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Abstract

We show how the supervised method of Gaussian Processes may be
used for Principal Component Analysis using two intuitions about the
nature of the first principal component filters.

1 Introduction

A stochastic process Y (x) is a collection of random variables indexed by x ∈ X
such that values at any finite subset of X form a consistent distribution. A
Gaussian Process (GP) therefore is a stochastic process on a function space
which is totally specified by its mean and covariance function [8, 6, 5, 7].

Gaussian processes use supervised learning algorithms: we require a training
data set on which we already know the targets for regression or classification.
We have recently investigated GPs for unsupervised learning, particularly for
Canonical Correlation Analysis [1, 4, 2, 3]. In this paper, we investigate the use
of Gaussian processes to perform Principal Component Analysis (PCA).

2 GP for Principal Component Analysis

For Principal Component Analysis, we require to define a target value for each x.
Let us consider only the first principal component: we will create a target using
intuitions about the nature of this principal component in two separate ways.
The first method is an entropy based method: for each data point, our intuition
is that we can use nearby points to try to predict the position of the data
point but that we will be least successful in the principal component projection
simply because it has most entropy. The other method is based on a geometric
criterion: if we can identify points far away (in the projection manifold) from
the current point, the line joining these points to the current point is liable to
have a large component in the principal component direction (Figure 1). In
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both cases, we parameterise the non-zero mean function by θ(x) = bT x + c,
which will identify the first principal component filter.

2.1 An Entropy-based Criterion

The first principal component contains most variance in the data set: our intu-
ition for this model comes from the fact that, for Gaussian distributions, this
is the greatest entropy projection. Knowing the positions of the neighbours of
a data point on this projection, leaves you least sure about the position of the
data point. Therefore, we use the closest M projections of the data set onto the
current estimate of the first principal component and adjust the model para-
meters with respect to the average position of the data points on which these
projections were based. We initialise the process with the targets as the average
of the M closest data points, not including the data point whose projection we
are trying to estimate and subsequently move away from the average position
of these M closest data points. In terms of the GP model, let Sj be the set of
data points whose current estimated projection is closest to that of xj . Then
tj , the target for the projection of xj is given by tj = 1

|Sj−1|
∑

k∈Sj ,k 6=j bT xk

and
∆b|x=xj ∝ −∂L

∂b
|x=xj = (t(xj)− bT xj)Σ−1x; (1)

where L is the log likelihood of the data, Σ and bT x are the covariance and
mean of the GP respectively.

We will see that there are stability problems with this model which do not
arise with the second model.

2.2 A Geometric Model

Our second intuition comes from the fact that if we have points far away from
the current data point, the line joining these points is liable to contain a greater
component in the direction of the first principal component than in any other
direction. Figure 1 illustrates this with an admittedly extreme data set.

Therefore an alternative algorithm to the above is created by finding those
data points whose projections are most different from the current data point and
using as a target, the average of those data points’ projections onto the current
data point. Let Rj be the set of data points whose current estimated projection
is furthest from that of xj . Then tj , the target which we wish the projection of

xj to use as target, is given by tj = 1
|Rj |

∑
k∈Rj

xT
k xj

‖xk‖ . In practice, the normali-
sation has not been found to be necessary and we use tj = 1

|Rj |
∑

k∈Rj
xT

k xj ; in
fact, we have empirical results which suggest that having the target with larger
amplitude than the b vector gives faster convergence. We have consistently,
stably and accurately found the first principal component by this method.

In Figure 2, we show the results of four simulations on the well known iris
data set (150 samples of four dimensional data): the top line shows two simula-
tions with the geometric method, the second of which uses tj = 5

|Rj |
∑

k∈Rj
xT

k xj
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Figure 1: The line joining the labelled point M to the average of the furthest
principal component projections is almost in the direction of this principal com-
ponent.
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Entropy−based criterion on iris data
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Figure 2: . Simulations on iris data. Top left: the geometric method. Top right:
the geometric method when the targets are tj = 5

|Rj |
∑

k∈Rj
xT

k xj . Bottom: two
simulations with the entropy method. The former method is clearly more stable.
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which seems to speed convergence. The bottom line shows two simulations with
the entropy-based method. We see that the geometric method is stable while
the entropy method is less predictable.
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