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Agenda of the day

» 9:00-11:00, Introduction to Bayesian Optimization:

» What is BayesOpt and why it works?
» Relevant things to know.

» 11:30-13:00, Connections, extensions and
applications:
» Extensions to multi-task problems, constrained domains,
early-stopping, high dimensions.
» Connections to Armed bandits and ABC.
» An applications in genetics.

» 14:00-16:00, GPyOpt LAB!: Bring your own problem!

» 16:30-15:30, Hot topics current challenges:
» Parallelization.
» Non-myopic methods
» Interactive Bayesian Optimization.



Section II: Connections, extensions and
applications

» Extensions to multi-task problems, constrained domains,
early-stopping, high dimensions.

» Connections to Armed bandits and ABC.

» An applications in genetics.



Multi-task Bayesian Optimization
[Wersky et al., 2013]

Two types of problems:

1. Multiple, and conflicting objectives: design an engine more
powerful but more efficient.

2. The objective is very expensive, but we have access to
another cheaper and correlated one.



Multi-task Bayesian Optimization
[Wersky et al., 2013]

» We want to optimise an objective that it is very expensive
to evaluate but we have access to another function,
correlated with objective, that is cheaper to evaluate.

» The idea is to use the correlation among the function to
improve the optimization.

Multi-output Gaussian process

k(z,2") = B® k(z,2')



Multi-task Bayesian Optimization
[Wersky et al., 2013]

(@) Multi-task GP sample functions

(b) Independent GP predictions

(c) Multi-task GP predictions

» Correlation among tasks reduces global uncertainty.

» The choice (acquisition) changes.




Multi-task Bayesian Optimization
[Wersky et al., 2013]

» In other cases we want to optimize several tasks at the
same time.

» We need to use a combination of them (the mean, for
instance) or have a look to the Pareto frontiers of the
problem.

Averaged expected improvement.



Multi-task Bayesian Optimization
[Wersky et al., 2013]
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Non-stationary Bayesian Optimization
[Snoek et al., 2014]

The beta distributions allows for a rich family of
transformations.
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Non-stationary Bayesian Optimization

[Snoek et al., 2014]

Idea: transform the function to make it stationary.
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periodic function
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Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Results improve in many experiments by warping the inputs.

Extensions to multi-task warping.
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Inequality Constraints
[Gardner et al., 2014]

An option is to penalize the EI with an indicator function that
vanishes the acquisition out the domain of interest.

Io(x) = A(x) max {0, £(x1) — (%)} = A(x)I(%)



Inequality Constraints
[Gardner et al., 2014]

Much more efficient than standard approaches.

Uniform Sampling

Simulation 1

INFEASIBLE

Simulation 2




High-dimensional BO: REMBO

[Wang et al., 2013]

Bayesian Optimization in a Billion Dimensions
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High-dimensional BO: REMBO

[Wang et al., 2013]

A function f : X — R is called to have effective dimensionality
d with d < D if there exist a linear subspace 7 of dimension d
such that for all z; ¢ 7 and z CTT C T we have

f(z1) = f(z1 +21) where T is the orthogonal complement of

T.
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High-dimensional BO: REMBO

[Wang et al., 2013]
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» Better in cases in the which the intrinsic dimensionality of
the function is low.

» Hard to implement (need to define the bounds of the
optimization after the embedding).



High-dimensional BO: Additive models

Use the Sobol-Hoeffding decompostion

= fo +Zfz T +wa :L‘Z,x] “+ fl,...,D(:U)

1<j
where
> fo= fX
> fz 331 fX d$_ fO
> ctc...

and assume that the effects of high order than ¢ are null.



High-dimensional BO: Additive models

High Dimensional Bayesian Optimisation and Bandits via Additive Models

Kirthevasan Kandasamy
Jeff Schneider
Barnabds Poczos

Camegie Mellon University, Pittsburgh, PA, USA

Abstract

Optimisation (BO) is a techni used
in optimising a D-dimensional function which
is typically expensive to evaluate. While there
have been many successes for BO in low dimen-
sions, scaling it to high dimensions has been no-
toriously difficult. Existing literature on the topic
are under very restrictive settings. In this paper,
we identify two key challenges in this endeavour.
We tackle these challenges by assuming an addi-
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Bayesian Optimisation (Mockus & Mockus, 1991) refers
to a suite of methods that tackle this problem by modeling
f as a Gaussian Process (GP). In such methods the chal-
lenge is two fold. At time step ¢, first estimate the unknown
f from the query value-pairs. Then use it to intelligently
query at x; where the function is likely to be high. For
this, we first we use the posterior GP to construct an acqui-
sition function ; which captures the value of the experi-
ment. Then we maximise @ to determine x;.

Gaussian nrocess bandits and Bavesian ontimisation (GPR/



Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Beta-Bernoulli Bayesian optimization: Beta prior on each
arm.

p(w) = Beta(w|2,2)
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Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Beta posterior:

K
p(w|D) = H Beta(w, |+ ng.1, 8+ na0)

a=1

Thompson sampling:

ap+1 = argmax fw(a) where w ~ p(w |D,,)



Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Beta-Bernoulli Bayesian optimization:

Algorithm 2 Thompson sampling for Beta-Bernoulli bandit

Require: «, 3: hyperparameters of the beta prior
1: Initialize nq,0 = ng,1 =@ =0 for all a
2: repeat
33 fora=1,...,K do
4 W, ~ Beta(a + ng.1, 8+ nao)
5:  end for
6:  a; = argmax, Wq
7. Observe y; by pulling arm a;
8: if y; = 0 then
9: Na;,0 = Na; 0 +1
10:  else

11 Na;1 = Na; 1+ 1
12:  end if
13: i=1+1

14: until stopping criterion reached




Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Linear bandits:

We introduce correlations among the arms.
_ T
f w (CL) =X, W
Normal-inverse Gamma, prior.

NIG(w, 0% | wo, Vo, ao, fo) =

%(w - Wo)TVJI(W — wo)}
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Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

Linear bandits:

Now we can extract analytically the posterior mean and
variance:

Wy, = V'n (V()_lw(r) + XTy)
Vo= (Vo + XX
an = o+ n/2

1 _ _
Bn = Po + 3 (Wi Vitwo +yly —wiV, 'w,)
And do Thompsom sampling again:

an41 = argmax x. w where w ~ p(w|D,,)

a



Armed bandits - Bayesian Optimization
Shahriari et al, [2016]

From linear bandits to Bayesian optimization:

» Replace X by a basis of functions .

» Bayesian optimization generalizes Linear bandits as
Gaussian processes generalizes Bayesian linear regresion.

» Infinitely many + linear + correlated Bandits = Bayesian
optimization.



Early-stopping Bayesian optimization
Swersky et al. [2014]

Considerations:

» When looking for a good parameters set for a model, in
many cases each evaluation requires of a inner loop
optimization.

» Learning curves have a similar (monotonically decreasing)
shape.

» Fit a meta-model to the learning curves to predict the
expected performance of sets of parameters

Main benefit: allows for early-stopping



Early-stopping Bayesian optimization
Swersky et al. [2014]

Kernel for learning curves

k(t,t’):/ e Me A p(d)N)
0

where ¢ is a Gamma distribution.

(a) Exponential Decay Basis (b) Samples (c) Training Curve Samples



Early-stopping Bayesian optimization
Swersky et al. [2014]

» Non-stationary kernel as an infinite mixture of
exponentially decaying basis function.

» A hierarchical model is used to model the learning curves.

» Early-stopping is possible for bad parameter sets.
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Early-stopping Bayesian optimization
Swersky et al. [2014]

» Good results compared to standard approaches.

» What to do if exponential decay assumption does not hold?
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Conditional dependencies
Swersky et al. [2014]

» Often, we search over structures with differing numbers of
parameters: find the best neural network architecture

» The input space has a conditional dependency structure.

» Input space X = X1 x --- x Xy. The value of x; € &
depends on the value of x; € A;.
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Node|
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Conditional dependencies
Swersky et al. [2014]

Raiders of the Lost Architecture:
Kernels for Bayesian Optimization in Conditional
Parameter Spaces
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Abstract

In practical Bayesian optimization, we must often search over structures with dif-
fering numbers of parameters. For instance, we may wish to search over neural
network architectures with an unknown number of layers. To relate performance
data gathered for different architectures, we define a new kernel for conditional
parameter spaces that explicitly includes information about which parameters are
relevant in a given structure. We show that this kernel improves model quality and
Bayesian optimization results over several simpler baseline kemels.



Robotics Video



Approximate Bayesian Computation - BayesOpt

Gutmann et al. [2015]

Bayesian inference:

p(Bly) oc L(B]theta)p(6)

Focus on cases where:

» The likelihood function L(@|theta) is too costly to compute.

» It is still possible to simulate from the model.



Approximate Bayesian Computation - BayesOpt

Gutmann et al. [2015]

ABC idea: Identify the values of 8 for which simulated data
resemble the observed data g

1. Sample € from the prior p().
2. Sample y|f from the model.

3. Compute some distance d(y,yo) between the observed and
simulated data (using sufficient statistics).

4. Retain 6 if d(y,yo) < €



Approximate Bayesian Computation - BayesOpt

Gutmann et al. [2015]
» Produce samples from the approximate posterior p(0|y).

» Small e: accurate samples but very inefficient (a lot of
rejection).

» Small e: less rejection but inaccurate samples.

Idea: Model the discrepancy d(y,yo) with a (log) Gaussian
process and use Bayesian optimization to find regions of the
parameters space it is small.

Meta-model for (6;,d;) where d; = d(yéi), Yo)



Approximate Bayesian Computation - BayesOpt

Gutmann et al. [2015]

» BayesOpt applied to minimize the discrepancy.

» Stochastic acquisition to encourage diversity in the points
(GP-UCB + jitter term).
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ABC-BO vs. Monte Carlo (PMC) ABC approach: Roughly
equal results using 1000 times fewer simulations.



Synthetic gene design with Bayesian optimization

» Use mammalian cells to make protein products.
» Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently [Gonzalez et al. 2014].



Central dogma of molecular biology

Transcription Translation
f ffici .
Gene — - mRNA " . Protein
sequence mRNA | Protein

degradation degradation
(half-life)




Central dogma of molecular biology

Translation
efficiency

Gene — - mRNA Protein
sequence . St
e degradation
? (half-life)
"




Big question

Remark: ‘Natural’ gene sequences are not necessarily optimized
to maximize protein production.

ATGCTGCAGATGTGGGGGTTTGTTCTCTATCTCTTCCTGAC
TTTGTTCTCTATCTCTTCCTGACTTTGTTCTCTATCTCTTC...

Considerations

» Different gene sequences — same protein.

» The sequence affects the synthesis efficiency.

Which is the most efficient sequence to produce a
protein?



Redundancy of the genetic code

v

Codon: Three consecutive bases: AAT, ACG, etc.

Protein: sequence of amino acids.

v

v

Different codons may encode the same aminoacid.

ACA=ACU encodes for Threonine.

v

ATUUUGACA = ATUUUGACU

synonyms sequences — same protein but different efficiency



Redundancy of the genetic code

Transcription Translation
rate rate

Gene = MRNA = Protein

ATGCTGCAGATGTGGGGGTTTGTTCT
GCTGCAGGACAGGGTGTGGAGCAGC
CTGCCAAATTGATGTCTGTGGAGGGA
ACCTTTGCTCGG




How to design a synthetic gene?

A good model is crucial: Gene sequence features — protein
production efficiency.

Bayesian Optimization principles for gene design

do:

1. Build a GP model as an emulator of the cell behavior.
2. Obtain a set of gene design rules (features optimization).

3. Design one/many new gene/s coherent with the design
rules.

4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).



Model as an emulator of the cell behavior

Model inputs
Features (x;) extracted gene sequences (s;): codon frequency,
cai, gene length, folding energy, etc.

Model outputs
Transcription and translation rates f:= (fq, f3).

Model type
Multi-output Gaussian process f ~ GP(m, K) where K is a

corregionalization covariance for the two-output model (+ SE
with ARD).

The correlation in the outputs help!



Model as an emulator of the cell behavior




Obtaining optimal gene design rules

Maximize the averaged EI [Swersky et al. 2013]
a(x) = 7(x)(—ud(—u) + ¢(u))

where u = (Ymazr — m(x))/7(z) and

) = 3R, 0200 = g5 O (Kulxx)r

l=a,p Ll'=a,p

A batch method is used when several experiments can be run in
parallel



Designing new genes

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target (same
amino-acids).
2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal’ design rules.

Ranking criterion: eval(s|x*) = > 0_, wj|x; — x}

» x*: optimal gene design rules.

» s, x; generated ‘synonyms sequence’ and its features.

» w;: weights of the p features (inverse length-scales of the
model covariance).



Results

True rates average

features used in the model
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Available software

v

Spearmint (https://github.com/HIPS/Spearmint).

v

BayesOpt (http://rmcantin.bitbucket.org/html/).

v

pybo (https://github.com/mwhoffman/pybo).

v

robo (https://github.com/automl/RoBO).



GPyOpt

» Python code framework for Bayesian Optimization.
» Developed by the group with other contributions.

» Builds on top of GPy, framework for Gaussian process
modelling (any model in GPy can be imported as a
surrogate model to do optimization in GPyOpt).

» We started to develop it on Jun 2014.



Main features

Feature Availability

- GPs, warped-GP, RF, etc.

- EI, MPI, GP-UCB

- Internal optimizers: BFGS, DIRECT, CMA-ES
- Model hyperpatemeters integration

- Discrete/continuous/categorical variables

- Bandits optimization

- Parallel /batch optimization

- Arbitrary constrains

- Spearmint compatibility

- Cost functions (including evaluation time)

- Modular optimization

- Structured inputs (conditional dependencies)
- Context variables



Code sample

example.py

GPyOpt

objective = GPyOpt.objective_examples.experiments2d.sixhumpcamel().f

bounds =[{'name': 'var_1', 'type': 'continuous', 'domain':
{'name': 'var_2', 'type': 'continuous', 'domain':

constrains = [{'name': 'constr_1', 'constrain': '-x[:,1] -.5 + abs(x[:,0]) - np.sqrt(1-x[:,0]**2)'},
{'name': 'constr_2', 'constrain 'x[:,1] +.5 - abs(x[:,0]) - np.sqrt(1-x[:,0]*x2)'}]

optim = GPyOpt.methods.BayesianOptimization(objective.f,
domain = bounds,
constrains constrains,
model_type 'GP_MCMC',
acquisition_type="EI_MCMC',
batch_size = 4,
num_cores 2
normalize_Y = False,
acquisition_jitten = 0.1)

optim.run_optimization(max_iter = 40, max_time=60)




