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Many applications in computer vision and computer graphics require the
definition of curves and surfaces. Implicit surfaces [7] are a popular choice
for this because they are smooth, can be appropriately constrained by known
geometry, and require no special treatment for topology changes. Given a scalar
function f : R% — R, one can define a manifold S of dimension d — 1 wherever
f(z) passes through a certain value (e.g., 0)

802 {w € RY|f(x) = 0}. 1)

In this paper we introduce Gaussian processes (GPs) to this area by deriving
a covariance function equivalent to the thin plate spline regularizer [2] in which
smoothness of a function f(x) is encouraged by the energy

B = [ (V'Vi@) da @

where ) is a region of interest. This regularizer induces functions with many
desirable properties for implicit surfaces [7]. Our GP approach has equal mod-
elling power to earlier variational and radial basis function approaches [7] and
similar results to a recent SVM approach [6] but with the additional strength of
a meaningful probabilistic interpretation (Fig. lac). There is also no additional
computational overhead in using a GP for this: both the GP and variational
approaches require inversion of an n X n matrix, where n is the number of
“constraint” or data points the function is fitted to.
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Figure 1: 2D contour (see text for details). (a) Initial 2D point set X: {® =0, A =
+1,¥v = —1} with contour defined by pu(x) = 0 (solid line, also shown on (b)) and 5
random samples from the GP posterior; (b) Mean u(x) of GP conditioned on points in
(a) using thin plate covariance; (c) Greyscale plot illustrating marginal curve likelihood

P(f(z) =0).



1 Spline regularization is a Gaussian process

For clarity, we consider the 1D problem in this section; the generalization to
2D and 3D is demonstrated below. It is known that a regularizer of the form
in equation (2) can be thought of as a Gaussian process prior (see e.g., [3]). To
show this, we consider the energy as a probability and define D as the linear
differential operator

E(f) = —log P(f)+ const = / (DQf(ac))2 dx. (3)
Q
Using f(€2) to denote the vector of function values for all points in the region
of interest, the prior may be written (ignoring the constant) as follows:

—log P(f(%) = F(2)"[DY"D*f (%), (4)

which corresponds to a multivariate Gaussian distribution with zero mean and
covariance C' = ([D2]TD2)_1 = (D‘l)_1 .

1.1 The covariance function

We now identify the covariance function c(u,v) giving the entries of C' without
recourse to online matrix inversion. Rewriting D*C' = I reveals ¢(u,v) to be
the Green’s function of the fourth derivative operator [8]

D* dw =6 P )= 5
| Prw et do=sw—v) = pelr) = dr) (5)

where £ © — v to impose stationarity on the covariance. The solution of this
is
e(r) = %|T!3+a3r3+a2r2 + arr + aop. (6)

Any odd-powered polynomial terms must be equal to zero in order for the
covariance function to be symmetric (i.e., a3 = a; = 0). The other requirement
is that ¢ be positive semi-definite (psd) [5] and this may be used to set the
constants ag,as. Since the cubic term will “overpower” the other terms as
r — 00, this is not possible for all » € R (psd functions tend to zero at infinity
[2]). However, if we restrict ourselves to the domain 2 C R, it is possible to set
as, ag such that the covariance tends to zero at its perimeter: if R is the largest
magnitude of r within 2, stipulating that ¢(R) = 0 and %C(R) = 0 gives the
thin plate covariance

c(r) = % (2|7“|3 —3Rr* + R3) . (7)

1.2 1D regression demonstration

Fig. 2 shows a set of n = 20 points and their (noisy) function values X =
{zi,ti = f(z;) + €&}, where ¢ ~ Normal (67; | 0, 02). Assuming a Gaussian
process prior with zero mean and covariance as equation (7), a prediction for a
set of points U = {u;}72; C Q is given by [5]

P(f(U)|X) = Normal (f(U) | u, Q) (8)
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Figure 2: Thin plate vs. squared exponential covariance. (a) Mean (solid line)
and 3 s.d. error bars (filled region) for GP regression with covariance given by equation
(7); (b) Prediction with covariance function c(u;,u;) = e=ollui=uwil* with o = 2 (dashed
line), 10 (solid) and 100 (dotted); error bars correspond to a = 10; (c) Curve/likelihood
obtained for points of Fig. 1 using squared exponential covariance (“best” a = 8 setting
shown,).

where
p=Cr (Cox+0* )7t and Q= Cuy—CL(Coo + 1) 'Cuz.  (9)

The matrices are formed by evaluating c(-, -) between sets of points: i.e., Cpp =
[e(@i, 2)], Cuw = [c(us, 25)], and Cuu = [e(ui, uj)].

Fig. 2a shows the mean function and 3 standard deviation error bars for
this data set when Q = [~2,2] and 02 = 0.01 (sd(u;) = +/Qsi). Observe how
the mean attempts to minimize the second derivative as dictated by equation
(2). In comparison, Fig. 2b shows the predictions if the squared exponential
[5] covariance function is employed: the mean interpolant is smooth, but the
“compactness” of this covariance leads the mean function to tend towards the
GP mean (here zero) away from the data. This will cause undesirable geomet-
ric effects in higher dimensions (Fig. 2c). This covariance also suffers from a
nuisance length-scale parameter (although it does offer smoothness control not
available with our thin plate covariance).

2 2D curves, 3D surfaces

In order to model 2D curves, given some known points on the curve, we will find
f(x) as in equation (1) with d = 2. The training data comprise {z;,t;} pairs
with ¢; = 0 for points on the curve, plus additional points at 41 as illustrated
in Fig. 1la. The equivalent of equation (5) in R? is

(VY2 e(r) = 6(r) (10)

where now c(u,v) = ¢(r) with r 2 ||u — v||. Solutions to this (with constraints
at the boundary of € similar to those in 1D) are given by

2D c(r) = 2r?log|r| — (1 + 2log(R))r* + R? (11a)
3D co(r) =27> +3Rr? + R® (11b)



Fig. 1 shows a GP fitted to a curve using this covariance; the prediction formulae
remain the same as in equation (8), however in this example the supplied points
are assumed to be noiseless (02 = 0). Likewise, Fig. 3 shows some results for
modelling 3D objects.

The power of using a GP for this task is that it makes probabilistic pre-
dictions and Fig. 1a shows the curves generated by some random samples from
the full, joint GP posterior over (2; note that some of these samples have differ-
ent topology to the mean curve. Similarly, it is possible to provide a marginal
likelihood that one or more points lie on the (unknown) surface Sy

P(z € &) = P(f(z) =0). (12)

A visualization of this is shown in Fig. 1c. The probabilistic nature of these
surfaces is a very useful property for many applications e.g., visual tracking [1].

Further work will build on these results by (i) incorporating surface normal
data to the model; and (ii) using sparse GP approximations [4] to achieve
efficiency.

References

[1] A. Blake and M. Isard. Active Contours. Springer-Verlag, 1998.

[2] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural network architec-
tures. Neural Comp., 7:219-269, 1995.

[3] D.J.C. MacKay. Gaussian processes - a replacement for supervised neural networks? In
Advances in Neural Information Processing Systems, volume 9, 1997.

[4] J. Quinionero-Candela and C.E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression. J. Machine Learning Research, 6:1939-1959, 2005.

[6] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

[6] B. Scholkopf, J. Giesen, and S. Spalinger. Kernel methods for implicit surface modelling.
In Advances in Neural Information Processing Systems, volume 17, pages 1193—-1200, 2005.

[7] G.Turk and J.F. O’Brien. Variational implicit surfaces. Technical report, Georgia Institute
of Technology, 1998.

[8] G. Wahba. Spline Models for Observational Data. SIAM, 1990.

\ 4

(a) (b)

Figure 3: 3D surfaces. Mean surfaces u(z) = 0 when 2 € R3, rendered as an high
resolution polygonal mesh generated by the marching cubes algorithm. (a) A simple
“blob” defined by 15 points on the surface, one interior +1 point and 8 exterior -1
points arranged as a cube; (b) Two views of the Stanford bunny defined by 800 surface
points, one interior +1 point, and a sphere of 80 exterior -1 points.



