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Context

Stochastic differential equations:
� Describe the time dynamics of  a state vector based on the 

(approximate) model of the real system. 

� The driving noise process correspond to processes not known in the 
model, but present in the real system.

� Applications in environmental modelling, finance, physics, etc.
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Target application: numerical weather prediction

� Numerical weather prediction models: 
� Based on the discretisation of coupled partial differential equations
� Dynamical models are imperfect
� State vectors have typically dimension . 

� Large number of data, but relatively few compared to dimension

� Previous approaches consider the models as deterministic or 
propagate only mean forward in time.

� Recent work attempts propagating uncertainty as well (e.g., 
approximate Monte Carlo methods).

� Most approaches do not deal with estimating unknown model 
parameters.

� We focus on a GP and a variational approximation and expect it can 
be applied to very large models, by exploiting localisation, 
hierarchical models and sparse representations.
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Overview

� Basic setting

� Probability measures and state paths

� GP approximation of the posterior measure

� Variational approximation of the posterior measure
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Basic setting

� Stochastic differential equation:

� Noise model (likelihood):

(Ito) stochastic differential equation

� Discrete time form of Ito’s SDE:

with

� The Wiener process is a Gaussian stochastic process with 
independent increments (if not overlapping):
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Probability measures of state paths

� The nonlinear function f induces a prior non-Gaussian probability 
measure over state paths in time:

� Inference problem:

Gaussian approximation of the posterior measure

� Approximate the posterior measure by a Gaussian process:

� Replace the non-Gaussian Markov process by a Gaussian one:

with

� Minimize Kullback-Leibler divergence along the state path:

with
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Computing the KL divergence along a state path

� Discretized SDEs:

� Probability density  of the discrete time path:

� KL along a discrete path:

� Pass to a continuum by taking the limit              . 

p(x1:K) =
∏
kN (xk+1|xk + f(xk)∆t,Σ∆t)

q(x1:K) =
∏
kN (xk+1|xk + fL(xk, tk)∆t,Σ∆t)

KL [q(x1:K)‖psde(x1:K)]

=
∑
k

∫
dxk q(xk)

∫
dxk+1 q(xk+1|xk) ln

q(xk+1|xk)
p(xk+1|xk)

= 1
2

∑
k

∫
dxk q(xk) (f − fL)TΣ

−1(f − fL)∆t

∆t→ 0

Gaussian process posterior moments

� GP approximation of the prior process:

� Compute induced two-time kernel by solving its ordinary differential 
equations:

� Posterior moments (standard GP regression):
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Example 1: 

Ornstein-Uhlenbeck process

� Prior process:

� Solution to the kernel ODE:

� Resulting induced kernel:

K(t1, t2) = K(t1, t1) exp{−A(t2 − t1)}

f(x) = −γx

K(t1, t2) =
σ2

2γ
exp{−γ|t2 − t1|}

Ornstein-Uhlenbeck kernel

x(t)

t

Evidence

lnp(D)

γ

γ = 1
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Example 2:

Double-well system

� Prior process:

� Stationary kernel:

with

x(t)

U(x)

Stationary (OU) kernel

x(t)

t

x(t)

t

Squared exponential kernel

lnp(D)

α
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Variational approximation of the posterior moments

� Why?

� Constraint on the mean and covariance of the marginals:

� Seeking for the stationary points of the Lagrangian leads to:

A possible smoothing algorithm

Repeat until convergence:

1. Forward propagation of the mean and the covariance.

2. Backward propagation of the Lagrange multipliers:

Use jump conditions when there’s an observation:

3. Update the parameters of the approximate SDE:
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Example 1:

Ornstein-Uhlenbeck process

f(x) = −γx

fL(x) = −Ax+ b

Example 2:

Double-well system f(x) = 4x(1− x2)

GP initialization 2 FW-BW sweep1 FW-BW sweep

# sweeps

−lnZ

(Eyinck, et al., 2002)

Ensemble Kalman smoother
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Conclusion

� Proper modelling requires to take into account that the prior process 
is a non-Gaussian process.

� A key quantity in the energy function is the KL divergence between 
processes over a time interval (i.e., between probability measures 
over paths!)

� Unlike in standard GP regression, the feature that the process is 
infinite dimensional plays a role in the inference.

� These results were preliminary ones, but the framework is a general 
one (not limited to smoothing in time).


