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Multiple Output Gaussian Processes

I In this section we will study Gaussian processes with
multiple outputs.

I they have various names, vector valued functions,
multiple outputs, multidimensional GPs, multi-task
learning.

I Key idea, we want to relate several different functions.
I Sounds more complex, but actually it’s a special case of a

normal GP where one input is discrete.
I Question: how to embed covariation between the

functions.
I Start by introducing Kalman filter/smoother.



Simple Markov Chain

I Assume 1-d latent state, a vector over time, x = [x1 . . . xT].
I Markov property,

xi =xi−1 + εi,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

I Initial state,
x0 ∼ N (0, α0)

I If x0 ∼ N (0, α) we have a Markov chain for the latent
states.

I Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)



Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)
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Matrix Representation of Latent Variables

x εL1 ×=



Multivariate Process

I Since x is linearly related to εwe know x is a Gaussian
process.

I Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

x = L1ε



Latent Process Mean

〈x〉 = 〈L1ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)



Latent Process Mean

〈x〉 = L10



Latent Process Mean

〈x〉 = 0



Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>



Latent Process Covariance
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L1εε
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Latent Process Covariance

〈
xx>

〉
= αL1L>1
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Latent Process

x = L1ε

ε ∼ N (0, αI)
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

x ∼ N
(
0, αL1L>1

)



Covariance for Latent Process II

I Make the variance dependent on time interval.
I Assume variance grows linearly with time.
I Justification: sum of two Gaussian distributed random

variables is distributed as Gaussian with sum of variances.
I If variable’s movement is additive over time (as described)

variance scales linearly with time.



Covariance for Latent Process II

I Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.



Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)

K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

I Precision matrix is not
sparse.

I Each point is dependent
on all the others.

I In this case
non-Markovian.



Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Simple Kalman Filter I

I We have state vector X =
[
x1 . . . xq

]
∈ RT×q and if each state

evolves independently we have

p(X) =

q∏
i=1

p(x:,i)

p(x:,i) = N
(
x:,i|0,K

)
.

I We want to obtain outputs through:

yi,: = Wxi,:



Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =


x:,1
x:,2
...

x:,q





Kronecker Product

aK bK
cK dK

Ka b
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Stacking and Kronecker Products I
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Column Stacking

⊗ =



For this stacking the marginal distribution over time is given by
the block diagonals.
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For this stacking the marginal distribution over time is given by
the block diagonals.



Two Ways of Stacking

Can also stack each row of X to form column vector:

x =


x1,:
x2,:
...

xT,:


p(x) = N (x|0,K ⊗ I)



Row Stacking

⊗ =



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,

yi,: = Wxi,: + εi,:

ε ∼ N
(
0, σ2I

)



Mapping from Latent Process to Observed

Wx1,:

Wx2,:

Wx3,:

x1,:

x2,:

x3,:

W 0 0

0 W 0

0 0 W

× =



Output Covariance

This leads to a covariance of the form

(I ⊗W)(K ⊗ I)(I ⊗W>) + Iσ2

Using (A ⊗ B)(C ⊗D) = AC ⊗ BD This leads to

K ⊗WW> + Iσ2

or
y ∼ N

(
0,WW>

⊗K + Iσ2
)
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Kronecker Structure GPs

I This Kronecker structure leads to several published
models.

(K(x, x′)) j, j′ = k(x, x′)kT( j, j′),

where k has x and kT has i as inputs.
I Can think of multiple output covariance functions as

covariances with augmented input.
I Alongside x we also input the j associated with the output

of interest.



Separable Covariance Functions

I Taking B = WW> we have a matrix expression across
outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite
matrix.

I B is called the coregionalization matrix.
I We call this class of covariance functions separable due to

their product structure.



Sum of Separable Covariance Functions

I In the same spirit a more general class of kernels is given
by

K(x, x′) =

q∑
j=1

k j(x, x′)B j.

I This can also be written as

K(X,X) =

q∑
j=1

B j ⊗ k j(X,X),

I This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

I We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

I Use of GPs in Geostatistics is called kriging.
I These multi-output GPs pioneered in geostatistics:

prediction over vector-valued output data is known as
cokriging.

I The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

I Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

I In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

I In the LMC, each component f j is expressed as a linear sum

f j(x) =

q∑
j=1

w j, ju j(x).

where the latent functions are independent and have
covariance functions k j(x, x′).

I The processes { f j(x)}qj=1 are independent for q , j′.



Kalman Filter Special Case

I The Kalman filter is an example of the LMC where
ui(x)→ xi(t).

I I.e. we’ve moved form time input to a more general input
space.

I In matrix notation:
1. Kalman filter

F = WX

2. LMC
F = WU

where the rows of these matrices F, X, U each contain q
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

I If one covariance used for latent functions (like in Kalman
filter).

I This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

I The kernel matrix corresponding to a dataset X takes the
form

K(X,X) = B ⊗ k(X,X).



Autokrigeability

I If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x′) (Helterbrand
and Cressie, 1994).

I In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

I In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).



Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]
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LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)
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]
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]
`2 = 0.2
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LMC in Machine Learning and Statistics

I Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

I Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.

I Setting B = Ip assumes outputs are conditionally
independent given the parameters θ. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

I More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

I Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X,X) =

q∑
j=1

w:, jw>:, j ⊗ k j(X,X).

I Like the Kalman filter, but each latent function has a
different covariance.

I Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.
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Gaussian processes for Multi-task, Multi-output and
Multi-class

I Bonilla et al. (2008) suggest ICM for multitask learning.
I Use a PPCA form for B: similar to our Kalman filter

example.
I Refer to the autokrigeability effect as the cancellation of

inter-task transfer.
I Also discuss the similarities between the multi-task GP

and the ICM, and its relationship to the SLFM and the
LMC.



Multitask Classification

I Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters φ
(Minka and Picard, 1997; ?; Lawrence and Platt, 2004; Seeger and
Jordan, 2004; Yu et al., 2005; Rasmussen and Williams, 2006).

I Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

I Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

I A statistical model used as a surrogate for a
computationally expensive computer model.

I Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

I In Conti and O’Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).
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Linear Dimensionality Reduction

I Find a lower dimensional plane embedded in a higher
dimensional space.

I The plane is described by the matrix W ∈ <p×q.
f 2

f1

X = FW
−→

x1x2
x3

Figure : Mapping a two dimensional plane to a higher dimensional
space in a linear way. Data are generated by corrupting points on the
plane with noise.



Dimensionality Reduction

I Linear relationship between the data, X, and a reduced
dimensional representation, F.

X = FW + ε,

ε ∼ N (0,Σ)

I Problem is we don’t know what F should be!



Marionette Analogy

X observed

F unobserved
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F is a Latent Variable

I Define a probability distribution for F.
I Marginalize out F (integrate over).
I Optimize with respect to W.
I For Gaussian distribution, F ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,
1999; Roweis, 1998).

I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data
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Figure : PCA: Pure sampling from a Gaussian does not retain
temporal effects.



Dimensionality Reduction: Temporal Data
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Figure : Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data
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Figure : General Gaussian processes allow for priors over smooth
functions.



Mechanical Analogy

Back to Mechanistic Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:
I the latent functions, fi(t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.
I It will exhibit inertia and resonance.
I There are many systems that can also be represented by

differential equations.
I When being forced by latent function(s),

{
fi(t)

}q
i=1, we call

this a latent force model.



Physical Analogy



Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance
matrices for the output displacements.

I For one displacement the model is

mkẍk(t) + ckẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi(t), (3)

where, mk is the kth diagonal element from M and
similarly for ck and dk. sik is the i, kth element of S.

I Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

k fi fl(t, t
′) = exp

− (t − t′)2

2`2
i

 δil.



Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
ζ1 ζ2 ζ3

0.125 2 1
f(t) y
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Joint Sampling of x (t) and f (t)

I lfmSample
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Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x2 (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t−τ))dτ

I Joint distribution
for x1 (t), x2 (t),
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
2013)

I Motion capture data: used for animating human motion.
I Multivariate time series of angles representing joint

positions.
I Objective: generalize from training data to realistic

motions.
I Use 2nd Order Latent Force Model with

mass/spring/damper (resistor inductor capacitor) at each
joint.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
2013)

I Motion capture data: used for animating human motion.
I Multivariate time series of angles representing joint

positions.
I Objective: generalize from training data to realistic

motions.
I Use 2nd Order Latent Force Model with

mass/spring/damper (resistor inductor capacitor) at each
joint.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
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Prediction of Test Motion

I Model left arm only.
I 3 balancing motions (18, 19, 20) from subject 49.
I 18 and 19 are similar, 20 contains more dramatic

movements.
I Train on 18 and 19 and testing on 20
I Data was down-sampled by 32 (from 120 fps).
I Reconstruct motion of left arm for 20 given other

movements.
I Compare with GP that predicts left arm angles given other

body angles.



Mocap Results

Table : Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure : Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Motion Capture Experiments

I Data set is from the CMU motion capture data base1.
I Two different types of movements: golf-swing and

walking.
I Train on a subset of motions for each movement and test

on a different subset.
I This assesses the model’s ability to extrapolate.
I For testing: condition on three angles associated to the root

nodes and first five and last five frames of the motion.
I Golf-swing use leave one out cross validation on four

motions.
I For the walking train on 4 motions and validate on 8

motions.



Motion Capture Results

Table : RMSE and R2 (explained variance) for golf swing and walking

Movement Method RMSE R2 (%)

Golf swing

IND GP 21.55 ± 2.35 30.99 ± 9.67
MTGP 21.19 ± 2.18 45.59 ± 7.86
SLFM 21.52 ± 1.93 49.32 ± 3.03
LFM 18.09 ± 1.30 72.25 ± 3.08

Walking

IND GP 8.03 ± 2.55 30.55 ± 10.64
MTGP 7.75 ± 2.05 37.77 ± 4.53
SLFM 7.81 ± 2.00 36.84 ± 4.26
LFM 7.23 ± 2.18 48.15 ± 5.66



Example: Transcriptional Regulation

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?
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Covariance for Transcription Model

RBF covariance function for p (t)

mi (t) =
bi

di
+ si exp (−dit)

∫ t

0
p (u) exp (diu) du.

I Joint distribution
for m1 (t), m2 (t),
m3 (t), and p (t).

I Here:
d1 s1 d2 s2 d3 s3
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Joint Sampling of p (t) and m (t)

I simSample
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Figure : Joint samples from the ODE covariance, black: p (t), red:
m1 (t) (high decay/sensitivity), green: m2 (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

I Radiation can damages molecules including DNA.
I Most DNA damage is quickly repaired—single strand

breaks, backbone break.
I Double strand breaks are more serious—a complete

disconnect along the chromosome.
I Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have

divided.
I S: Cell is undergoing meitosis (DNA synthesis).

I Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

I Responsible for Repairing DNA damage
I Activates DNA Repair proteins
I Pauses the Cell Cycle (prevents replication of damage

DNA)
I Initiates apoptosis (cell death) in the case where damage

can’t be repaired.
I Large scale feeback loop with NF-κB.



p53 DNA Damage Repair

Figure : p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the
Month” feature).

http://www.rcsb.org/


p53

Figure : Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2.
(also governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A
(CDKN1A). A regulator of cell cycle progression.
(also governed by SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death

(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily,

member 10b. A transducer of apoptosis signals.



Modelling Assumption

I Assume p53 affects targets as a single input module
network motif (SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure : p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
Pei Gao1, Antti Honkela2, Magnus Rattray1 and Neil D. Lawrence1,∗
1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT

Motivation: Inference of latent chemical species in biochemical
interaction networks is a key problem in estimation of the structure
and parameters of the genetic, metabolic and protein interaction
networks that underpin all biological processes. We present a
framework for Bayesian marginalization of these latent chemical
species through Gaussian process priors.
Results: We demonstrate our general approach on three different
biological examples of single input motifs, including both activation
and repression of transcription. We focus in particular on the problem
of inferring transcription factor activity when the concentration
of active protein cannot easily be measured. We show how the
uncertainty in the inferred transcription factor activity can be
integrated out in order to derive a likelihood function that can
be used for the estimation of regulatory model parameters. An
advantage of our approach is that we avoid the use of a coarse-
grained discretization of continuous time functions, which would lead
to a large number of additional parameters to be estimated. We
develop exact (for linear regulation) and approximate (for non-linear
regulation) inference schemes, which are much more efficient than
competing sampling-based schemes and therefore provide us with
a practical toolkit for model-based inference.
Availability: The software and data for recreating all the experiments
in this paper is available in MATLAB from http://www.cs.man.
ac.uk/∼neill/gpsim.
Contact: neill@cs.man.ac.uk

1 INTRODUCTION
Ordinary differential equations (ODEs) are the most common
framework in use for modelling biological sub-systems (Alon,
2006). Well established methodologies have been developed for
estimating the parameters of these equations in the context of a
particular experiment or set of experiments, using e.g. least squares
and maximum likelihood combined with an appropriate optimization
algorithm (Mendes and Kell, 1998). More recently, significant
progress has been made on Bayesian parameter estimation in the
context of ODEs (Coleman and Block, 2006). Through the use
of advanced Monte Carlo techniques it is even possible to, given
a specific data set, rank model structures through the use of
Bayes factors (Vyshemirsky and Girolami, 2008). This shows the
potential for ODE models to be closely integrated with biological
investigations, informing the process of biological experimental
design.

∗
To whom correspondence should be addressed.

A challenging problem for parameter estimation in ODE models
occurs where one or more chemical species influencing the dynamics
are controlled outside of the sub-system being modelled. For
example, a signalling pathway can be triggered by a signal external
to the pathway itself. In a regulatory sub-system, one or more
transcription factors (TFs) may influence the expression of a
set of target genes, but these TFs may not be regulated at the
transcriptional level, instead being activated by another sub-system
such as a signalling pathway. Similarly, in a metabolic pathway
external metabolites and enzymes will influence the dynamics of
the pathway. If these external chemical species have a constant
influence, e.g. as in the case of steady state behaviour of a
metabolic pathway, then they can simply be treated as additional
parameters of the model and their effect can be estimated along
with the other model parameters. However, more often these
external factors are time-varying quantities. In this case, they are
functional parameters and cannot be estimated by the standard
methods discussed above. One approach for dealing with this is to
discretize in time, treating the time-varying function as a sequence of
discrete parameters. However, this leaves the problem of choosing
the correct granularity for the discretization and either ignoring
temporal continuity, or assuming a simple Markovian relationship
and thereby introducing further parameters and assumptions. Here,
we propose an alternative approach. We deal with these parameters
as continuous functions of time, avoiding the need for arbitrary
discretization.

To further compound the problem of dealing with the time-varying
effects of these chemical species, their concentration is often not
directly observable and their dynamics must therefore be inferred
indirectly according to their influence on measured elements of the
system. This is a common problem and it is a natural consequence
of the fact that some quantities are relatively easy to measure
in a high throughput manner (e.g. mRNA concentrations with a
microarray), whereas others are much more difficult to measure
(e.g. the concentration of TFs located in the nucleus). In this article,
we advocate the use of Gaussian processes (GPs) to define prior
distributions over these latent chemical species. This allows us to
marginalize their contributions in the interaction network of interest.
We present a basic toolkit of algorithms based on GPs which allow
us to consider different response models (Michaelis Menten kinetics,
repression responses) and cascades of interactions in which chemical
species of interest are missing. The application domain we consider
is inference of TF activity in both developmental and signalling
networks.

Inference of TF activity in a given network is a well studied
problem with both genome wide approaches (Liao et al., 2003;
Sanguinetti et al., 2006a,b) and algorithms designed for a subset
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p53 Results with GP

(Gao et al., 2008)
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Ranking with ERK Signalling

I Target Ranking for Elk-1.
I Elk-1 is phosphorylated by ERK from the EGF signalling

pathway.
I Predict concentration of Elk-1 from known targets.
I Rank other targets of Elk-1.



Elk-1 (MLP covariance)
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
Antti Honkelaa,1, Charles Girardotb, E. Hilary Gustafsonb, Ya-Hsin Liub, Eileen E. M. Furlongb,
Neil D. Lawrencec,1, and Magnus Rattrayc,1

aDepartment of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; bGenome Biology Unit,
European Molecular Biology Laboratory, Heidelberg, Germany; and cSchool of Computer Science, University of Manchester, Manchester, United Kingdom

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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Cascaded Differential Equations

(Honkela et al., 2010)

I Transcription factor protein also has governing mRNA.
I This mRNA can be measured.
I In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription
factor that counts.

I In development phosphorylation plays less of a role.
I Build a simple cascaded differential equation to model this.



Covariance for Translation/Transcription Model

RBF covariance function for f (t)

p (t) = σ exp (−δt)
∫ t

0
f (u) exp (δu) du

mi (t) =
bi

di
+ si exp (−dit)

∫ t

0
p (u) exp (diu) du.

I Joint distribution
for m1 (t), m2 (t),
p (t) and f (t).

I Here:
δ d1 s1 d2 s2

1 5 5 0.5 0.5

f (t) p(t) m1(t) m2(t)

f (t)

p(t)

m1(t)

m2(t)



Twist Results

I Use mRNA of Twist as driving input.
I For each gene build a cascade model that forces Twist to be

the only TF.
I Compare fit of this model to a baseline (e.g. similar model

but sensitivity zero).
I Rank according to the likelihood above the baseline.
I Compare with correlation, knockouts and time series

network identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Figure : Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

I Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

I Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

I Optionally focus on genes with annotated expression in
tissues of interest



Results
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Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been
identified, they can be modelled in a more complex
manner.

I We don’t have ground truth, but evidence indicates that
the approach can perform as well as knockouts.



Partial Differential Equations and Latent Forces

Mauricio Alvarez

I Can extend the concept to latent functions in PDEs.
I Jura data: concentrations of heavy metal pollutants from

the Swiss Jura.
I Consider a latent function that represents how the

pollutants were originally laid down (initial condition).
I Assume pollutants diffuse at different rates resulting in the

concentrations observed in the data set.

∂xq(x, t)
∂t

=

d∑
j=1

κq
∂2xq(x, t)

∂x2
j

,

I Latent function fr(x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

Mauricio Alvarez

I The solution to the system (Polyanin, 2002) is then given by

xq(x, t) =

R∑
r=1

Srq

∫
Rd

fr(x′)Gq(x, x′, t)dx′

where Gq(x, x′, t) is the Green’s function given as

Gq(x, x′, t) =
1

2dπd/2Td/2
q

exp

− d∑
j=1

(x j − x′j)
2

4Tq

 ,

with Tq = κqt.



Covariance Function

Mauricio Alvarez

I For latent function given by a GP with the RBF covariance
function this is tractable.

kxpxq(x, x
′, t) =

R∑
r=1

SrpSrq|Lr|
1/2

|Lrp + Lrq + Lr|1/2

× exp
[
−

1
2

(x − x′)>
(
Lrp + Lrq + Lr

)−1
(x − x′)

]
,

where Lrp,Lrq and Lr are diagonal isotropic matrices with
entries 2κpt, 2κqt and 1/`2

r respectively. The covariance
function between the output and latent functions is given
by

kxq fr(x, x
′, t) =

Srq|Lr|
1/2

|Lrq + Lr|1/2

× exp
[
−

1
2

(x − x′)>
(
Lrq + Lr

)−1
(x − x′)

]
.



Prediction of Metal Concentrations

Mauricio Alvarez

I Replicate experiments in (Goovaerts, 1997, pp. 248,249):
I Primary variable (Cd, Cu, Pb, Co) predicted in conjunction

with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn
for Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).2

I Condition on the secondary variables to improve
prediction for primary variables.

I Compare results for the diffusion kernel with independent
GPs and “ordinary co-kriging” (Goovaerts, 1997,
pp. 248,249).



Jura Results

Mauricio Alvarez

Table : Mean absolute error and standard deviation for ten repetitions
of the experiment for the Jura dataset. IGPs stands for independent
GPs, GPDK stands for GP diffusion kernel, OCK for ordinary
co-kriging. For the Gaussian process with diffusion kernel, we learn
the diffusion coefficients and the length-scale of the covariance of the
latent function.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5



Convolutions and Computational Complexity

Mauricio Alvarez

I Solutions to these differential equations is normally as a
convolution.

xi (t) =

∫
f (u) ki (u − t) du + hi (t)

xi (t) =

∫ t

0
f (u) gi (u) du + hi (t)

I Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

I Convolutions lead to N × d size covariance matrices
O

(
N3d3

)
complexity, O

(
N2d2

)
storage.

I Model is conditionally independent over {xi (t)}di=1 given
f (t).



Independence Assumption

Mauricio Alvarez

I Can assume conditional independence given given{
f (ti)

}k
i=1. (Álvarez and Lawrence, 2009)

I Result is very similar to PITC approximation (Quiñonero
Candela and Rasmussen, 2005).

I Reduces to O
(
N3dk2

)
complexity, O

(
N2dk

)
storage.

I Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

I Reduces to O
(
Ndk2

)
complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

I Network of tide height sensors in the solent — tide heights
are correlated.

I Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

I d = 3 and N = 1000 of the 4320 for the training set.
I Simulate sensor failure by knocking out onse sensor for a

given time.
I For the other two sensors we used all 1000 training

observations.
I Take k = 100.



Tide Height Results

Mauricio Alvarez

(a) Bramblemet Inde-
pendent

(b) Bramblemet PITC

(c) Cambermet Inde-
pendent

(d) Cambermet PITC

Figure : Predictive Mean and variance using independent GPs and
the PITC approximation for the tide height signal in the sensor
dataset.



Cokriging Jura

Mauricio Alvarez

I Jura dataset — concentrations of several heavy metals
(Atteia et al., 1994).

I Prediction 259 data, validation 100 data points.
I Predict primary variables (cadmium and copper) at

prediction locations in conjunction with some secondary
variables (nickel and zinc for cadmium; lead, nickel and
zinc for copper) (Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez
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Figure : Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and
CK stands for ordinary co-kriging.



MAP-Laplace Approximation

Laplace’s method: approximate posterior mode as Gaussian

p
(
p | m

)
= N

(
p̂,A−1

)
∝ exp

(
−

1
2
(
p − p̂

)>A
(
p − p̂

))
where p̂ = argmaxp(p | m) and A = −∇∇ log p

(
p | m

)
|p=p̂ is the

Hessian of the negative posterior at that point. To obtain p̂ and

A, we define the following function ψ
(
p
)

as:

log p(p|m) ∝ ψ(p) = log p
(
m | p

)
+ log p

(
p
)



MAP-Laplace Approximation

Assigning a GP prior distribution to p(t), it then follows that

log p
(
p
)

= −
1
2

p>K−1p −
1
2

log |K| −
n
2

log 2π

where K is the covariance matrix of p(t). Hence,

∇ψ(p) = ∇ log p(m|p) −K−1p

∇∇ψ(p) = ∇∇ log p(m|p) −K−1 = −W −K−1



Estimation of ψ(p)

Newton’s method is applied to find the maximum of ψ(p) as

pnew = p − (∇∇ψ(p))−1
∇ψ(p)

= (W + K−1)−1 (
Wp − ∇ log p(m|p)

)
In addition, A = −∇∇ψ(p̂) = W + K−1 where W is the negative
Hessian matrix. Hence, the Laplace approximation to the
posterior is a Gaussian with mean p̂ and covariance matrix
A−1as

p(p | m) ' N(p̂,A−1) = N(p̂, (W + K−1)−1)



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters θ and covariance parameters `

p (m|θ,φ) =

∫
p
(
m|p,θ

)
p
(
p|φ

)
dp =

∫
exp

(
ψ

(
p
))

dp

Using Taylor expansion of ψ(p),

log p(m|θ,φ) = log p
(
m|p̂,θ,φ

)
−

1
2

p>K−1p −
1
2

log |I + KW|

The parameters η = {θ,φ} can be then estimated by using

∂ log p (m|η)
∂η

=
∂ log p (m|η)

∂η
|explicit +

∂ log p (m|η)
∂p̂

∂p̂
∂η



SOS Response

I DNA damage in bacteria may occur as a result of activity
of antibiotics.

I LexA is bound to the genome preventing transcription of
the SOS genes.

I RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

I This allows several of the LexA targets to transcribe.
I The SOS pathway may be essential in antibiotic resistance

Cirz et al. (2005).
I Aim is to target these proteins to produce drugs to increase

efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

I Data from Courcelle et al. (2001)
I UV irradiation of E. coli. in both wild-type cells and lexA1

mutants, which are unable to induce genes under LexA
control.

I Response measured with two color hybridization to cDNA
arrays.



Khanin et al. Model

Given measurements of gene expression at N time points
(t0, t1, . . . , tN−1), the temporal profile of a gene i, mi (t), that
solves the ODE in Eq. 1 can be approximated by

mi (t) = m0
i e−dit +

bi

di
+ sie−dit

∫ t

0
F(p (u))ediudu.

mi (t) = m0
i e−dit +

bi

di
+ sie−dit 1

t j+1 − t j

N−2∑
j=0

F(p̄ j)
(
edit j+1 − edit j

)

where p̄ j =
(p(t j)+p(t j+1))

2 on each subinterval(
t j, t j + 1

)
, j = 0, . . . ,N − 2. This is under the simplifying

assumption that p (t) is a piece-wise constant function on each
subinterval

(
t j, t j + 1

)
. Repression model: F(p(t)) = 1

γ+ep(t) .



Khanin et al. Results

Figure : Fig. 2 from Khanin et al. (2006): Reconstructed activity level
of master repressor LexA, following a UV dose of 40 J/m2.



Khanin et al. Results

Figure : Fig. 3 from Khanin et al. (2006): Reconstructed profiles for
four genes in the LexA SIM.



Repression Model

Pei Gao

I We can use the same model of repression,

F j
(
p (t)

)
=

1
γ j + ep(t)

In the case of repression we have to include the transient
term,

m j (t) = α je−d jt +
b j

d j
+ s j

∫ t

0
e−d j(t−u)F j(p (u))du



Results for the repressor LexA

Pei Gao
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Figure : Our results using an MLP kernel. From Gao et al. (2008).



Use Samples to Represent Posterior

Michalis Titsias

I Sample in Gaussian processes

p
(
p|m

)
∝ p

(
m|p

)
p
(
p
)

I Likelihood relates GP to data through

m j (t) = α je−d jt +
b j

d j
+ s j

∫ t

0
e−d j(t−u)F j(p (u))du

I We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm

I Initialize p(0)

I Form a Markov chain. Use a proposal distribution
Q(p(t+1)

|p(t)) and accept with the M-H step

min
(
1,

p(m|p(t+1))p(p(t+1))
p(m|p(t))p(p(t))

Q(p(t)
|p(t+1))

Q(p(t+1)|p(t))

)
I p can be very high dimensional (hundreds of points)
I How do we choose the proposal Q(p(t+1)

|p(t))?
I Can we use the GP prior p(p) as the proposal?



p53 System Again

I One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dm j(t)
dt

= b j + s j
exp(p(t))

exp(p(t)) + γ j
− d jm j(t)

I We have 5 genes
I Gene expressions are available for T = 7 times and there

are 3 replicas of the time series data
I TF (p) is discretized using 121 points
I MCMC details:

I 7 control points are used (placed in a equally spaced grid)
I Running time 4/5 hours for 2 million sampling iterations

plus burn in
I Acceptance rate for p after burn in was between 15% − 25%



Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein
concentrations
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p53 Data Kinetic parameters
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Results on SOS System

I Again consider the Michaelis-Menten kinetic equation

dm j(t)
dt

= b j + s j
1

exp(p(t)) + γ j
− d jm j(t)

I We have 14 genes (5 kinetic parameters each)
I Gene expressions are available for T = 6 time slots
I TF (p) is discretized using 121 points
I MCMC details:

I 6 control points are used (placed in a equally spaced grid)
I Running time was 5 hours for 2 million sampling iterations

plus burn in
I Acceptance rate for p after burn in was between 15% − 25%



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions

0 10 20 30 40 50 60
2.5

3

3.5

4

4.5

5

5.5

6

6.5
ruvB Gene

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5
sbmC Gene

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
sulA Gene

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
umuC Gene

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
umuD Gene

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5
uvrB Gene



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration
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Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value
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Results in E.coli data: Confidence intervals for the
kinetic parameters
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A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

I Stage 1: Sub-network training (∼100 targets):
I Fit regulation model on sub-network of known structure
I Infer TF protein concentration functions

I Stage 2: Genome-wide scanning:
I Fit alternative regulation models to all potential targets
I Score models and identify well supported TF-target links

I Challenges:
I Fitting and scoring >10000 models
I Not all regulation is modelled: an open system



A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

I Stage 1: Sub-network training (∼100 targets):
I Fit regulation model on sub-network of known structure
I Infer TF protein concentration functions

I Stage 2: Genome-wide scanning:
I Fit alternative regulation models to all potential targets
I Score models and identify well supported TF-target links

I Challenges:
I Fitting and scoring >10000 models
I Not all regulation is modelled: an open system



A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

I Stage 1: Sub-network training (∼100 targets):
I Fit regulation model on sub-network of known structure
I Infer TF protein concentration functions

I Stage 2: Genome-wide scanning:
I Fit alternative regulation models to all potential targets
I Score models and identify well supported TF-target links

I Challenges:
I Fitting and scoring >10000 models
I Not all regulation is modelled: an open system



A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

I Stage 1: Sub-network training (∼100 targets):
I Fit regulation model on sub-network of known structure
I Infer TF protein concentration functions

I Stage 2: Genome-wide scanning:
I Fit alternative regulation models to all potential targets
I Score models and identify well supported TF-target links

I Challenges:
I Fitting and scoring >10000 models
I Not all regulation is modelled: an open system



A “middle-out” approach for inferring regulatory
networks

I Training stage: Parameter estimation on known network

mRNA (observed with noise)

(a): Training phase

TF protein (unobserved)

Translation

Transcriptional regulation

(b): Prediction phase

I Scanning stage: Bayesian evidence model scoring for
target inference
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A “middle-out” approach for inferring regulatory
networks

I Training stage with post-translational modification

mRNA – observed with noise

TF protein ‐ unobserved

Transcriptional regulation

I Scanning stage: Bayesian evidence model scoring for
target inference



Model of transcriptional regulation

I Transcription

dm j(t)
dt

= F
(
p1(t), . . . , pK(t);θ j

)
− d jm j(t)

m j(t) – target gene j mRNA concentration function
pi(t) – transcription factor i protein concentration function
F(p;θ j) – regulation model, d j – mRNA decay rate

I Translation (optional)

dpi(t)
dt

= fi(t) − δipi(t)

fi(t) – transcription factor i mRNA concentration function
δi – protein decay rate
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Gaussian process inference over latent functions

I Transcription factors considered inputs to the system
I Modelled as samples from a Gaussian process prior

distribution
I Equations linear inm(t) can be solved as a function of p(t)

so no need for numerical ODE solver to compute
likelihood

I Useful way to close an open system
I Can ignore TF mRNA data and treat p(t) as latent function
I Bayesian MCMC used to infer p(t) and all model

parameters

Gao et al. (2008); Titsias et al. (2009); Honkela et al. (2010);
Titsias et al. (2012)
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Artificial data: one experimental condition
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Artificial data: two experimental conditions

True TFs condition 1 True TFs condition 2
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Artificial data: two experimental conditions
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Artificial data: scanning performance for each TF
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Artificial data: scanning performance for all TFs
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Drosophila training

I Sub-network of 96 genes targeted by 5 TFs during
Drosophila mesoderm development (Zinzen et al., 2009).

I Data: wild-type times series, 3 replicates (Tomancak et al.,
2002).
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Drosophila scanning: model ranking

I Rank target gene regulation models by their posterior
probability across all 25 = 32 possible models

I Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
(2009).
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Coregulated Target Example
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A highly ranked putative joint target of BAP amd MEF2. The
candidate gene is confirmed as a joint target by independent

ChIP-chip studies Zinzen et al. (2009).



Drosophila scanning: link ranking

I TF-target link and link-pair ranking according to posterior
probability of particular single TF or double TF regulations

I Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
(2009).
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Summary and Conclusion

I Middle-out approach: sub-network training followed by
genome-wide scanning

I Training: Bayesian inference of regulation model
parameters and TF protein concentration functions

I Scanning: Bayesian model scoring for inferring TF-target
link probabilities

I More informative conditions→ better performance
I Robust to existence of some unknown regulating TFs
I Significant enrichment of inferred TF-target links for

nearby ChIP-chip binding in drosophila development
example
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