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Abstract

We propose a backward deletion procedure to Sparse Gaussian Process
Regression (SGPR) model, which can be used to refine a number of se-
quential forward selection algorithms addressed recently. Some experi-
mental results demonstrate the effectiveness of our approach.

1 Introduction

Recently a number of sparse approximations to sparse Gaussian Process Re-
gression (GPR) have been proposed. Of those, forward selection algorithms
[5, 4, 1, 3, 7, 6] have attracted much attention due to its simplicity and effi-
ciency. This kind of method involves iteratively selecting a subset of training
examples (known as basis vectors) based on various scoring criteria. It should be
noted that all of these approaches follow the path of forward stagewise fitting.
A natural raised question is: can we have a corresponding backward elimination
procedure, which is used to to remove some redundant basis vectors included in
previous iterations 1? The simple answer is yes and we will detail how to de-
velop this procedure in this paper. Moreover, a simple deletion criterion based
on least increasing regularised training error was also addressed. Combining
forward selection and our backward approach together, we finally present an
exchanging-based strategy to refine previous forward selection algorithms.

2 Sparse Gaussian Process Regression

Given a training data D = {(x1, y1), ..., (xn, yn)} composed of n examples, the
MAP estimate of GPR [5, 3] can be equivalently viewed as the following opti-
misation problem

min
α

π(α) :=
1

2
‖y − Kα‖2 +

σ2

2
α⊤Kα, (1)

1Lehel and Manfred [2] proposed a backward step for the on-line version of Gaussian
Process but it cannot be applied to batch version of GPR we considered here.
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where y = [y1, ..., yn]⊤ is the target vector, K is the covariance matrix generated
by evaluating paired inputs on a kernel function k(xi, xj), σ2 is the noise variance
and α = [α1, ..., αn]⊤ denotes the weight vector. After solving α from (1), we
can get the corresponding regression model f(x) =

∑n
i=1

αik(xi, x).
In order to deal with large-scale datasets, sometimes we are more interested

in a sparse solution to (1), which means some redundant entries of α are exactly
zeros. Let αp be all the non-zero entries of α indexed by Ip = [i1, ..., ip] which
corresponds to the set of selected basis vectors, the MAP estimate of sparse
GPR is equivalent to minimizing

min
αp

πp(αp) :=
1

2
‖y − Kpαp‖

2 +
σ2

2
α⊤

p Qpαp, (2)

where Kp is a n × p matrix of the covariance function between all the training
examples and selected basis vectors and Qp is the p × p covariance matrix of
evaluating basis vectors on the kernel function k(·, ·).

A number of forward selection algorithms have previously been developed
to select the set of basis vectors. The central idea is to include the next basis
vector which results in the largest reduction in the cost function (2) at each
iteration, i.e., the (p + 1)-th basis vector is chosen as

ip+1 = arg max
i/∈Ip

{|πp − πi
p+1|} (3)

where πi
p+1 is the minimum of (2) after the training instance xi is added to

the set of basis vectors. To overcome the computational cost of computing
(3) for all remaining basis candidates, some authors have recently suggested
a number of efficient implementation strategies [5, 1, 3, 7]. Our work in this
paper is concerned with a procedure of backward elimination, which is based on
optimising the cost (2) as well.

3 Backward Elimination

In contrast to forward selection, the philosophy of backward elimination is to
sequentially remove from the index set of basis vectors Ip, one at a time, those
basis vectors that lead to the smallest increase in the cost function. The increase
in the cost caused by excluding a particular basis vector, ij , can be computed
efficiently as described in the following. Since the cost function (2) arrives at its
optimum at αp = ΣpK

⊤
p y where Σp = (K⊤

p Kp + σ2Qp)
−1, we can rewrite it as

πp = 1

2
y⊤(Idn −KpΣpK

⊤
p )y, where Idn is the identity matrix of size n×n. Let

π
\j
p−1 denote the cost after the removal of ij from Ip, we can have the following

recursive equation:

π
\j
p−1 = πp +

1

2
α2

p(j)/Σp(j, j), (4)

where αp(j) is the j-th entry of αp and Σp(j, j) is the j-th diagonal of Σp. So
the resulting criteria of choosing the basis to be excluded is simply

ij = arg min
j=1,...,p

1

2
α2

p(j)/Σp(j, j). (5)
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Assuming that αp and the diagonal of Σp are implicitly computed at each it-
eration, this criteria would incur negligible computational cost. Once a basis
vector is selected, we need to update the weight vector αp and other necessary
quantities which include Kp, Qp, Lp, Gp,Mp, µp,Dp and the index set Ip, where
Lp is the factor of Cholesky decomposition: LpL

⊤
p = Qp, Gp = KpL

−⊤
p , Mp is

the Cholesky factor: MpM
⊤
p = G⊤

p Gp + σ2Idp, µp = y − Kpαp is the residual
and Dp is the diagonal of Σp. The updating steps of backward eliminiation are
summarized below ( the corresponding forward steps are detailed in [4, 6]):

1: Given: Kp, Qp, Lp, Gp, Mp, αp, µp, Dp, Ip and the index j to be removed;
2: Downdate Lp, Mp at the j-th row and Gp at the j-th column:

Lp ← ΠLpR1

i . . . R1

p−1, Gp ← GpR1

i . . . R1

p−1 and Mp ←MpR2

i . . . R2

p−1, where
Π is an appropriate permutation matrix and R1

i , R
2

i denote appropriate rotations
in planes i, i + 1 for i = j, . . . , p− 1.

3: Kp ← KpΠ⊤, Qp ← ΠQpΠ⊤, αp ← Παp, Dp ← ΠDp and Ip ← ΠIp;

4: Let Lp =

[

Lp−1 lj
l⊤j l∗j

]

, Gp = [Gp−1 gj ],Mp =

[

Mp−1 mj

m⊤

j m∗

j

]

, αp =
[

αp−1

aj

]

,we have b = aj l
∗

j (m∗

j )
2, η = M−⊤

p−1
mj and d = gj −Gp−1η.

5: Define κ = L−⊤

p−1
(lj + l∗j η), we have αp−1 = αp + ajκ, µp−1 = µp − bd/(m∗

j )
2 and

Dp−1 = Dp − κ2/(l∗j m∗

j )
2

6: Outputs: Kp−1, Qp−1, Lp−1, Gp−1, Mp−1, αp−1, µp−1, Dp−1 and Ip−1. Note that
the appropriate row and\or column is removed from some of variables.

It can be easily seen that the computational cost of one backward step just
leads to O(np) time which is linear in the number of training examples. The
combination of forward and backward steps can be used to refine the results
of any forward selection approach. The idea is certainly straightforward: at
the end of forward procedure, we apply the criteria (5) to decide on the basis
vector to be disregarded and then use forward procedure to select a new basis
vector from all the remaining vectors for replacing the former. This process
would initially increase the cost which is then more than compensated for by
an additional basis vector.

4 Numerical experiments

We demonstrate the proposed exchanging strategy on the KIN40K dataset 2

which is composed of 40000 examples with 8 inputs. We randomly split the
mother data into 10000 training and 30000 testing examples and produce 20
repetitions, respectively. All the hyperparameters involved (σ2 and kernel pa-
rameters) are estimated via a full GPR model with commonly used squared-

exponential kernel on a subset of 1000 examples randomly selected from the
original dataset.

2See http://ida.first.fraunhofer.de/∼anton/data.html
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We employ the DMAX approach [3] as the choice of forward selection pro-
cedure in our experiment. The number of selected basis vectors is fixed on 500
and the exchanging steps are from 100 to 300. Table 1 summarizes test NMSE
(normalized mean squared error) and NLPD (negative logarithm of predictive
distribution) results of applying the DMAX method with our proposed exchang-
ing strategy, where ‘500±∆’ denotes 500 forward selection steps followed by ∆
exchanging steps.

Table 1: Results of the DMAX [3] approach with our proposed exchanging
strategy on KIN40K dataset. The p-value is for the paired t-test on test error.

Steps test NMSE p-value test NLPD p-value

500± 0 0.0355± 0.0009 - -1.3673±0.0059 -

500± 100 0.0318±0.0008 9.9×1e-16 -1.3736±0.0057 1.2×1e-3
500± 200 0.0300±0.0007 4.9×1e-22 -1.3790±0.0050 4.8×1e-8
500± 300 0.0290±0.0007 1.9×1e-24 -1.3825±0.0055 2.6×1e-10

From Table 1, it can be noted that our exchanging strategy could signifi-
cantly improve the result of the forward selection approach DMAX, which is
decided by a p-value threshold of 0.01 in the paired t-test. It has also been ob-
served that the more exchanging steps we run, the more benefits we can achieve
in the KIN40K dataset.

5 Future work

Most of existing forward selection algorithms and our proposed work are all
based on optimising the cost function (2). Actually, the forward selection step
like [7] and the backward step developed here can be extended to optimizing
marginal likelihood cost function which is commonly used for model selection.
It would produce a more reliable way of learning kernel hyperparameters for
sparse GPR model through a combination of backward and forward steps.
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