen basis is inferior to that of another Gaussian process
which defines the target covariance. In these cases, a better approximation to the
target covariance should also result in an increased performance if the approxima-
tion range is chosen to be sufficiently representative.

In a baseline experiment, we used standard Gaussian process regression with
the Gaussian kernelkgauss(x, x′) = exp(−‖x−x′‖2) and the inhomogeneous poly-
nomial kernelkihp(x, x′) = (1+x>x′)p. Model selection was done by maximizing
the log-likelihood. The results of the baseline experiment are shown in the 3rd and
4th column of Table 1. The Gaussian covariance leads to a better regression per-
formance on all three datasets although on the Stereopsis dataset the difference is
very small.

To test our approach, we chose the Gaussian covariancekgauss(x, x′) as our tar-
get covariance askGP(x, x′), and the KPCA map computed forkihp as our basis.
Calculation ofΣw was done either on the training inputs only, or on both training
and test inputs. Due to the required expensive matrix inverse we did not use all
but only a subset of 2000 test points from the KIN40K dataset in the calculation of
Σw. The results are summarized in the 5th and 6th column of Table 1. The model
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parameters were again selected by maximizing the standard log-likelihood crite-
rion. The choice of the polynomial degree turned out to be sometimes problematic
since the log-likelihood as a function of polynomial degree tended to be very flat.
Therefore, we chose instead the polynomial degree which minimises the 2-norm
between the entries of the actual and the desired covariance matrix.

4. Discussion

Using our technique one can approximate any given covariance function in a Gaus-
sian process on a finite set of points, without having to change the basis functions
of the regression. This technique can be helpful in all settings where one is re-
stricted to a specific set of basis functions as, e.g., in polynomial regression, or in
Wiener and Volterra analysis.

When only the training inputs were used for approximating the desired covari-
ance, improvements over standard regression were only small, or - in the case of
KIN40K - performance severely degraded because the training inputs are not suffi-
ciently representative for the test input range. Since the training error was the same
as in the original Gaussian covariance, this is a clear indicator of overfitting to
the training data. However, the results consistently improved on all datasets when
the approximation was computed on both training and test inputs, so this should
be the method of choice when the performance of polynomial regression is to be
improved.
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