
BayesOpt: Extensions and applications

Javier González

Masterclass, 7-February, 2107 @Lancaster University

Agenda of the day

I 9:00-11:00, Introduction to Bayesian Optimization:
I What is BayesOpt and why it works?
I Relevant things to know.

I 11:30-13:00, Connections, extensions and
applications:

I Extensions to multi-task problems, constrained domains,
early-stopping, high dimensions.

I Connections to Armed bandits and ABC.
I An applications in genetics.

I 14:00-16:00, GPyOpt LAB!: Bring your own problem!

I 16:30-15:30, Hot topics current challenges:
I Parallelization.
I Non-myopic methods
I Interactive Bayesian Optimization.

Section II: Connections, extensions and
applications

I Extensions to multi-task problems, constrained domains,
early-stopping, high dimensions.

I Connections to Armed bandits and ABC.

I An applications in genetics.

Multi-task Bayesian Optimization
[Wersky et al., 2013]

Two types of problems:

1. Multiple, and conflicting objectives: design an engine more
powerful but more efficient.

2. The objective is very expensive, but we have access to
another cheaper and correlated one.

Multi-task Bayesian Optimization
[Wersky et al., 2013]

I We want to optimise an objective that it is very expensive
to evaluate but we have access to another function,
correlated with objective, that is cheaper to evaluate.

I The idea is to use the correlation among the function to
improve the optimization.

Multi-output Gaussian process

k̃(x, x′) = B⊗ k(x, x′)

Multi-task Bayesian Optimization
[Wersky et al., 2013]

I Correlation among tasks reduces global uncertainty.

I The choice (acquisition) changes.

Multi-task Bayesian Optimization
[Wersky et al., 2013]

I In other cases we want to optimize several tasks at the
same time.

I We need to use a combination of them (the mean, for
instance) or have a look to the Pareto frontiers of the
problem.

Averaged expected improvement.

Multi-task Bayesian Optimization
[Wersky et al., 2013]

Non-stationary Bayesian Optimization
[Snoek et al., 2014]

The beta distributions allows for a rich family of
transformations.

Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Idea: transform the function to make it stationary.

Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Results improve in many experiments by warping the inputs.

Extensions to multi-task warping.

Inequality Constraints
[Gardner et al., 2014]

An option is to penalize the EI with an indicator function that
vanishes the acquisition out the domain of interest.

Inequality Constraints
[Gardner et al., 2014]

Much more efficient than standard approaches.

High-dimensional BO: REMBO
[Wang et al., 2013]

High-dimensional BO: REMBO
[Wang et al., 2013]

A function f : X → < is called to have effective dimensionality
d with d ≤ D if there exist a linear subspace T of dimension d
such that for all x⊥ ⊂ T and x> ⊂T> ⊂ T we have
f(x⊥) = f(x⊥ + x>) where T > is the orthogonal complement of
T .

High-dimensional BO: REMBO
[Wang et al., 2013]

I Better in cases in the which the intrinsic dimensionality of
the function is low.

I Hard to implement (need to define the bounds of the
optimization after the embedding).

High-dimensional BO: Additive models

Use the Sobol-Hoeffding decompostion

f(x) = f0 +

D∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + · · ·+ f1,...,D(x)

where

I f0 =
∫
X f(x)dx

I fi(xi) =
∫
X−i

f(x)dx−i - f0

I etc...

and assume that the effects of high order than q are null.

High-dimensional BO: Additive models

Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Beta-Bernoulli Bayesian optimization: Beta prior on each
arm.

Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Beta posterior:

Thompson sampling:

Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Beta-Bernoulli Bayesian optimization:

Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Linear bandits:

We introduce correlations among the arms.

Normal-inverse Gamma prior.

Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Linear bandits:

Now we can extract analytically the posterior mean and
variance:

And do Thompsom sampling again:

Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

From linear bandits to Bayesian optimization:

I Replace X by a basis of functions Φ.

I Bayesian optimization generalizes Linear bandits as
Gaussian processes generalizes Bayesian linear regresion.

I Infinitely many + linear + correlated Bandits = Bayesian
optimization.

Early-stopping Bayesian optimization
Swersky et al. [2014]

Considerations:

I When looking for a good parameters set for a model, in
many cases each evaluation requires of a inner loop
optimization.

I Learning curves have a similar (monotonically decreasing)
shape.

I Fit a meta-model to the learning curves to predict the
expected performance of sets of parameters

Main benefit: allows for early-stopping

Early-stopping Bayesian optimization
Swersky et al. [2014]

Kernel for learning curves

k(t, t′) =

∫ ∞
0

e−λte−λtϕ(dλ)

where ϕ is a Gamma distribution.

Early-stopping Bayesian optimization
Swersky et al. [2014]

I Non-stationary kernel as an infinite mixture of
exponentially decaying basis function.

I A hierarchical model is used to model the learning curves.

I Early-stopping is possible for bad parameter sets.

Early-stopping Bayesian optimization
Swersky et al. [2014]

I Good results compared to standard approaches.

I What to do if exponential decay assumption does not hold?

Conditional dependencies
Swersky et al. [2014]

I Often, we search over structures with differing numbers of
parameters: find the best neural network architecture

I The input space has a conditional dependency structure.

I Input space X = X1 × · · · × Xd. The value of xj ∈ Xj
depends on the value of xi ∈ Xi.

Conditional dependencies
Swersky et al. [2014]

Robotics Video

Approximate Bayesian Computation - BayesOpt
Gutmann et al. [2015]

Bayesian inference:

p(θ|y) ∝ L(θ|theta)p(θ)

Focus on cases where:

I The likelihood function L(θ|theta) is too costly to compute.

I It is still possible to simulate from the model.

Approximate Bayesian Computation - BayesOpt
Gutmann et al. [2015]

ABC idea: Identify the values of θ for which simulated data
resemble the observed data y0

1. Sample θ from the prior p(θ).

2. Sample y|θ from the model.

3. Compute some distance d(y, y0) between the observed and
simulated data (using sufficient statistics).

4. Retain θ if d(y, y0) ≤ ε

Approximate Bayesian Computation - BayesOpt
Gutmann et al. [2015]

I Produce samples from the approximate posterior p(θ|y).

I Small ε: accurate samples but very inefficient (a lot of
rejection).

I Small ε: less rejection but inaccurate samples.

Idea: Model the discrepancy d(y, y0) with a (log) Gaussian
process and use Bayesian optimization to find regions of the
parameters space it is small.

Meta-model for (θi, di) where di = d(y
(i)
θ , y0)

Approximate Bayesian Computation - BayesOpt
Gutmann et al. [2015]

I BayesOpt applied to minimize the discrepancy.
I Stochastic acquisition to encourage diversity in the points

(GP-UCB + jitter term).

ABC-BO vs. Monte Carlo (PMC) ABC approach: Roughly
equal results using 1000 times fewer simulations.

Synthetic gene design with Bayesian optimization

I Use mammalian cells to make protein products.

I Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently [González et al. 2014].

Central dogma of molecular biology

Central dogma of molecular biology

Big question

Remark: ‘Natural’ gene sequences are not necessarily optimized
to maximize protein production.

ATGCTGCAGATGTGGGGGTTTGTTCTCTATCTCTTCCTGAC
TTTGTTCTCTATCTCTTCCTGACTTTGTTCTCTATCTCTTC...

Considerations

I Different gene sequences → same protein.

I The sequence affects the synthesis efficiency.

Which is the most efficient sequence to produce a
protein?

Redundancy of the genetic code

I Codon: Three consecutive bases: AAT, ACG, etc.

I Protein: sequence of amino acids.

I Different codons may encode the same aminoacid.

I ACA=ACU encodes for Threonine.

ATUUUGACA = ATUUUGACU

synonyms sequences→ same protein but different efficiency

Redundancy of the genetic code

How to design a synthetic gene?

A good model is crucial: Gene sequence features → protein
production efficiency.

Bayesian Optimization principles for gene design

do:

1. Build a GP model as an emulator of the cell behavior.

2. Obtain a set of gene design rules (features optimization).

3. Design one/many new gene/s coherent with the design
rules.

4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).

Model as an emulator of the cell behavior

Model inputs
Features (xi) extracted gene sequences (si): codon frequency,
cai, gene length, folding energy, etc.

Model outputs
Transcription and translation rates f := (fα, fβ).

Model type
Multi-output Gaussian process f ≈ GP(m,K) where K is a
corregionalization covariance for the two-output model (+ SE
with ARD).

The correlation in the outputs help!

Model as an emulator of the cell behavior

Obtaining optimal gene design rules

Maximize the averaged EI [Swersky et al. 2013]

α(x) = σ̄(x)(−uΦ(−u) + φ(u))

where u = (ymax − m̄(x))/σ̄(x) and

m̄(x) =
1

2

∑
l=α,β

f∗(x), σ̄2(x) =
1

22

∑
l,l′=α,β

(K∗(x,x))l,l′ .

A batch method is used when several experiments can be run in
parallel

Designing new genes

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target (same
amino-acids).

2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal’ design rules.

Ranking criterion: eval(s|x?) =
∑p

j=1wj |xj − x?j |

I x?: optimal gene design rules.

I s, xj generated ‘synonyms sequence’ and its features.

I wj : weights of the p features (inverse length-scales of the
model covariance).

Results

Available software

I Spearmint (https://github.com/HIPS/Spearmint).

I BayesOpt (http://rmcantin.bitbucket.org/html/).

I pybo (https://github.com/mwhoffman/pybo).

I robo (https://github.com/automl/RoBO).

GPyOpt

I Python code framework for Bayesian Optimization.

I Developed by the group with other contributions.

I Builds on top of GPy, framework for Gaussian process
modelling (any model in GPy can be imported as a
surrogate model to do optimization in GPyOpt).

I We started to develop it on Jun 2014.

Main features

Feature Availability

- GPs, warped-GP, RF, etc. X
- EI, MPI, GP-UCB X
- Internal optimizers: BFGS, DIRECT, CMA-ES X
- Model hyperpatemeters integration X
- Discrete/continuous/categorical variables X
- Bandits optimization X
- Parallel/batch optimization X
- Arbitrary constrains X
- Spearmint compatibility X
- Cost functions (including evaluation time) X
- Modular optimization X
- Structured inputs (conditional dependencies) X
- Context variables X

Code sample

