
BayesOpt: hot topics and current challenges

Javier González

Masterclass, 7-February, 2107 @Lancaster University

Agenda of the day

I 9:00-11:00, Introduction to Bayesian Optimization:
I What is BayesOpt and why it works?
I Relevant things to know.

I 11:30-13:00, Connections, extensions and
applications:

I Extensions to multi-task problems, constrained domains,
early-stopping, high dimensions.

I Connections to Armed bandits and ABC.
I An applications in genetics.

I 14:00-16:00, GPyOpt LAB!: Bring your own problem!

I 16:30-15:30, Hot topics current challenges:
I Parallelization.
I Non-myopic methods
I Interactive Bayesian Optimization.

Section III: Hot topics and challenges

I Parallel Bayesian Optimization

I Non-myopic methods.

I Interactive Bayesian Optimization.

Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f(xn) = cost of {f(xn,1), . . . , f(xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.

Considerations when designing a batch

I Available pairs {(xj , yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . ,xt,nb}.

I Goal: design Bnb
1 , . . . ,Bnb

m .

Notation:

I In: represents the available data set Dn and the GP
structure when n data points are available (It,k in the
batch context).

I α(x; In): generic acquisition function given In.

Optimal greedy batch design

Sequential policy: Maximize:

α(x; It,0)

Greedy batch policy, 1st element t-th batch: Maximize:

α(x; It,0)

Optimal greedy batch design

Sequential policy: Maximize:

α(x; It,0)

Greedy batch policy, 2nd element t-th batch: Maximize:∫
α(x; It,1)p(yt,1|xt,1, It,0)p(xt,1|It,0)dxt,1dyt,1

I p(yt,1|x1, It,0): predictive distribution of the GP.

I p(x1|It,0) = δ(xt,1 − arg maxx∈X α(x; It,0)).

Optimal greedy batch design

Sequential policy: Maximize:

α(x; It,k−1)

Greedy batch policy, k-th element t-th batch: Maximize:∫
α(x; It,k−1)

k−1∏
j=1

p(yt,j |xt,j , It,j−1)p(xt,j |It,j−1)dxt,jdyt,j

I p(yt,j |xt,j , It,j−1): predictive distribution of the GP.

I p(xj |It,j−1) = δ(xt,j − arg maxx∈X α(x; It,j−1)).

Available approaches
[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

I Exploratory approaches, reduction in system uncertainty.

I Generate ‘fake’ observations of f using p(yt,j |xj , It,j−1).
I Simultaneously optimize elements on the batch using the

joint distribution of yt1 , . . . yt,nb.

Bottleneck: All these methods require to iteratively update
p(yt,j |xj , It,j−1) to model the iteration between the elements in
the batch: O(n3)

How to design batches reducing this cost? Local penalization

Goal: eliminate the marginalization step

“To develop an heuristic approximating the ‘optimal batch
design strategy’ at lower computational cost, while incorporating
information about global properties of f from the GP model into

the batch design”

Lipschitz continuity:

|f(x1)− f(x2)| ≤ L‖x1 − x2‖p.

Interpretation of the Lipschitz continuity of f

M = maxx∈X f(x) and Brxj (xj) = {x ∈ X : ‖x− xj‖ ≤ rxj}
where

rxj =
M − f(xj)

L

0.4 0.6 0.8 1.0 1.2
x

30

20

10

0

10

20

f(x
)

True function
Samples
Exclusion cones
Active regions

xM /∈ Brxj (xj) otherwise, the Lipschitz condition is violated.

Probabilistic version of Brx(x)
We can do this because f(x) ∼ GP(µ(x), k(x,x′))

I rxj is Gaussian with µ(rxj) =
M−µ(xj)

L and σ2(rxj) =
σ2(xj)
L2 .

Local penalizers: ϕ(x; xj) = p(x /∈ Brxj (xj))

ϕ(x; xj) = p(rxj < ‖x− xj‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(xj)
(L‖xj − x‖ −M + µn(xj)).

I Reflects the size of the ’Lipschitz’ exclusion areas.

I Approaches to 1 when x is far form xj and decreases
otherwise.

Idea to collect the batches
Without using explicitly the model.

Optimal batch: maximization-marginalization∫
α(x; It,k−1)

k−1∏
j=1

p(yt,j |xt,j , It,j−1)p(xt,j |It,j−1)dxt,jdyt,j

Proposal: maximization-penalization.

Use the ϕ(x;xj) to penalize the acquisition and predict the
expected change in α(x; It,k−1).

Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

1st batch element
α(x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

2nd batch element
α(x)

α(x)ϕ1 (x)

ϕ1 (x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

3th batch element
α(x)ϕ1 (x)

α(x)ϕ1 (x)ϕ2 (x)

ϕ2 (x)

The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x; It,0))
k−1∏
j=1

ϕ(x; xt,j)

 ,

g is a transformation of α(x; It,0) to make it always positive.

Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

1st batch element
α(x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

2nd batch element
α(x)

α(x)ϕ1 (x)

ϕ1 (x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

3th batch element
α(x)ϕ1 (x)

α(x)ϕ1 (x)ϕ2 (x)

ϕ2 (x)

The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x; It,0))
k−1∏
j=1

ϕ(x; xt,j)

 ,

g is a transformation of α(x; It,0) to make it always positive.

Example for L = 50

L controls the exploration-exploitation balance within the
batch.

Example for L = 100

L controls the exploration-exploitation balance within the
batch.

Example for L = 150

L controls the exploration-exploitation balance within the
batch.

Example for L = 250

L controls the exploration-exploitation balance within the
batch.

Finding an unique Lipschitz constant

Let f : X → R be a L-Lipschitz continuous function defined on
a compact subset X ⊆ RD. Then

Lp = max
x∈X
‖∇f(x)‖p,

is a valid Lipschitz constant.

The gradient of f at x∗ is distributed as a multivariate Gaussian

∇f(x∗)|X,y,x∗ ∼ N (µ∇(x∗),Σ2
∇(x∗))

We choose:
L̂ = max

X
‖µ∇(x∗)‖

Experiments: Sobol function

Best (average) result for some given time budget.

2D experiment with ‘large domain’

Comparison in terms of the wall clock time

0 50 100 150 200 250 300

Time(seconds)

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

qEI

LP-EI

LP-UCB

Myopia of optimisation techniques

I Most global optimisation techniques are myopic, in
considering no more than a single step into the future.

I Relieving this myopia requires solving the multi-step
lookahead problem.

Figure: Two evaluations, if the first evaluation is made myopically,
the second must be sub-optimal.

Non-myopic thinking

To think non-myopically is important: it is a way of integrating
in our decisions the information about our available (limited)

resources to solve a given problem.

Acquisition function: expected loss
[Osborne, 2010]

Loss of evaluating f at x∗ assuming it is returning y∗:

λ(y∗) ,

{
y∗; if y∗ ≤ η
η; if y∗ > η.

where η = min{y0}, the current best found value.

The loss expectation is :

Λ1(x∗|I0) , E[min(y∗, η)] =

∫
λ(y∗)p(y∗|x∗, I0)dy∗

I0 is the current information D, θ and likelihood type.

The expected loss (improvement) is myopic

I Selects the next evaluation as if it was the last one.

I The remaining available budget is not taken into account
when deciding where to evaluate.

How to take into account the effect of future evaluations in the
decision?

Expected loss with n steps ahead
Intractable even for a handful number of steps ahead

Λn(x∗|I0) =

∫
λ(yn)

n∏
j=1

p(yj |xj , Ij−1)p(xj |Ij−1)dy∗ . . . dyndx2 . . . dxn

I p(yj |xj , Ij−1): predictive distribution of the GP at xj and

I p(xj |Ij−1): optimisation step.

Relieving the myopia of Bayesian optimisation

We present... GLASSES!

Global optimisation with Look-Ahead through Stochastic
Simulation and Expected-loss Search

GLASSES
Rendering the approximation sparse

Idea: jointly model the epistemic uncertainty about the steps
ahead using some defining some point process.

Γn(x∗|I0) =

∫
λ(yn)p(y|X, I0,x∗)p(X|I0,x∗)dydX

GLASSES
Technical details

Selecting a good p(X|I0,x∗) is complicated.

I Replace integrating over p(X|I0,x∗) by conditioning over
an oracle predictor Fn(x∗) of the n future locations.

I y = (y∗, . . . , yn)T : Gaussian outputs of f at Fn(x∗).

I Λn
(
x∗ | I0,Fn(x∗)

)
= Γn(x∗|I0,Fn(x∗)) = E

[
min(y, η)

]
.

I E
[
min(y, η)

]
is computed using Expectation Propagation.

GLASSES: predicting the steps ahead
Oracle based on a batch BO method [Gonzalez et al., AISTATS’2016]

Can be interpreted as the MAP of a determinantal point
process.

GLASSES: interpretation of the loss

Automatic balance between exploration and exploitation.

Results in a benchmark of objectives

GLASSES is overall the best method.

Interactive Bayesian optimization
Gonzalez et al, [2016]

Key question: what if it is easier to compare two points in the
domain than obtaining a single output value for each one?

Preferential returns

Interactive Bayesian optimization
Gonzalez et al, [2016]

To find

xmin = arg min
x∈X

g(x).

where g is not directly accessible. Queries to g can only be done
in pairs of points or duels [x,x′] ∈ X × X from which binary
feedback {0, 1} is obtained

Useful when modeling human preferences

Modelling preferences

The model of choice is a Bernoulli probability function:

p(y = 1|[x,x′]) = πf ([x,x′])

and
p(y = 0|[x,x′]) = πf ([x′,x])

where π : <× < → [0, 1] is a link function.

A natural choice for πf is the logistic function

πf ([x′,x]) = σ(f([x′,x])) =
1

1 + e−f([x′,x])

for f([x,x′]) = g(x′)− g(x).

Elements of the problem

−10

−5

0

5

10

15

20

f(
x)

Objective function

Global minimum

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sc
or

e
va

lu
e

Copeland and soft-Copeland functions

Copeland
soft-Copeland

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

x’

0.5

0.5

0.5

Preference function

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Key concepts:

I Preference function: πf ([x′,x]).
I Soft-Copeland score: C(x) = Vol(X)−1

∫
X πf ([x,x′])dx′.

I Condorcet’s winner: point with maximal soft-Copeland
score.

Idea

I Modeling the preference with a Gaussian process for
classification.

I Select the new duel than maximizes the Copeland’s score
in expectation.

Compeland’s expected improvement (CEI)

Acquisition for duels:

αCEI([x,x
′];D, θ) = E [max(0, c− c?)]

= πf,j([x,x
′])(c?j,x − c?j)+ + πf,j([x

′,x])(c?j,x′ − c?)+

I c?j is the value of the Condorcet’s winner at iteration j.

I c?x the value of the estimated Condorcer winner resulting of
augmenting Dj with {[x,x′], 1}

Results

0 20 40 60 80 100

#iterations

5

4

3

2

1

0

1

2

3

4

g(
x
∗
)

Forrester (1D)

BOPPER

random

sparring

0 5 10 15 20 25 30

#iterations

0.5

0.0

0.5

1.0

g(
x
∗
)

Six-Hump-Camel (2D)

BOPPER

random

Model correlations with the Gaussian process helps!

Questions?

