BayesOpt: hot topics and current challenges

Javier González

Masterclass, 7-February, 2107 @Lancaster University

Agenda of the day

- ▶ 9:00-11:00, Introduction to Bayesian Optimization:
 - ▶ What is BayesOpt and why it works?
 - ► Relevant things to know.
- ▶ 11:30-13:00, Connections, extensions and applications:
 - ► Extensions to multi-task problems, constrained domains, early-stopping, high dimensions.
 - ▶ Connections to Armed bandits and ABC.
 - ▶ An applications in genetics.
- ▶ 14:00-16:00, GPyOpt LAB!: Bring your own problem!
- ▶ 16:30-15:30, Hot topics current challenges:
 - ▶ Parallelization.
 - ► Non-myopic methods
 - ▶ Interactive Bayesian Optimization.

Section III: Hot topics and challenges

- ▶ Parallel Bayesian Optimization
- ► Non-myopic methods.
- ▶ Interactive Bayesian Optimization.

Scalable BO: Parallel/batch BO

Avoiding the bottleneck of evaluating f

- ► Cost of $f(\mathbf{x}_n) = \text{cost of } \{f(\mathbf{x}_{n,1}), \dots, f(\mathbf{x}_{n,nb})\}.$
- ▶ Many cores available, simultaneous lab experiments, etc.

Considerations when designing a batch

- ▶ Available pairs $\{(\mathbf{x}_j, y_i)\}_{i=1}^n$ are augmented with the evaluations of f on $\mathcal{B}_t^{n_b} = \{\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,nb}\}.$
- ▶ Goal: design $\mathcal{B}_1^{n_b}, \dots, \mathcal{B}_m^{n_b}$.

Notation:

- ▶ \mathcal{I}_n : represents the available data set \mathcal{D}_n and the \mathcal{GP} structure when n data points are available ($\mathcal{I}_{t,k}$ in the batch context).
- $ightharpoonup \alpha(\mathbf{x}; \mathcal{I}_n)$: generic acquisition function given \mathcal{I}_n .

Optimal greedy batch design

Sequential policy: Maximize:

$$\alpha(\mathbf{x}; \mathcal{I}_{t,0})$$

Greedy batch policy, 1st element t-th batch: Maximize:

$$\alpha(\mathbf{x}; \mathcal{I}_{t,0})$$

Optimal greedy batch design

Sequential policy: Maximize:

$$\alpha(\mathbf{x}; \mathcal{I}_{t,0})$$

Greedy batch policy, 2nd element t-th batch: Maximize:

$$\int \alpha(\mathbf{x}; \mathcal{I}_{t,1}) p(y_{t,1}|\mathbf{x}_{t,1}, \mathcal{I}_{t,0}) p(\mathbf{x}_{t,1}|\mathcal{I}_{t,0}) d\mathbf{x}_{t,1} dy_{t,1}$$

- ▶ $p(y_{t,1}|\mathbf{x}_1, \mathcal{I}_{t,0})$: predictive distribution of the \mathcal{GP} .
- $p(\mathbf{x}_1|\mathcal{I}_{t,0}) = \delta(\mathbf{x}_{t,1} \arg\max_{\mathbf{x} \in \mathcal{X}} \alpha(\mathbf{x}; \mathcal{I}_{t,0})).$

Optimal greedy batch design

Sequential policy: Maximize:

$$\alpha(\mathbf{x}; \mathcal{I}_{t,k-1})$$

Greedy batch policy, k-th element t-th batch: Maximize:

$$\int \alpha(\mathbf{x}; \mathcal{I}_{t,k-1}) \prod_{j=1}^{k-1} \frac{p(y_{t,j}|\mathbf{x}_{t,j}, \mathcal{I}_{t,j-1}) p(\mathbf{x}_{t,j}|\mathcal{I}_{t,j-1}) d\mathbf{x}_{t,j} dy_{t,j}}{p(\mathbf{x}_{t,j}|\mathcal{I}_{t,j-1}) d\mathbf{x}_{t,j} dy_{t,j}}$$

- ▶ $p(y_{t,j}|\mathbf{x}_{t,j},\mathcal{I}_{t,j-1})$: predictive distribution of the \mathcal{GP} .
- $p(\mathbf{x}_j|\mathcal{I}_{t,j-1}) = \delta(\mathbf{x}_{t,j} \arg\max_{\mathbf{x} \in \mathcal{X}} \alpha(\mathbf{x}; \mathcal{I}_{t,j-1})).$

Available approaches

[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

- ► Exploratory approaches, reduction in system uncertainty.
- ▶ Generate 'fake' observations of f using $p(y_{t,j}|\mathbf{x}_j, \mathcal{I}_{t,j-1})$.
- ▶ Simultaneously optimize elements on the batch using the joint distribution of $y_{t_1}, \dots y_{t,nb}$.

Bottleneck: All these methods require to iteratively update $p(y_{t,j}|\mathbf{x}_j, \mathcal{I}_{t,j-1})$ to model the iteration between the elements in the batch: $\mathcal{O}(n^3)$

How to design batches reducing this cost? Local penalization

Goal: eliminate the marginalization step

"To develop an heuristic approximating the 'optimal batch design strategy' at lower computational cost, while incorporating information about global properties of f from the GP model into the batch design"

Lipschitz continuity:

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le L \|\mathbf{x}_1 - \mathbf{x}_2\|_p.$$

Interpretation of the Lipschitz continuity of f

 $M = \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ and $B_{r_{x_j}}(\mathbf{x}_j) = {\mathbf{x} \in \mathcal{X} : ||\mathbf{x} - \mathbf{x}_j|| \le r_{x_j}}$ where

$$r_{x_j} = \frac{M - f(\mathbf{x}_j)}{L}$$

 $x_M \notin B_{r_{x_i}}(\mathbf{x}_j)$ otherwise, the Lîpschitz condition is violated.

Probabilistic version of $B_{r_x}(\mathbf{x})$ We can do this because $f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$

▶ r_{x_j} is Gaussian with $\mu(r_{x_j}) = \frac{M - \mu(\mathbf{x}_j)}{L}$ and $\sigma^2(r_{x_j}) = \frac{\sigma^2(\mathbf{x}_j)}{L^2}$.

Local penalizers: $\varphi(\mathbf{x}; \mathbf{x}_j) = p(\mathbf{x} \notin B_{r_{\mathbf{x}_i}}(\mathbf{x}_j))$

$$\varphi(\mathbf{x}; \mathbf{x}_j) = p(r_{\mathbf{x}_j} < ||\mathbf{x} - \mathbf{x}_j||)$$

= 0.5erfc(-z)

where
$$z = \frac{1}{\sqrt{2\sigma_n^2(\mathbf{x}_j)}} (L \|\mathbf{x}_j - \mathbf{x}\| - M + \mu_n(\mathbf{x}_j)).$$

- ▶ Reflects the size of the 'Lipschitz' exclusion areas.
- ▶ Approaches to 1 when \mathbf{x} is far form \mathbf{x}_j and decreases otherwise.

Idea to collect the batches

Without using explicitly the model.

Optimal batch: maximization-marginalization

$$\int \alpha(\mathbf{x}; \mathcal{I}_{t,k-1}) \prod_{j=1}^{k-1} p(y_{t,j}|\mathbf{x}_{t,j}, \mathcal{I}_{t,j-1}) p(\mathbf{x}_{t,j}|\mathcal{I}_{t,j-1}) d\mathbf{x}_{t,j} dy_{t,j}$$

Proposal: maximization-penalization.

Use the $\varphi(\mathbf{x}; \mathbf{x}_j)$ to penalize the acquisition and predict the expected change in $\alpha(\mathbf{x}; \mathcal{I}_{t,k-1})$.

Local penalization strategy

[González, Dai, Hennig, Lawrence, 2016]

The maximization-penalization strategy selects $\mathbf{x}_{t,k}$ as

$$\mathbf{x}_{t,k} = \arg\max_{x \in \mathcal{X}} \left\{ g(\alpha(\mathbf{x}; \mathcal{I}_{t,0})) \prod_{j=1}^{k-1} \varphi(\mathbf{x}; \mathbf{x}_{t,j}) \right\},$$

g is a transformation of $\alpha(\mathbf{x}; \mathcal{I}_{t,0})$ to make it always positive.

Local penalization strategy

[González, Dai, Hennig, Lawrence, 2016]

The maximization-penalization strategy selects $\mathbf{x}_{t,k}$ as

$$\mathbf{x}_{t,k} = \arg \max_{x \in \mathcal{X}} \left\{ g(\alpha(\mathbf{x}; \mathcal{I}_{t,0})) \prod_{j=1}^{k-1} \varphi(\mathbf{x}; \mathbf{x}_{t,j}) \right\},\,$$

g is a transformation of $\alpha(\mathbf{x}; \mathcal{I}_{t,0})$ to make it always positive.

Finding an unique Lipschitz constant

Let $f: \mathcal{X} \to \mathbb{R}$ be a L-Lipschitz continuous function defined on a compact subset $\mathcal{X} \subseteq \mathbb{R}^D$. Then

$$L_p = \max_{\mathbf{x} \in \mathcal{X}} \|\nabla f(\mathbf{x})\|_p,$$

is a valid Lipschitz constant.

The gradient of f at \mathbf{x}^* is distributed as a multivariate Gaussian

$$\nabla f(\mathbf{x}^*)|\mathbf{X}, \mathbf{y}, \mathbf{x}^* \sim \mathcal{N}(\mu_{\nabla}(\mathbf{x}^*), \Sigma_{\nabla}^2(\mathbf{x}^*))$$

We choose:

$$\hat{L} = \max_{\mathcal{X}} \|\mu_{\nabla}(\mathbf{x}^*)\|$$

Experiments: Sobol function

Best (average) result for some given time budget.

d	n_b	EI	UCB	Rand-EI	Rand-UCB	SM-UCB	B-UCB
2	5			0.32 ± 0.05	$0.31 {\pm} 0.05$	1.86 ± 1.06	0.56 ± 0.03
	10	0.31 ± 0.03	0.32 ± 0.06	0.65 ± 0.32	0.79 ± 0.42	4.40 ± 2.97	0.59 ± 0.00
	20			0.67 ± 0.31	0.75 ± 0.32	-	0.57 ± 0.01
	5			9.19±5.32	10.59 ± 5.04	137.2±113.0	6.01 ± 0.00
5	10	8.84 ± 3.69	11.89 ± 9.44	1.74 ± 1.47	2.20 ± 1.85	108.7 ± 74.38	3.77 ± 0.00
	20			2.18 ± 2.30	2.76 ± 3.06	-	2.53 ± 0.00
	5			690.5 ± 947.5	1825±2149	$9e+04\pm7e+04$	2098 ± 0.00
10	10	559.1 ± 1014	1463 ± 1803	200.9 ± 455.9	1149 ± 1830	$9e+04\pm1e+05$	857.8 ± 0.00
	20			639.4 ± 1204	385.9 ± 642.9	-	1656 ± 0.00
d	n_b	PE-UCB	Pred-EI	Pred-UCB	qEI	LP-EI	LP-UCB
d	n _b	PE-UCB 0.99±0.74	Pred-EI 0.41±0.15	Pred-UCB 0.45±0.16	qEI 1.53±0.86	LP-EI 0.35±0.11	LP-UCB 0.31±0.06
	5	0.99±0.74	0.41±0.15	0.45±0.16	1.53±0.86	0.35±0.11	0.31±0.06
	5 10	0.99±0.74 0.66±0.29	0.41±0.15 1.16±0.70	0.45±0.16 1.26±0.81	1.53±0.86	0.35±0.11 0.66±0.48	0.31±0.06 0.69±0.51
	5 10 20	0.99±0.74 0.66±0.29 0.75±0.44	0.41 ± 0.15 1.16 ± 0.70 1.28 ± 0.93	0.45 ± 0.16 1.26 ± 0.81 1.34 ± 0.77	1.53±0.86 3.82±2.09	0.35±0.11 0.66±0.48 0.50 ± 0.21	0.31±0.06 0.69±0.51 0.58±0.21
2	5 10 20 5	0.99 ± 0.74 0.66 ± 0.29 0.75 ± 0.44 123.5 ± 81.43	0.41±0.15 1.16±0.70 1.28±0.93 10.43±4.88	0.45±0.16 1.26±0.81 1.34±0.77 11.77±9.44	1.53±0.86 3.82±2.09 - 15.70±8.90	0.35±0.11 0.66±0.48 0.50 ± 0.21 11.85±5.68	0.31±0.06 0.69±0.51 0.58±0.21 10.85±8.08
2	5 10 20 5 10	0.99±0.74 0.66±0.29 0.75±0.44 123.5±81.43 120.8±78.56	0.41±0.15 1.16±0.70 1.28±0.93 10.43±4.88 9.58±7.85	0.45±0.16 1.26±0.81 1.34±0.77 11.77±9.44 11.66±11.48	1.53±0.86 3.82±2.09 - 15.70±8.90	0.35±0.11 0.66±0.48 0.50±0.21 11.85±5.68 3.88±4.15	0.31±0.06 0.69±0.51 0.58±0.21 10.85±8.08 1.88±2.46
2	5 10 20 5 10 20	0.99±0.74 0.66±0.29 0.75±0.44 123.5±81.43 120.8±78.56 98.60±82.60	0.41±0.15 1.16±0.70 1.28±0.93 10.43±4.88 9.58±7.85 8.58±8.13	0.45±0.16 1.26±0.81 1.34±0.77 11.77±9.44 11.66±11.48 10.86±10.89	1.53±0.86 3.82±2.09 	0.35±0.11 0.66±0.48 0.50±0.21 11.85±5.68 3.88±4.15 6.53±4.12	0.31±0.06 0.69±0.51 0.58±0.21 10.85±8.08 1.88±2.46 1.44±1.93
5	5 10 20 5 10 20 5	0.99 ± 0.74 0.66 ± 0.29 0.75 ± 0.44 123.5 ± 81.43 120.8 ± 78.56 98.60 ± 82.60 $2e+05\pm2e+05$	0.41±0.15 1.16±0.70 1.28±0.93 10.43±4.88 9.58±7.85 8.58±8.13 793.0±1226	0.45 ± 0.16 1.26 ± 0.81 1.34 ± 0.77 11.77 ± 9.44 11.66 ± 11.48 10.86 ± 10.89 1412 ± 3032	1.53±0.86 3.82±2.09 	0.35±0.11 0.66±0.48 0.50±0.21 11.85±5.68 3.88±4.15 6.53±4.12 1881±1176	0.31±0.06 0.69±0.51 0.58±0.21 10.85±8.08 1.88±2.46 1.44±1.93

2D experiment with 'large domain'

Comparison in terms of the wall clock time

Myopia of optimisation techniques

- ▶ Most global optimisation techniques are myopic, in considering no more than a single step into the future.
- Relieving this myopia requires solving the multi-step lookahead problem.

Figure: Two evaluations, if the first evaluation is made myopically, the second must be sub-optimal.

Non-myopic thinking

To think non-myopically is important: it is a way of integrating in our decisions the information about our available (limited) resources to solve a given problem.

Acquisition function: expected loss

Loss of evaluating f at \mathbf{x}_* assuming it is returning y_* :

$$\lambda(y_*) \triangleq \left\{ \begin{array}{ll} y_*; & \text{if} \quad y_* \leq \eta \\ \eta; & \text{if} \quad y_* > \eta. \end{array} \right.$$

where $\eta = \min\{\mathbf{y}_0\}$, the current best found value.

The loss expectation is:

[Osborne, 2010]

$$\Lambda_1(\mathbf{x}_*|\mathcal{I}_0) \triangleq \mathbb{E}[\min(y_*, \eta)] = \int \lambda(y_*) p(y_*|\mathbf{x}_*, \mathcal{I}_0) dy_*$$

 \mathcal{I}_0 is the current information \mathcal{D} , θ and likelihood type.

The expected loss (improvement) is myopic

- ▶ Selects the next evaluation as if it was the last one.
- ▶ The remaining available budget is not taken into account when deciding where to evaluate.

How to take into account the effect of future evaluations in the decision?

Expected loss with n steps ahead

Intractable even for a handful number of steps ahead

$$\Lambda_n(\mathbf{x}_*|\mathcal{I}_0) = \int \lambda(y_n) \prod_{i=1}^n p(y_j|\mathbf{x}_j, \mathcal{I}_{j-1}) p(\mathbf{x}_j|\mathcal{I}_{j-1}) dy_* \dots dy_n d\mathbf{x}_2 \dots d\mathbf{x}_n$$

- ▶ $p(y_j|\mathbf{x}_j, \mathcal{I}_{j-1})$: predictive distribution of the GP at \mathbf{x}_j and
- ▶ $p(\mathbf{x}_j|\mathcal{I}_{j-1})$: optimisation step.

Relieving the myopia of Bayesian optimisation

We present... GLASSES!

Global optimisation with Look-Ahead through Stochastic Simulation and Expected-loss Search

GLASSES

Rendering the approximation sparse

Idea: jointly model the epistemic uncertainty about the steps ahead using some defining *some* point process.

$$\Gamma_n(\mathbf{x}_*|\mathcal{I}_0) = \int \lambda(y_n) p(\mathbf{y}|\mathbf{X}, \mathcal{I}_0, \mathbf{x}_*) p(\mathbf{X}|\mathcal{I}_0, \mathbf{x}_*) d\mathbf{y} d\mathbf{X}$$

Selecting a good $p(\mathbf{X}|\mathcal{I}_0, \mathbf{x}_*)$ is complicated.

- ▶ Replace integrating over $p(\mathbf{X}|\mathcal{I}_0, \mathbf{x}_*)$ by conditioning over an oracle predictor $\mathcal{F}_n(\mathbf{x}_*)$ of the *n* future locations.
- ▶ $\mathbf{y} = (y_*, \dots, y_n)^T$: Gaussian outputs of f at $\mathcal{F}_n(\mathbf{x}_*)$.
- ▶ $\mathbb{E}[\min(\mathbf{y}, \eta)]$ is computed using Expectation Propagation.

GLASSES: predicting the steps ahead

Oracle based on a batch BO method [Gonzalez et al., AISTATS'2016]

Can be interpreted as the MAP of a determinantal point process.

GLASSES: interpretation of the loss

Automatic balance between exploration and exploitation.

Results in a benchmark of objectives

	MPI	GP-LCB	EL	EL-2	EL-3	EL-5	EL-10	GLASSES
SinCos	0.7147	0.6058	0.7645	0.8656	0.6027	0.4881	0.8274	0.9000
Cosines	0.8637	0.8704	0.8161	0.8423	0.8118	0.7946	0.7477	0.8722
Branin	0.9854	0.9616	0.9900	0.9856	0.9673	0.9824	0.9887	0.9811
Sixhumpcamel	0.8983	0.9346	0.9299	0.9115	0.9067	0.8970	0.9123	0.8880
Mccormick	0.9514	0.9326	0.9055	0.9139	0.9189	0.9283	0.9389	0.9424
Dropwave	0.7308	0.7413	0.7667	0.7237	0.7555	0.7293	0.6860	0.7740
Powers	0.2177	0.2167	0.2216	0.2428	0.2372	0.2390	0.2339	0.3670
Ackley-2	0.8230	0.8975	0.7333	0.6382	0.5864	0.6864	0.6293	0.7001
Ackley-5	0.1832	0.2082	0.5473	0.6694	0.3582	0.3744	0.6700	0.4348
Ackley-10	0.9893	0.9864	0.8178	0.9900	0.9912	0.9916	0.8340	0.8567
Alpine2-2	0.8628	0.8482	0.7902	0.7467	0.5988	0.6699	0.6393	0.7807
Alpine2-5	0.5221	0.6151	0.7797	0.6740	0.6431	0.6592	0.6747	0.7123

GLASSES is overall the best method.

Interactive Bayesian optimization

Gonzalez et al, [2016]

Key question: what if it is easier to compare two points in the domain than obtaining a single output value for each one?

Preferential returns

Interactive Bayesian optimization

Gonzalez et al, [2016]

To find

$$\mathbf{x}_{min} = \arg\min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}).$$

where g is not directly accessible. Queries to g can only be done in pairs of points or $duels [\mathbf{x}, \mathbf{x}'] \in \mathcal{X} \times \mathcal{X}$ from which binary feedback $\{0, 1\}$ is obtained

Useful when modeling human preferences

Modelling preferences

The model of choice is a Bernoulli probability function:

$$p(y=1|[\mathbf{x},\mathbf{x}'])=\pi_f([\mathbf{x},\mathbf{x}'])$$

and

$$p(y = 0|[\mathbf{x}, \mathbf{x}']) = \pi_f([\mathbf{x}', \mathbf{x}])$$

where $\pi: \Re \times \Re \to [0,1]$ is a link function.

A natural choice for π_f is the logistic function

$$\pi_f([\mathbf{x}', \mathbf{x}]) = \sigma(f([\mathbf{x}', \mathbf{x}])) = \frac{1}{1 + e^{-f([\mathbf{x}', \mathbf{x}])}}$$

for
$$f([\mathbf{x}, \mathbf{x}']) = g(\mathbf{x}') - g(\mathbf{x}).$$

Elements of the problem

Key concepts:

- ▶ Preference function: $\pi_f([\mathbf{x}', \mathbf{x}])$.
- ► Soft-Copeland score: $C(\mathbf{x}) = \text{Vol}(\mathcal{X})^{-1} \int_{\mathcal{X}} \pi_f([\mathbf{x}, \mathbf{x}']) d\mathbf{x}'$.
- ► Condorcet's winner: point with maximal soft-Copeland score.

Idea

- ▶ Modeling the preference with a Gaussian process for classification.
- ► Select the new duel than maximizes the Copeland's score in expectation.

Compeland's expected improvement (CEI)

Acquisition for duels:

$$\alpha_{CEI}([\mathbf{x}, \mathbf{x}']; \mathcal{D}, \theta) = \mathbb{E}\left[\max(0, c - c^{\star})\right]$$

$$= \pi_{f,j}([\mathbf{x}, \mathbf{x}'])(c_{j,\mathbf{x}}^{\star} - c_{j}^{\star})_{+} + \pi_{f,j}([\mathbf{x}', \mathbf{x}])(c_{j,\mathbf{x}'}^{\star} - c^{\star})$$

- $ightharpoonup c_i^*$ is the value of the Condorcet's winner at iteration j.
- ▶ $c_{\mathbf{x}}^{\star}$ the value of the estimated Condorcer winner resulting of augmenting \mathcal{D}_{j} with $\{[\mathbf{x}, \mathbf{x}'], 1\}$

Results

Model correlations with the Gaussian process helps!

