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Context

dx = f(x)dt + VE dW

Stochastic differential equations:

= Describe the time dynamics of a state vector based on the
(approximate) model of the real system.

= The driving noise process correspond to processes not known in the
model, but present in the real system.
= Applications in environmental modelling, finance, physics, etc.




Target application: numerical weather prediction

o Numerical weather prediction models:

Based on the discretisation of coupled partial differential equations
Dynamical models are imperfect

State vectors have typically dimension (’)(106) .

Large number of data, but relatively few compared to dimension

o Previous approaches consider the models as deterministic or
propagate only mean forward in time.

o Recent work attempts propagating uncertainty as well (e.g.,
approximate Monte Carlo methods).

o Most approaches do not deal with estimating unknown model
parameters.

o We focus on a GP and a variational approximation and expect it can
be applied to very large models, by exploiting localisation,
hierarchical models and sparse representations.

Overview

o Basic setting

o Probability measures and state paths

o GP approximation of the posterior measure

o Variational approximation of the posterior measure




Basic setting

x(t)

o Stochastic differential equation:
dx = f(x)dt + VE dW

o Noise model (likelihood):
p(yn|x(tn)) = N (yn|Hx(tn), Q)

(Ito) stochastic differential equation

o Discrete time form of Ito’'s SDE:
Xp41 = X +F(x) At + ¢ VE At
with €, ~ N (0,1)
0 The Wiener process is a Gaussian stochastic process with
independent increments (if not overlapping):
W(t2) —W(t1) L W(ty) — W(t))
W (t2) — W(t1) ~N(O,t2 —t1)




Probability measures of state paths

o The nonlinear function f induces a prior non-Gaussian probability
measure over state paths in time:
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o Inference problem:
dppost 1 N
— P2 = = x ] p(ynlx(tn))
dpsde Z n=1

Gaussian approximation of the posterior measure

o Approximate the posterior measure by a Gaussian process:
Ppost = qt(z) = N (m(t),S(¢))
o Replace the non-Gaussian Markov process by a Gaussian one:

dx = fr(x)dt + VZ dW
with f7,(x,t) = A(t)x + b(t)

o Minimize Kullback-Leibler divergence along the state path:
T N 1
KL [gllppost] = /O B(t)dt + 5 In(2m) + =1 |Q| +In Z

with Egqe(t) = 5 (If ~f1]%)

Eops(t) = 53 (llyn = Hx(D)II3), 6(t —tn)




Computing the KL divergence along a state path

o Discretized SDEs:

Axy = X1 — X = f(xp)At+ VEAL g,
AXp =Xpp1 — X = fr (xp, ti) At + VI Atey,

o Probability density of the discrete time path:
p(XI:K) = HkN(Xk+1|Xk —|— f(Xk)At, EAt)
q(x1:x) = [ [N (Xk1[x5 + £L (%K, tx) At, BAL)

o KL along a discrete path:
KL [g(x1.5) [|[Psde (X1:K)]
= Jdxy q(xk) [ dxpi1 q(xp41]xx) In %

=52k Jdxk q(xx) (- f)TS 1 (f — f1)At

o Pass to a continuum by taking the limit At — 0.

Gaussian process posterior moments

o GP approximation of the prior process:
min KL [g][psael — A() =~ (g)
b(t) = —(f),, + A(t)m(?)

o Compute induced two-time kernel by solving its ordinary differential
equations:
%12’@ = —K(t1,t2)AT(tp) for t1 <t

dKEittll,tQ) = —A(t1)K(t1,t2) for to < t1

o Posterior moments (standard GP regression):

m. =k (K+Q) 'y
Se = k(ts, ts) — k] (K+ Q) ki




Example 1:
Ornstein-Uhlenbeck process

o Prior process:
flz)=—z
o Solution to the kernel ODE:

K(t1,t2) = K(t1,t1) exp{—A(ta — t1)}

o Resulting induced kernel:

2
K(t1,t2) = 55 exp{-—/ta — t1[}

Ornstein-Uhlenbeck kernel Evidence




Example 2:
Double-well system

o Prior process:

f(z) =4z (1 —2?)

o Stationary kernel:

Uz
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2
K(t1,t2) = 35 exp{—alta — t1}

with @ = —4(1 — 3m7 — 3s%)

Stationary (OU) kernel
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Variational approximation of the posterior moments
o Why?

o Constraint on the mean and covariance of the marginals:
dm — _A(t)m + b(t)

B = _AWS-SAT(H) + =

o Seeking for the stationary points of the Lagrangian leads to:

98 —(T+¥NHS—Am" =0
I +x=o,

9E (T + WA+ =0
98 _ATA+ % =0

A possible smoothing algorithm

Repeat until convergence:
1. Forward propagation of the mean and the covariance.
2. Backward propagation of the Lagrange multipliers:

dv _ g T 9E e
@ =@+ ‘;’)A — "
A\ _ AT Esde
@ =AA T
Use jump conditions when there’s an observation:

OEps — 1iyTo—-1
¢ =3H Q'H
e = —H'Q ' (yn — Hm(tn))

3. Update the parameters of the approximate SDE:
A@t) = (), +B@®) +¥T (1)
b(t) = —(f),, + A{®)m(t) — ZA(?)




Example 1:
Ornstein-Uhlenbeck process
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Example 2:
Double-well system

GP initialization 1 FW-BW sweep

4z(1 — =2

)

2 FW-BW sweep

(Eyinck, et al., 2002)
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Conclusion

o Proper modelling requires to take into account that the prior process
is a non-Gaussian process.

0 A key quantity in the energy function is the KL divergence between
processes over a time interval (i.e., between probability measures
over paths!)

o Unlike in standard GP regression, the feature that the process is
infinite dimensional plays a role in the inference.

o These results were preliminary ones, but the framework is a general
one (not limited to smoothing in time).
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