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Multiple Output Gaussian Processes

» In this section we will study Gaussian processes with
multiple outputs.

» they have various names, vector valued functions,
multiple outputs, multidimensional GPs, multi-task
learning.

» Key idea, we want to relate several different functions.

» Sounds more complex, but actually it’s a special case of a
normal GP where one input is discrete.

» Question: how to embed covariation between the
functions.

» Start by introducing Kalman filter/smoother.



Simple Markov Chain

v

v

Markov property,

X =Xj—1 + €j,
€; NN (0/ (X)
= x; ~N (xi-1,a)

v

Initial state,
xo ~ N (0, a0)

v

If xo ~ N (0, 2) we have a Markov chain for the latent
states.

\4

Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).

Assume 1-d latent state, a vector over time, x = [x7 ...

XT].



Gauss Markov Chain

X0 =0, 61'~N(0,1)

xo =0.000, € =-224
x1 =0.000-224=-224



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x1=-224, €, =0457
Xy = =224+ 0.457 = -1.78



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x,=-178, €3=0.178
x3=-178+0.178 = -1.6



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x3=-16, €4=-0.292
x4 =-16-0292 =-1.89



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x3 =-189, €5=-0.501
x5 = —1.89 — 0.501 = -2.39



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x5 =-239, € =132
X =—2.39+ 132 =-1.08



Gauss Markov Chain

X0 =0, 61'~N(0,1)

xe = —1.08, €7 =0.989
x7 = —1.08 + 0.989 = —-0.0881



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x7 = —0.0881, €3 =-0.842
xg = —0.0881 — 0.842 = —0.93



Gauss Markov Chain

X0 =0, 61'~N(0,1)

xg =—-0093, €9=-041
x9 = —0.93 -0.410 = -1.34



Multivariate Gaussian Properties: Reminder

If
z~ N(H, C)

and
x=Wz+b

then
x~ N (W +b,WCWT)



Multivariate Gaussian Properties: Reminder

Simplified: If
z~N (0, 021)
and
x =Wz

then
x~N (0, a2wa)



Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

X1
X3
X4
X5

—_ = = = o

— = = Ol o

el Ne) N
(@]

Xo» = €1+ €

€1
€2
€3
€4
€5




Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables



Multivariate Process

» Since x is linearly related to € we know x is a Gaussian
process.

» Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

X:L1€



Latent Process Mean

(x) = (L1€)



Latent Process Mean

(x) = L1(€)



Latent Process Mean

(x) = L1(€)

e ~N(0,al)



Latent Process Mean

<X> — L10



Latent Process Mean

(x)=0



Latent Process Covariance

xx' = LleeTLlT

x'=€'L'



Latent Process Covariance

(xx") = <L166TL1T>



Latent Process Covariance

(xx") =L;(ee" )L,



Latent Process Covariance

(xx") =L;(ee" )L,

e ~ N (0,al)



Latent Process Covariance

(xx") = al L



Latent Process

X:L1€



Latent Process

X:L1€

e ~N(0,al)



Latent Process

X:L1€

e ~N(0,al)



Latent Process

X:L1€

e ~N(0,al)

x ~ N (0, aLsL])



Covariance for Latent Process II

v

Make the variance dependent on time interval.

» Assume variance grows linearly with time.

v

Justification: sum of two Gaussian distributed random
variables is distributed as Gaussian with sum of variances.

\4

If variable’s movement is additive over time (as described)
variance scales linearly with time.



Covariance for Latent Process II

» Given
e~N(0,al) = e~ N (0,aL,L]).

Then
€~ N (0, Atal) = e ~ N (0, AtaL{L] ).

where At is the time interval between observations.



Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)



Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)

K = aAfL L]



Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.



Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.

kij = aAt min(, j)
define Ati = t; so

ki,]' = O(mil’l(ti, t]) = k(ti, t])



Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

» Precision matrix is not o
sparse.

» Each point is dependent
on all the others.

» In this case
non-Markovian.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.




Simple Kalman Filter I

» We have state vector X = [x1 ... xq] e R™4 and if each state
evolves independently we have

q
o0 = [ [ ptx.)
i=1
p(x.;) = N (x,i]0,K).

» We want to obtain outputs through:

Yi: = Wxi,:



Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I ® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q



Kronecker Product

aK bK
cK dK
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Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I ® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q



Column Stacking

LN




For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



Two Ways of Stacking

Can also stack each row of X to form column vector:
X1,:
X2,
X =

XT,:

p(x) = N (x/0,K®1I)



Row Stacking

.®E:




For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,
Yi: = wxi,: + €.

€~ N(O, 021)



Mapping from Latent Process to Observed

W 0 0 X1,: WXL;
0 WO X X2, — WX2,:
0 0 W X3, WX3I;




Output Covariance

This leads to a covariance of the form
IOW)KDIWT) + Io?
Using (A ® B)(C ® D) = AC® BD This leads to
K@ WW' +10°

or
y~N(0,WW™ @K +10?)



Kernels for Vector Valued Outputs: A Review
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Kronecker Structure GPs

» This Kronecker structure leads to several published
models.

(K(X, x/))j,j’ = k(X, X,)kT(j, j/)/
where k has x and kr has i as inputs.

» Can think of multiple output covariance functions as
covariances with augmented input.

» Alongside x we also input the j associated with the output
of interest.



Separable Covariance Functions

» Taking B = WWT we have a matrix expression across
outputs.
K(x,x") = k(x,x")B,
where B is a p X p symmetric and positive semi-definite
matrix.
» B is called the coregionalization matrix.

» We call this class of covariance functions separable due to
their product structure.



Sum of Separable Covariance Functions

» In the same spirit a more general class of kernels is given
by
9
K(x,x) = Y ki(x,x)B;.
j=1

» This can also be written as

q
K(X,X) = ) B;®k(X,X),
j=1

» This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

» We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

» Use of GPs in Geostatistics is called kriging.

» These multi-output GPs pioneered in geostatistics:
prediction over vector-valued output data is known as
cokriging.

» The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

» Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

» In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

» In the LMC, each component f; is expressed as a linear sum

q
00 =Y wu(x).
j=1

where the latent functions are independent and have
covariance functions k;j(x, x’).

» The processes { fj(x)}?:1 are independent for g # j'.



Kalman Filter Special Case

» The Kalman filter is an example of the LMC where
ui(x) = xi(t).
» Le. we've moved form time input to a more general input
space.
» In matrix notation:
1. Kalman filter
F =WX

2. LMC
F=WU

where the rows of these matrices F, X, U each contain g
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

» If one covariance used for latent functions (like in Kalman
filter).

» This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

» The kernel matrix corresponding to a dataset X takes the
form
K(X, X) = B®k(X, X).



Autokrigeability

» If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x") (Helterbrand
and Cressie, 1994).

» In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

» In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).



Intrinsic Coregionalization Model

K(X,X) = ww' ® k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05
B‘[o.s 1.5]




Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).
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Intrinsic Coregionalization Model
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Intrinsic Coregionalization Model
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05 -
B‘[o.s 1.5]
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LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02
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LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1
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B2=105 13]

52 =02




LMC in Machine Learning and Statistics

» Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

» Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.
» Setting B = I, assumes outputs are conditionally

independent given the parameters . (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

» More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

» Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X, X) =

q
W:,]'W:Tj ® k](X, X).

j=1

» Like the Kalman filter, but each latent function has a
different covariance.

» Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.



Semiparametric Latent Factor Model Samples

KX, X) = W;,1WI—1 ® ki1(X, X) + W;,zwjz ® ka(X, X)
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Semiparametric Latent Factor Model Samples
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Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)
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Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)

_[o.5]
- 1 .
— — 1 |
0.5




Gaussian processes for Multi-task, Multi-output and
Multi-class

» Bonilla et al. (2008) suggest ICM for multitask learning.

» Use a PPCA form for B: similar to our Kalman filter
example.

» Refer to the autokrigeability effect as the cancellation of
inter-task transfer.

» Also discuss the similarities between the multi-task GP
and the ICM, and its relationship to the SLFM and the
LMC.



Multitask Classification

» Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters ¢
(Minka and Picard, 1997; ?; Lawrence and Platt, 2004; Seeger and
Jordan, 2004; Yu et al., 2005; Rasmussen and Williams, 2006).

» Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

» Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

» A statistical model used as a surrogate for a
computationally expensive computer model.

» Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

» In Conti and O’'Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).
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Outline

Latent Force Models

Second Order ODE

Motion Capture Example

ANTYT AT - 1 1 (€T . . g 1D Yt



Linear Dimensionality Reduction

» Find a lower dimensional plane embedded in a higher
dimensional space.
» The plane is described by the matrix W € R,

f

f

X
X2 3 X1



Dimensionality Reduction

» Linear relationship between the data, X, and a reduced
dimensional representation, F.

X=FW +e¢,

e~N(0,X)
» Problem is we don’t know what F should be!



Marionette Analogy

observed

J 7



Marionette Analogy

F unobserved

observed




F is a Latent Variable

\4

Define a probability distribution for F.

v

Marginalize out F (integrate over).

v

Optimize with respect to W.
For Gaussian distribution, F ~ N (0, 1)
» and ~ = ¢’I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and X constrained to be diagonal, we have factor analysis.

\4



Dimensionality Reduction: Temporal Data

f®

|

Figure : PCA: Pure sampling from a Gaussian does not retain
temporal effects.



Dimensionality Reduction: Temporal Data

f®

Figure : Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data

f®

Figure : General Gaussian processes allow for priors over smooth
functions.



Mechanical Analogy

Back to Mechanistic Models!

» These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, fi(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € R,

Diagonal matrix of spring constants, D € RP*?.

Original System: W = SD™1.

v

v



Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD +e.

v

Now have a second order mechanical system.

It will exhibit inertia and resonance.

v

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), { f,-(t)}?:l, we call
this a latent force model.



Physical Analogy
PHYSICAL ANALOGY MARIONETTE
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance
matrices for the output displacements.

» For one displacement the model is

q
myXi(t) + cpXi () + dixi(t) = by + Z sikfi(t), 3)
pary

where, my is the kth diagonal element from M and
similarly for ¢, and d. sj is the 7, kth element of S.

» Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

, t—t)>
k(1) = exp (_%) 0il-



Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = L ZS]’ exp(— a]t)f fi(7) exp(a;t) sin(w;(t — 7))dt

]11

()

A

» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEEES
10125 | 2 | 1 |
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¥,
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f(t) v,0 ¥,(0 Y40




Covariance for ODE Model

» Analogy

X = Z‘ el.Tfi fi~N(OX) > x~ N(O,Z e;rziei]
i

O\

i

» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEENES
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Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = L ZS]’ exp(— a]t)f fi(7) exp(a;t) sin(w;(t — 7))dt

]11

()

A

» Joint distribution
for x1 (t), x2 (1),
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Damping ratios:
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Joint Sampling of x () and f (¢)

» 1fmSample

2 L L L
50 55 60 65 70

Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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Joint Sampling of x () and f (¢)

» 1fmSample
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Figure : Joint samples from the ODE covariance, black: f (t), red:
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Joint Sampling of x () and f (¢)

» 1fmSample

25 L L L
50 55 60 65 70

Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).



Covariance for ODE

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = LZ‘sﬂexp( a]t)f fi(7) exp(a;t) sin(w;(t—T1))dt

]11

» Joint distribution
for x1 (t), x2 (¢),
x3 () and f (¢).

» Damping ratios:
ERENE
10125 | 2 | 1 |

()

A

Y,

¥,

JAU)

A\ }

f(t) v,0 ¥,(0 Y40




Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.

» Objective: generalize from training data to realistic
motions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.

» Objective: generalize from training data to realistic
motions.

» Use 2nd Order Latent Force Model with
mass/spring/damper (resistor inductor capacitor) at each
joint.



Prediction of Test Motion

» Model left arm only.
» 3 balancing motions (18, 19, 20) from subject 49.

» 18 and 19 are similar, 20 contains more dramatic
movements.

» Train on 18 and 19 and testing on 20
» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other
movements.

» Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table : Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65
Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results II

11111111

(@) Inferred  Latent (b) Wrist (c) Hand X Rotation
Force

(d) Hand Z Rotation (e) Thumb X Rotation (f) Thumb Z Rotation

Figure : Predictions from LFM (solid line, grey error bars) and direct
reoression (crosses with stick error bars).



Motion Capture Experiments

» Data set is from the CMU motion capture data base!.

» Two different types of movements: golf-swing and
walking.

» Train on a subset of motions for each movement and test
on a different subset.

» This assesses the model’s ability to extrapolate.

» For testing: condition on three angles associated to the root
nodes and first five and last five frames of the motion.

» Golf-swing use leave one out cross validation on four
motions.

» For the walking train on 4 motions and validate on 8
motions.



Motion Capture Results

Table : RMSE and R? (explained variance) for golf swing and walking

Movement | Method RMSE R? (%)
INDGP | 21.55+2.35 | 30.99 +9.67
Golf swing MTGP | 21.19+2.18 | 45.59 +7.86
SLEM | 21.52+1.93 | 49.32 +3.03
LEM 18.09 +1.30 | 72.25 + 3.08
IND GP | 8.03+255 | 30.55+ 10.64
Walking MTGP | 775205 | 37.77 +4.53
SLFM 781 +£2.00 | 36.84+4.26
LFM 7.23+218 | 48.15+5.66
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Example: Transcriptional Regulation

v

First Order Differential Equation

dm; (t)
d—]t = bj +s;p (t) — djm; (¢)

» Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

» mj(t) — concentration of gene j’s mRNA

» p(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when p(t) is not
observed?



Covariance for Transcription Model

RBF covariance function for p (t)
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Joint Sampling of p () and m (¢)

» simSample
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Figure : Joint samples from the ODE covariance, black: p (t), red:
my (t) (high decay/sensitivity), green: m; (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).
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Joint Sampling of p () and m (¢)

» simSample

1 2 3 4 5

Figure : Joint samples from the ODE covariance, black: p (t), red:
my (t) (high decay/sensitivity), green: m; (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

» Radiation can damages molecules including DNA.
» Most DNA damage is quickly repaired—single strand
breaks, backbone break.
» Double strand breaks are more serious—a complete
disconnect along the chromosome.
» Cell cycle stages:
» Gj: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have

divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G;. In G, there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

» Responsible for Repairing DNA damage
» Activates DNA Repair proteins

» Pauses the Cell Cycle (prevents replication of damage
DNA)

» Initiates apoptosis (cell death) in the case where damage
can’t be repaired.

» Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure : p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the
Month” feature).


http://www.rcsb.org/

Figure : Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2.
(also governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A
(CDKN1A). A regulator of cell cycle progression.
(also governed by SREBP-1a, Sp1, Sp3,... ).
hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily,
member 10b. A transducer of apoptosis signals.



Modelling Assumption

» Assume p53 affects targets as a single input module
network motif (SIM).

Figure : p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

» First Order Differential Equation

dm]‘ ®
dt

=bj+sjp(t) —dm;(t)
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Ordinary Differential Equation Model

» First Order Differential Equation

dm]‘ ®
—ar " bitsip®—dm;(®)

» Proposed by Barenco et al. (2006).

» mj(t) — concentration of gene j’s mRNA

» p(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when p(t) is not
observed?



p53 Results with GP

Vol. 24 ECCB 2008, pages i70-i75
doi:10.1093/bioinformatics/btn278

Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities

Pei Gao', Antti Honkela?, Magnus Rattray' and Neil D. Lawrence®*

13chool of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adapt\ve Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT A challenging problem for parameter estimation in ODE models
Motivation: Inference of latent chemical species in biochemical occurs where one or more chemical species influencing the dynamics
interaction networks is a key problem in estimation of the structure are controlled outside of the sub-system being modelled. For



p53 Results with GP
(Gao et al., 2008)

Inferred ps3 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=0.4489
D=0.4487
$=0.40601

1
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Ranking with ERK Signalling

» Target Ranking for Elk-1.

» Elk-1is phosphorylated by ERK from the EGF signalling
pathway.

» Predict concentration of Elk-1 from known targets.
» Rank other targets of Elk-1.
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations
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Model-based method for transcription factor
target identification with limited data

Antti Honkela*', Charles Girardot®, E. Hilary Gustafson®, Ya-Hsin Liu®, Eileen E. M. Furlong®,

Neil D. Lawrence®', and Magnus Rattray“'

*Department of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; *Genome Biology U
European Molecular Biology Laboratory, Heidelberg, Germany; and “School of Computer Science, University of Manchester, Manchester, Units

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the

used for genome-wide scoring of putative target gen
is required to apply our method is wild-type time seri
lected over a period where TF activity is changing. Ou
allows for complementary evidence from expression



Cascaded Differential Equations

(Honkela et al., 2010)

» Transcription factor protein also has governing mRNA.
» This mRNA can be measured.

» In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription
factor that counts.

» In development phosphorylation plays less of a role.
» Build a simple cascaded differential equation to model this.



Covariance for Translation/Transcription Model

RBF covariance function for f (f)

p(t)=cexp (—6t)f f(u) exp (6u)du
0

d

» Joint distribution f \ \ \
for my (), ma (b),
p(H)and f (1), r N Ny

» Here:
Glalslals] ™9 ™

[T[5][5][05]05]

. t
m; (t) = E + s5;exp (—dit)f p (1) exp (d;u) du.
i 0




Twist Results

» Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series
network identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
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sigma 1
0.6
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04 S0.0956793
B 0.000847107
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-1 0
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Figure : Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x10~° Inferred twi protein Driving Input

1
0.8
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sigma 1
0.6
D 542.062
04 S 266101
B 3.81368e-06
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure : Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure : Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
0.8
delta 3.17042e-05
sigma 1
0.6
D 0.000118374
04 S 0.0531884
B 7.20183e-08
0.2
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Figure : Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure : Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure : Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure : Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in
tissues of interest



Results

Relative enrichment (%)

Relative enrichment (%)
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Summary

» Cascade models allow genomewide analysis of potential
targets given only expression data.

» Once a set of potential candidate targets have been
identified, they can be modelled in a more complex
manner.

» We don’t have ground truth, but evidence indicates that
the approach can perform as well as knockouts.



Partial Differential Equations and Latent Forces

Mauricio Alvarez

» Can extend the concept to latent functions in PDEs.

» Jura data: concentrations of heavy metal pollutants from
the Swiss Jura.

» Consider a latent function that represents how the
pollutants were originally laid down (initial condition).

» Assume pollutants diffuse at different rates resulting in the
concentrations observed in the data set.

Ixy(x, ) i . 9Pxy(x, 1)
or 9 ax?

4

=1

» Latent function f,(x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

Mauricio Alvarez

» The solution to the system (Polyanin, 2002) is then given by

R
X060 =Y Sy fR Gy X', X
r=1

where Gy(x, X/, t) is the Green’s function given as

L

j=1

(JC]‘—JC)2

t
(x X, 1) = 2d d/sz/Z

with Ty = x4t



Covariance Function

Mauricio Alvarez

» For latent function given by a GP with the RBF covariance
function this is tractable.

R 5,5l
i |Ly + Lyg + L,[1/2

kXqu (X/ X,/ t) =

X exp [—% (x-x)" (L,p + Ly + Lr)_1 (x— x’)] ,

where Ly, L;; and L, are diagonal isotropic matrices with
entries 2kpt, 2kt and 1/€2 respectively. The covariance
function between the output and latent functions is given
by
ky, 7, (6, X', ) Snltd”
XX, )= =75
ol Ly + Ly|1/2

[ 1 " NT [+ I \_1/ /\]



Prediction of Metal Concentrations

Mauricio Alvarez

» Replicate experiments in (Goovaerts, 1997, pp. 248,249):
» Primary variable (Cd, Cu, Pb, Co) predicted in conjunction
with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn
for Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).2
» Condition on the secondary variables to improve
prediction for primary variables.

» Compare results for the diffusion kernel with independent
GPs and “ordinary co-kriging” (Goovaerts, 1997,
pp. 248,249).



Jura Results

Mauricio Alvarez

Table : Mean absolute error and standard deviation for ten repetitions
of the experiment for the Jura dataset. IGPs stands for independent
GPs, GPDK stands for GP diffusion kernel, OCK for ordinary
co-kriging. For the Gaussian process with diffusion kernel, we learn
the diffusion coefficients and the length-scale of the covariance of the
latent function.

Metals IGPs GPDK OCK
Cd 0.5823+0.0133 | 0.4505+0.0126 | 0.5
Cu 15.9357+0.0907 | 7.1677+0.2266 | 7.8
Pb 22.9141+0.6076 | 10.1097+0.2842 | 10.7
Co 2.0735+0.1070 | 1.7546+0.0895 | 1.5




Convolutions and Computational Complexity

Mauricio Alvarez

» Solutions to these differential equations is normally as a
convolution.

xi () = ff(u)ki(u—t)du+hi(t)

t
% (6) = fo £ () g (o) e + i ()

» Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).
» Convolutions lead to N X d size covariance matrices
O (N3d3) complexity, O (dez) storage.

» Model is conditionally independent over {x; (t)};-j:1 given

f(®).



Independence Assumption

Mauricio Alvarez

» Can assume conditional independence given given
{f (ti)}:{:l. (Alvarez and Lawrence, 2009)
» Result is very similar to PITC approximation (Quifionero
Candela and Rasmussen, 2005).
» Reduces to O <N3dk2) complexity, O (dek) storage.

» Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

» Reduces to O (N dk2) complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

» Network of tide height sensors in the solent — tide heights
are correlated.

» Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

» d =3and N = 1000 of the 4320 for the training set.

» Simulate sensor failure by knocking out onse sensor for a
given time.

» For the other two sensors we used all 1000 training
observations.

» Take k = 100.



Tide Height Results

Mauricio Alvarez
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Cokriging Jura

Mauricio Alvarez

» Jura dataset — concentrations of several heavy metals
(Atteia et al., 1994).

» Prediction 259 data, validation 100 data points.

» Predict primary variables (cadmium and copper) at
prediction locations in conjunction with some secondary
variables (nickel and zinc for cadmium; lead, nickel and
zinc for copper) (Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez
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Figure : Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and
CK stands for ordinary co-kriging.



MAP-Laplace Approximation

Laplace’s method: approximate posterior mode as Gaussian

p(p|m)=N(p A )OceXp(——(p p) Ap- p))

where p = argmaxp(p | m) and A = —=VVlogp (p | m) [p=p is the
Hessian of the negative posterior at that point. To obtain p and

A, we define the following function ¢ (p) as:

log p(plm) o< Y(p) = logp (m | p) +logp (p)



MAP-Laplace Approximation

Assigning a GP prior distribution to p(f), it then follows that

1 1 n
1 =——p'Klp-= _
ogp(p) = -5p K 'p - 5 log|K| - - log 2
where K is the covariance matrix of p(t). Hence,

Vy(p) = Vlog p(mlp) - K'p
VVY(p) = VVlogp(mlp) - K ' = -W - K



Estimation of ¢(p)

Newton’s method is applied to find the maximum of ¢(p) as

P =p — (VVi(p)) ' Vi(p)
= (W+K™)™ (Wp — Vlog p(mlp))

In addition, A = —~VVi(p) = W + K~! where W is the negative
Hessian matrix. Hence, the Laplace approximation to the
posterior is a Gaussian with mean p and covariance matrix
Alas

p(p | m) =N A™) = NP, (W+K )™



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters 0 and covariance parameters ¢

p(mi6,9) = [ p(mip,0)p (pig)dp = [ exp (w )y
Using Taylor expansion of {(p),

1 ~ 1
bymm&@:kgﬂmmﬁﬁﬂ—?fK1p—?%ﬂ+KW|

The parameters 1 = {8, ¢} can be then estimated by using

dlogp(min) _ dlogp(mm) ~  dlogp(min) Ip
on - on explicit p on



SOS Response

» DNA damage in bacteria may occur as a result of activity
of antibiotics.

» LexA is bound to the genome preventing transcription of
the SOS genes.

» RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

» This allows several of the LexA targets to transcribe.

» The SOS pathway may be essential in antibiotic resistance
Cirz et al. (2005).

» Aim is to target these proteins to produce drugs to increase
efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

» Data from Courcelle et al. (2001)

» UV irradiation of E. coli. in both wild-type cells and lexAl
mutants, which are unable to induce genes under LexA
control.

» Response measured with two color hybridization to cDNA
arrays.



Khanin et al. Model

Given measurements of gene expression at N time points
(to, t1,...,tn-1), the temporal profile of a gene i, m; (t), that
solves the ODE in Eq. 1 can be approximated by

e b |
m; (t) = m?e dit 4 d—l + st et du.
i 0

b N-
m; (t) = mde™t + — + g;e™ Z (edftf“ - ed"tf)
di ]+1 t] =0

I\)

on each subinterval
(t],t] + 1), j=0,...,N—2. This is under the simplifying

assumption that p (t) is a piece-wise constant function on each
subinterval (t]-, ti+ l). Repression model: F(p(t)) = L

y+ep(f) :

where p; = M



Khanin et al. Results
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Figure : Fig. 2 from Khanin et al. (2006): Reconstructed activity level
of master repressor LexA, following a UV dose of 40 J/m2.



Khanin et al. Results
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Figure : Fig. 3 from Khanin et al. (2006): Reconstructed profiles for
four genes in the LexA SIM.



Repression Model

Pei Gao

» We can use the same model of repression,

Fip(t) = ———

In the case of repression we have to include the transient
term,

b

. !
mj(t) = a]-e_dft + d—; + s]-j(; e_df(t_”)F]-(p (u))du



Results for the repressor LexA

Pei Gao

Inferred LexA Activity recN mRNA dinl mRNA
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Figure : Our results using an MLP kernel. From Gao et al. (2008).



Use Samples to Represent Posterior

Michalis Titsias

» Sample in Gaussian processes

p (plm) e p (mip) p (p)
» Likelihood relates GP to data through

t
mj(t) = aje_dft + d_] + sjf e_df(t_”)l-"j(p (u))du
j 0

» We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm

» Initialize p©

» Form a Markov chain. Use a proposal distribution
Qp™D|p®) and accept with the M-H step

(1 Paip pe™*D) Q(pipY)
" p(mip®)p(p®)  Q(p!+Dip®)
» p can be very high dimensional (hundreds of points)

» How do we choose the proposal Q(p!*V[p®))?
» Can we use the GP prior p(p) as the proposal?



p53 System Again

» One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dm;® _ exp(p(t))

a0 ety M0

» We have 5 genes

» Gene expressions are available for T = 7 times and there
are 3 replicas of the time series data

» TF (p) is discretized using 121 points

» MCMC details:

» 7 control points are used (placed in a equally spaced grid)

» Running time 4/5 hours for 2 million sampling iterations
plus burn in

» Acceptance rate for p after burn in was between 15% — 25%



Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica

DDB2 Gene - first Replica

BIK Gene - first Replica

TNFRSF10b Gene - first Replica

0 2 4 6 8 10 12

Clp1/p21 Gene - first Replica

2

4 6 8

p26 sesnl Gene - first Replica

10 12 0 2 4 6 8 0 12




Data used by Barenco et al. (2006): Protein
concentrations

Inferred p53 protein Inferred p53 protein Inferred p53 protein
1.5 N
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Linear model (Barenco et al. predictions are shown as crosses)
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p53 Data Kinetic parameters

Basal rates Decay rates

Sensitivities Gamma parameters

WJJML%ﬁﬁm

TNFRSF10D

Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model



Results on SOS System

» Again consider the Michaelis-Menten kinetic equation
dm;(t) 1

T = ]+S]W —d]m](t)

\4

We have 14 genes (5 kinetic parameters each)

» Gene expressions are available for T = 6 time slots

\4

TF (p) is discretized using 121 points
MCMC details:

» 6 control points are used (placed in a equally spaced grid)

» Running time was 5 hours for 2 million sampling iterations
plus burn in

» Acceptance rate for p after burn in was between 15% — 25%

v



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration

Inferred protein




Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value

recN Gene umuC Gene uvrB Gene

251
oF 15
-0 0. 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Sensitivities

10oon ol pepl




Results in E.coli data: Confidence intervals for the
kinetic parameters
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A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

» Stage 1: Sub-network training (~100 targets):

» Fit regulation model on sub-network of known structure
» Infer TF protein concentration functions

» Stage 2: Genome-wide scanning;:

» Fit alternative regulation models to all potential targets
» Score models and identify well supported TF-target links

» Challenges:

» Fitting and scoring >10000 models
» Not all regulation is modelled: an open system



A “middle-out” approach for inferring regulatory
networks

» Training stage: Parameter estimation on known network
(a): Training phase
@ mRNA (observed with noise)
@ TF protein (unobserved)
—3) Translation
—> Transcriptional regulation

(b): Prediction phase
Q l | ] \:/

e



A “middle-out” approach for inferring regulatory

networks
» Training stage: Parameter estimation on known network
(a): Training phase
@ mRNA (observed with noise)
@ TF protein (unobserved)

—3) Translation
—> Transcriptional regulation

VIR AR &
S

» Scanning stage: Bayesian evidence model scoring for



A “middle-out” approach for inferring regulatory
networks

» Training stage with post-translational modification

@ mRNA - observed with noise
.‘m‘. @ TF protein - unobserved

= Transcriptional regulation

» Scanning stage: Bayesian evidence model scoring for
target inference

VoV VN
TN T



Model of transcriptional regulation

» Transcription

dt

= F(pa(t), ..., px(); 0;) — djm;(t)

mj(t) — target gene j mRNA concentration function
pi(t) — transcription factor 7 protein concentration function
E(p; 0;) — regulation model, d; - mRNA decay rate



Model of transcriptional regulation

» Transcription

dt

= F(pa(t), ..., px(); 0;) — djm;(t)

mj(t) — target gene j mRNA concentration function
pi(t) — transcription factor 7 protein concentration function
E(p; 0;) — regulation model, d; - mRNA decay rate

» Translation (optional)

dz
” )~ f(t) - st

fi(t) — transcription factor i mRNA concentration function
0; — protein decay rate
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Gaussian process inference over latent functions

» Transcription factors considered inputs to the system

» Modelled as samples from a Gaussian process prior
distribution

» Equations linear in m(t) can be solved as a function of p(t)
so no need for numerical ODE solver to compute
likelihood

» Useful way to close an open system
» Can ignore TF mRNA data and treat p(t) as latent function

» Bayesian MCMC used to infer p(t) and all model
parameters

Gao et al. (2008); Titsias et al. (2009); Honkela et al. (2010);
Titsias et al. (2012)



Artificial data: one experimental condition

Ground Truth TFs

Inferred TF concentrations after training stage

A

0 10 0 10 0 10
time time time



Artificial data: two experimental conditions

True TFs condition1  True TFs condition 2

Inferred TF concentrations for condition 1

time time time



Artificial data: two experimental conditions

True TFs condition1  True TFs condition 2

Inferred TF concentrations for condition 2

time time time
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Artificial data: scanning performance for all TFs
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Drosophila training

» Sub-network of 96 genes targeted by 5 TFs during
Drosophila mesoderm development (Zinzen et al., 2009).

» Data: wild-type times series, 3 replicates (Tomancak et al.,
2002).
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Drosophila scanning: model ranking

» Rank target gene regulation models by their posterior
probability across all 2° = 32 possible models

» Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
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Coregulated Target Example

= =
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time (h) time (h) time (h)
(a) Only BAP (b) Only MEF2 (c) BAP & MEF2

A highly ranked putative joint target of BAP amd MEF2. The
candidate gene is confirmed as a joint target by independent
ChIP-chip studies Zinzen et al. (2009).



Drosophila scanning: link ranking

» TF-target link and link-pair ranking according to posterior
probability of particular single TF or double TF regulations

» Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
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Summary and Conclusion

» Middle-out approach: sub-network training followed by
genome-wide scanning

» Training: Bayesian inference of regulation model
parameters and TF protein concentration functions

» Scanning: Bayesian model scoring for inferring TF-target
link probabilities

» More informative conditions — better performance
» Robust to existence of some unknown regulating TFs

» Significant enrichment of inferred TF-target links for
nearby ChIP-chip binding in drosophila development
example
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