Gaussian Processes

Neil D. Lawrence

GPRS
25th-27th February 2015

Outline

Gaussian Processes

Multiple Output Processes

Approximations

Dimensionality Reduction

Latent Force Models

Outline

Gaussian Processes
Two Dimensional Gaussian Distribution
Distributions over Functions
Two Point Marginals
Covariance from Basis Functions
Multivariate Gaussian Properties
An Infinite Basis
Constructing Covariance
Bochner's Theorem

Book

Rasmussen and Williams (2006)

What is Machine Learning?

data

- data: observations, could be actively or passively acquired (meta-data).

What is Machine Learning?

```
data +
```

- data: observations, could be actively or passively acquired (meta-data).

What is Machine Learning?

data + model

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.

What is Machine Learning?

$$
\text { data }+ \text { model }=
$$

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.

What is Machine Learning?

data + model $=$ prediction

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.
- prediction: an action to be taken or a categorization or a quality score.

The Gaussian Density

- Perhaps the most common probability density.

$$
\begin{aligned}
p\left(y \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right) \\
& \triangleq \mathcal{N}\left(y \mid \mu, \sigma^{2}\right)
\end{aligned}
$$

- The Gaussian density.

Gaussian Density

The Gaussian PDF with $\mu=1.7$ and variance $\sigma^{2}=0.0225$. Mean shown as red line. It could represent the heights of a population of students.

Gaussian Density

$$
\mathcal{N}\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right)
$$

σ^{2} is the variance of the density and μ is the mean.

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

And the sum is distributed as

$$
\sum_{i=1}^{n} y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

And the sum is distributed as

$$
\sum_{i=1}^{n} y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

(Aside: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

And the sum is distributed as

$$
\sum_{i=1}^{n} y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

(Aside: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Scaling a Gaussian

- Scaling a Gaussian leads to a Gaussian.

Two Important Gaussian Properties

Scaling a Gaussian

- Scaling a Gaussian leads to a Gaussian.

$$
y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Two Important Gaussian Properties

Scaling a Gaussian

- Scaling a Gaussian leads to a Gaussian.

$$
y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

And the scaled density is distributed as

$$
w y \sim \mathcal{N}\left(w \mu, w^{2} \sigma^{2}\right)
$$

Two Dimensional Gaussian

- Consider height, h / m and weight, w / kg.
- Could sample height from a distribution:

$$
p(h) \sim \mathcal{N}(1.7,0.0225)
$$

- And similarly weight:

$$
p(w) \sim \mathcal{N}(75,36)
$$

Height and Weight Models

Gaussian distributions for height and weight.

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

$$
h / m
$$

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

$$
h / m
$$

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

$$
h / m
$$

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Samples of height and weight

Independence Assumption

- This assumes height and weight are independent.

$$
p(h, w)=p(h) p(w)
$$

- In reality they are dependent (body mass index) $=\frac{w}{h^{2}}$.

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Sampling Two Dimensional Variables

Marginal Distributions
Joint Distribution

Independent Gaussians

$$
p(w, h)=p(w) p(h)
$$

Independent Gaussians

$$
p(w, h)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}} \sqrt{2 \pi \sigma_{2}^{2}}} \exp \left(-\frac{1}{2}\left(\frac{\left(w-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(h-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)\right)
$$

Independent Gaussians

$$
p(w, h)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2} 2 \pi \sigma_{2}^{2}}} \exp \left(-\frac{1}{2}\left(\left[\begin{array}{l}
w \\
h
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right)^{\top}\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
w \\
h
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right)\right)
$$

Independent Gaussians

$$
p(\mathbf{y})=\frac{1}{|2 \pi \mathbf{D}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)
$$

Correlated Gaussian

Form correlated from original by rotating the data space using matrix \mathbf{R}.

$$
p(\mathbf{y})=\frac{1}{|2 \pi \mathbf{D}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)
$$

Correlated Gaussian

Form correlated from original by rotating the data space using matrix \mathbf{R}.

$$
p(\mathbf{y})=\frac{1}{|2 \pi \mathbf{D}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\mathbf{R}^{\top} \mathbf{y}-\mathbf{R}^{\top} \boldsymbol{\mu}\right)^{\top} \mathbf{D}^{-1}\left(\mathbf{R}^{\top} \mathbf{y}-\mathbf{R}^{\top} \boldsymbol{\mu}\right)\right)
$$

Correlated Gaussian

Form correlated from original by rotating the data space using matrix \mathbf{R}.

$$
p(\mathbf{y})=\frac{1}{|2 \pi \mathbf{D}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\top}(\mathbf{y}-\boldsymbol{\mu})\right)
$$

this gives a covariance matrix:

$$
\mathbf{C}^{-1}=\mathbf{R D}^{-1} \mathbf{R}^{\top}
$$

Correlated Gaussian

Form correlated from original by rotating the data space using matrix \mathbf{R}.

$$
p(\mathbf{y})=\frac{1}{|2 \pi \mathbf{C}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \mathbf{C}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)
$$

this gives a covariance matrix:

$$
\mathbf{C}=\mathbf{R D R}^{\top}
$$

Gaussian Processes: Extremely Short Overview

Sampling a Function

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f}=\left[f_{1}, f_{2} \ldots f_{25}\right]$.
- We will plot these points against their index.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap ishowing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap ishowing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap showing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap showing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap showing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap showing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

(a) A 25 dimensional correlated random variable (values ploted against index)
(b) colormap showing correlations between dimensions.

Figure : A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

Figure : A sample from a 25 dimensional Gaussian distribution.

Prediction of f_{2} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{2}\right)$.

Prediction of f_{2} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{2}\right)$.
- We observe that $f_{1}=-0.313$.

Prediction of f_{2} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{2}\right)$.
- We observe that $f_{1}=-0.313$.
- Conditional density: $p\left(f_{2} \mid f_{1}=-0.313\right)$.

Prediction of f_{2} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{2}\right)$.
- We observe that $f_{1}=-0.313$.
- Conditional density: $p\left(f_{2} \mid f_{1}=-0.313\right)$.

Prediction with Correlated Gaussians

- Prediction of f_{2} from f_{1} requires conditional density.
- Conditional density is also Gaussian.

$$
p\left(f_{2} \mid f_{1}\right)=\mathcal{N}\left(f_{2} \left\lvert\, \frac{k_{1,2}}{k_{1,1}} f_{1}\right., k_{2,2}-\frac{k_{1,2}^{2}}{k_{1,1}}\right)
$$

where covariance of joint density is given by

$$
\mathbf{K}=\left[\begin{array}{ll}
k_{1,1} & k_{1,2} \\
k_{2,1} & k_{2,2}
\end{array}\right]
$$

Prediction of f_{5} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{5}\right)$.

Prediction of f_{5} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{5}\right)$.
- We observe that $f_{1}=-0.313$.

Prediction of f_{5} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{5}\right)$.
- We observe that $f_{1}=-0.313$.
- Conditional density: $p\left(f_{5} \mid f_{1}=-0.313\right)$.

Prediction of f_{5} from f_{1}

- The single contour of the Gaussian density represents the joint distribution, $p\left(f_{1}, f_{5}\right)$.
- We observe that $f_{1}=-0.313$.
- Conditional density: $p\left(f_{5} \mid f_{1}=-0.313\right)$.

Prediction with Correlated Gaussians

- Prediction of \mathbf{f}_{*} from \mathbf{f} requires multivariate conditional density.
- Multivariate conditional density is also Gaussian.

$$
p\left(\mathbf{f}_{*} \mid \mathbf{f}\right)=\mathcal{N}\left(\mathbf{f}_{*} \mid \mathbf{K}_{*, \mathbf{f}} \mathbf{K}_{\mathbf{f}, \mathbf{f}}^{-1} \mathbf{f}, \mathbf{K}_{*, *}-\mathbf{K}_{*, \mathbf{f}} \mathbf{K}_{\mathbf{f}, \mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f}, *}\right)
$$

- Here covariance of joint density is given by

$$
\mathbf{K}=\left[\begin{array}{ll}
\mathbf{K}_{\mathbf{f}, \mathbf{f}} & \mathbf{K}_{*, \mathbf{f}} \\
\mathbf{K}_{\mathbf{f}, *} & \mathbf{K}_{*, *}
\end{array}\right]
$$

Prediction with Correlated Gaussians

- Prediction of \mathbf{f}_{*} from \mathbf{f} requires multivariate conditional density.
- Multivariate conditional density is also Gaussian.

$$
\begin{gathered}
p\left(\mathbf{f}_{*} \mid \mathbf{f}\right)=\mathcal{N}\left(\mathbf{f}_{*} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \\
\boldsymbol{\mu}=\mathbf{K}_{*, \mathbf{f}} \mathbf{K}_{\mathbf{f}, \mathbf{f}}^{-1} \mathbf{f} \\
\boldsymbol{\Sigma}=\mathbf{K}_{*, *}-\mathbf{K}_{*, \mathbf{f}} \mathbf{K}_{\mathbf{f}, \mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f}, *}
\end{gathered}
$$

- Here covariance of joint density is given by

$$
\mathbf{K}=\left[\begin{array}{ll}
\mathbf{K}_{\mathbf{f}, \mathbf{f}} & \mathbf{K}_{*, \mathbf{f}} \\
\mathbf{K}_{\mathbf{f}, *} & \mathbf{K}_{*, *}
\end{array}\right]
$$

Covariance Functions

Where did this covariance matrix come from?
Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- Covariance matrix is built using the inputs to the function \mathbf{x}.
- For the example above it was based on Euclidean distance.
- The covariance function
 is also know as a kernel.

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- Covariance matrix is built using the inputs to the function \mathbf{x}.
- For the example above it was based on Euclidean distance.
- The covariance function
 is also know as a kernel.

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{1}=-3.0, x_{1}=-3.0 \\
k_{1,1}=1.00 \times \exp \left(-\frac{(-3.0--3.0)^{2}}{2 \times 2.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{1}=-3.0, x_{1}=-3.0 \\
k_{1,1}=1.00 \times \exp \left(-\frac{(-3.0--3.0)^{2}}{2 \times 2.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{2}=1.20, x_{1}=-3.0 \\
k_{2,1}=1.00 \times \exp \left(-\frac{(1.20--3.0)^{2}}{2 \times 2.00^{2}}\right)
\end{gathered} \quad\left[\begin{array}{l}
1.00 \\
\end{array}\right.
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{2}=1.20, x_{1}=-3.0 \\
k_{2,1}=1.00 \times \exp \left(-\frac{(1.20--3.0)^{2}}{2 \times 2.00^{2}}\right) \\
0.110 \\
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{2}=1.20, x_{1}=-3.0 \\
k_{2,1}=1.00 \times \exp \left(-\frac{(1.20--3.0)^{2}}{2 \times 2.00^{2}}\right) \\
1.00 \\
0.110 \\
\end{array}\right]
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{2}=1.20, x_{2}=1.20 \quad\left[\begin{array} { l l }
{ 1 . 0 0 } & { 0 . 1 1 0 } \\
{ } \\
{ k _ { 2 , 2 } = 1 . 0 0 \times \operatorname { e x p } (- \frac { (1 . 2 0 - 1 . 2 0) ^ { 2 } } { 2 \times 2 . 0 0 ^ { 2 } }) }
\end{array} \quad \left[\begin{array}{l}
\\
\end{array}\right.\right.
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{1}=-3.0 \\
k_{3,1}=1.00 \times \exp \left(-\frac{(1.40--3.0)^{2}}{2 \times 2.00^{2}}\right)
\end{gathered}\left[\begin{array}{rr}
1.00 & 0.110 \\
0.110 & 1.00
\end{array}\right.
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{aligned}
& k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
& =-3.0 \\
& \left.-\frac{(1.40-3.0)^{2}}{2 \times 2.00^{2}}\right)
\end{aligned}\left[\begin{array}{rr}
1.00 & 0.110 \\
0.110 & 1.00 \\
0.0889
\end{array}\right.
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{1}=-3.0 \\
k_{3,1}=1.00 \times \exp \left(-\frac{(1.40--3.0)^{2}}{2 \times 2.00^{2}}\right) \quad\left[\begin{array}{ccc}
1.00 & 0.110 & 0.0889 \\
0.110 & 1.00 \\
0.0889 & \\
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00 .
\end{array}\right]
\end{array}\right]
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{3}=1.40, x_{2}=1.20 \quad\left[\begin{array}{lll}1.00 & 0.110 & 0.0889 \\ 0.110 & 1.00 & \\ k_{3,2}=1.00 \times \exp \left(-\frac{(1.40-1.20)^{2}}{2 \times 2.00^{2}}\right)\end{array}\right]$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{2}=1.20 \\
k_{3,2}=1.00 \times \exp \left(-\frac{(1.40-1.20)^{2}}{2 \times 2.00^{2}}\right) \quad\left[\begin{array}{rrr}
1.00 & 0.110 & 0.0889 \\
0.110 & 1.00 & 0.995 \\
0.0889 & 0.995 &
\end{array}\right]
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{3}=1.40 \\
k_{3,3}=1.00 \times \exp \left(-\frac{(1.40-1.40)^{2}}{2 \times 2.00^{2}}\right) \\
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00 .
\end{array}\right]
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{3}=1.40, x_{3}=1.40\left[\begin{array}{lll}1.00 & 0.110 & 0.0889 \\ 0.110 & 1.00 & 0.995 \\ 0.0889 & 0.995 & 1.00\end{array}\right]$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{3}=1.40, x_{3}=1.40 \\
k_{3,3}=1.00 \times \exp \left(-\frac{(1.40-1.40)^{2}}{2 \times 2.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=2.00 \text { and } \alpha=1.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3, x_{1}=-3
$$

$$
k_{1,1}=1.0 \times \exp \left(-\frac{(-3--3)^{2}}{2 \times 2.0^{2}}\right)
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{1}=-3, x_{1}=-3 \\
k_{1,1}=1.0 \times \exp \left(-\frac{(-3--3)^{2}}{2 \times 2.0^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{2}=1.2, x_{1}=-3 \\
k_{2,1}=1.0 \times \exp \left(-\frac{(1.2--3)^{2}}{2 \times 2.0^{2}}\right)
\end{gathered} \quad\left[\begin{array}{l}
1.0 \\
\end{array}\right.
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|c}
x_{2}=1.2, x_{1}=-3 & 1.0 \\
k_{2,1}=1.0 \times \exp \left(-\frac{(1.2--3)^{2}}{2 \times 2.0^{2}}\right) &
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|cc}
x_{2}=1.2, x_{1}=-3 & 1.0 & 0.11 \\
k_{2,1}=1.0 \times \exp \left(-\frac{(1.2--3)^{2}}{2 \times 2.0^{2}}\right) & 0.11 &
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|cc}
x_{2}=1.2, x_{2}=1.2 & 1.0 & 0.11 \\
k_{2,2}=1.0 \times \exp \left(-\frac{(1.2-1.2)^{2}}{2 \times 2.0^{2}}\right) & 0.11 \\
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|c}
x_{2}=1.2, x_{2}=1.2 & 1.0 \\
0.11 \\
k_{2,2}=1.0 \times \exp \left(-\frac{(1.2-1.2)^{2}}{2 \times 2.0^{2}}\right) &
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|cc}
x_{3}=1.4, x_{1}=-3 & 1.0 & 0.11 \\
k_{3,1}=1.0 \times \exp \left(-\frac{(1.4--3)^{2}}{2 \times 2.0^{2}}\right) & & \\
0.11 & 1.0
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

|

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|cc}
x_{3}=1.4, x_{2}=1.2 & 1.0 & 0.11 \\
0.089 \\
k_{3,2}=1.0 \times \exp \left(-\frac{(1.4-1.2)^{2}}{2 \times 2.0^{2}}\right) & 0.11 & 1.0 \\
0.089 &
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|ccc}
x_{3}=1.4, x_{2}=1.2 & \begin{array}{rrr}
1.0 & 0.11 & 0.089 \\
& 0.11 & 1.0 \\
1.0 \\
k_{3,2}=1.0 \times \exp \left(-\frac{(1.4-1.2)^{2}}{2 \times 2.0^{2}}\right) & 0.089 & 1.0
\end{array} \\
& &
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{array}{c|ccc}
x_{3}=1.4, x_{3}=1.4 & \begin{array}{rrr}
1.0 & 0.11 & 0.089 \\
& 0.11 & 1.0 \\
k_{3,3}=1.0 \times \exp \left(-\frac{(1.4-1.4)^{2}}{2 \times 2.0^{2}}\right) & 0.089 & 1.0
\end{array} \\
& &
\end{array}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{4}=2.0, x_{1}=-3 \\
k_{4,1}=1.0 \times \exp \left(-\frac{(2.0--3)^{2}}{2 \times 2.0^{2}}\right) \\
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
\end{array}\right] \begin{array}{lll}
1.0 & 0.11 & 0.0890 .044 \\
0.11 & 1.0 & 1.0 \\
0.089 & 1.0 & 1.0
\end{array}\right]
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{4}=2.0, x_{2}=1.2 \\
k_{4,2}=1.0 \times \exp \left(-\frac{(2.0-1.2)^{2}}{2 \times 2.0^{2}}\right) \\
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
\end{array}\right] \begin{array}{lll}
1.0 & 0.11 & 0.0890 .044 \\
0.11 & 1.0 & 1.0 \\
0.089 & 1.0 & 1.0
\end{array}\right]
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{aligned}
& k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
& =1.2 \\
& \left(-\frac{(2.0-1.2)^{2}}{2 \times 2.0^{2}}\right)
\end{aligned}\left[\begin{array}{lll}
1.0 & 0.11 & 0.089 \\
0.044 \\
0.11 & 1.0 & 1.0 \\
0.089 & 1.0 & 1.0 \\
0.044 & 0.92
\end{array}\right] .
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{4}=2.0, x_{2}=1.2 \quad\left[\begin{array}{llll}1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & & \end{array}\right]$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{4}=2.0, x_{3}=1.4 \quad\left[\begin{array}{llll}1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & & \end{array}\right]$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{4}=2.0, x_{3}=1.4 \quad\left[\begin{array}{llll}1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & 0.96\end{array}\right]$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{4}=2.0, x_{3}=1.4 \quad\left[\begin{array}{cccc}1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 & \end{array}\right]$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{4}=2.0, x_{4}=2.0 \quad\left[\begin{array}{cccc}1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 & \end{array}\right]$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{4}=2.0, x_{4}=2.0 \quad\left[\begin{array}{cccc}1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 & 1.0\end{array}\right]$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{4}=2.0, x_{4}=2.0 \\
k_{4,4}=1.0 \times \exp \left(-\frac{(2.0-2.0)^{2}}{2 \times 2.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3, x_{2}=1.2, x_{3}=1.4, \text { and } x_{4}=2.0 \text { with } \ell=2.0 \text { and } \alpha=1.0 .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{1}=-3.0, x_{1}=-3.0 \\
k_{1,1}=4.00 \times \exp \left(-\frac{(-3.0--3.0)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{1}=-3.0, x_{1}=-3.0 \\
k_{1,1}=4.00 \times \exp \left(-\frac{(-3.0--3.0)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{2}=1.20, x_{1}=-3.0 \\
k_{2,1}=4.00 \times \exp \left(-\frac{(1.20--3.0)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered} \quad\left[\begin{array}{l}
4.00 \\
\end{array}\right.
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{2}=1.20, x_{1}=-3.0 \\
k_{2,1}=4.00 \times \exp \left(-\frac{(1.20--3.0)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered} \quad \begin{aligned}
& 4.00 \\
& 2.81 \\
&
\end{aligned}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{2}=1.20, x_{1}=-3.0 \\
k_{2,1}=4.00 \times \exp \left(-\frac{(1.20--3.0)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{2}=1.20, x_{2}=1.20 \\
k_{2,2}=4.00 \times \exp \left(-\frac{(1.20-1.20)^{2}}{2 \times 5.00^{2}}\right) \\
4.002 .81 \\
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
\end{gathered}
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{1}=-3.0 \\
k_{3,1}=4.00 \times \exp \left(-\frac{(1.40--3.0)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered} \quad\left[\begin{array}{rr}
4.00 & 2.81 \\
2.81 & 4.00
\end{array}\right.
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{1}=-3.0 \\
k_{3,1}=4.00 \times \exp \left(-\frac{(1.40--3.0)^{2}}{2 \times 5.00^{2}}\right) \quad\left[\begin{array}{rr}
4.00 & 2.81 \\
2.81 & 4.00 \\
2.72
\end{array}\right.
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{1}=-3.0 \\
k_{3,1}=4.00 \times \exp \left(-\frac{(1.40--3.0)^{2}}{2 \times 5.00^{2}}\right) \\
2.81 \\
4.00 \\
2.81
\end{array}\right] 2.72\right] \text { }\left[\begin{array}{ccc}
\\
2.72
\end{array}\right] .
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{2}=1.20 \\
k_{3,2}=4.00 \times \exp \left(-\frac{(1.40-1.20)^{2}}{2 \times 5.00^{2}}\right)\left[\begin{array}{ccc}
4.00 & 2.81 & 2.72 \\
2.81 & 4.00 \\
2.72
\end{array}\right] \\
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00 .
\end{gathered}
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{2}=1.20 \\
k_{3,2}=4.00 \times \exp \left(-\frac{(1.40-1.20)^{2}}{2 \times 5.00^{2}}\right) \\
4.00 \\
2.81
\end{array}\right] 2.72\right]
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\left.\left.\begin{array}{c}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{2}=1.20 \\
k_{3,2}=4.00 \times \exp \left(-\frac{(1.40-1.20)^{2}}{2 \times 5.00^{2}}\right) \\
4.00 \\
2.81
\end{array}\right] 2.72\right]\left[\begin{array}{lll}
2.81 & 4.00 & 4.00 \\
2.72 & 4.00 &
\end{array}\right]
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right) \\
x_{3}=1.40, x_{3}=1.40 \\
k_{3,3}=4.00 \times \exp \left(-\frac{(1.40-1.40)^{2}}{2 \times 5.00^{2}}\right)\left[\begin{array}{rrr}
4.00 & 2.81 & 2.72 \\
2.81 & 4.00 & 4.00 \\
2.72 & 4.00
\end{array}\right] \\
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00 .
\end{gathered}
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$x_{3}=1.40, x_{3}=1.40 \quad\left[\begin{array}{lll} \\ 4.00 & 2.81 & 2.72 \\ 2.81 & 4.00 & 4.00 \\ 2.72 & 4.00 & 4.00\end{array}\right]$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00
$$

Covariance Functions

Where did this covariance matrix come from?

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

$$
\begin{gathered}
x_{3}=1.40, x_{3}=1.40 \\
k_{3,3}=4.00 \times \exp \left(-\frac{(1.40-1.40)^{2}}{2 \times 5.00^{2}}\right)
\end{gathered}
$$

$$
x_{1}=-3.0, x_{2}=1.20, \text { and } x_{3}=1.40 \text { with } \ell=5.00 \text { and } \alpha=4.00 .
$$

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.

Olympic 100m Data

- Gold medal times for Olympic 100 m runners since 1896.

Image from Wikimedia
Commons
http://bit.ly/191adDC

Olympic 100m Data

Olympic Marathon Data

- Gold medal times for Olympic Marathon since 1896.
- Marathons before 1924 didn't have a standardised distance.
- Present results using pace per km.
- In 1904 Marathon was badly organised leading to very slow times.

Image from Wikimedia
Commons
http://bit.ly/16kMKHQ

Olympic Marathon Data

Olympic Marathon Data.

Gaussian Process Fit to Olympic Marathon Data

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$
\mathcal{N}(\mathbf{y} \mid \mathbf{0}, \mathbf{K})=\frac{1}{(2 \pi)^{\frac{n}{2}}|\mathbf{K}|^{\frac{1}{2}}} \exp \left(-\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}\right)
$$

The parameters are inside the covariance function (matrix).

$$
k_{i, j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; \boldsymbol{\theta}\right)
$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$
\mathcal{N}(\mathbf{y} \mid \mathbf{0}, \mathbf{K})=\frac{1}{(2 \pi)^{\frac{n}{2}}|\mathbf{K}|^{\frac{1}{2}}} \exp \left(-\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}\right)
$$

The parameters are inside the covariance function (matrix).

$$
k_{i, j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; \boldsymbol{\theta}\right)
$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$
\begin{aligned}
\log \mathcal{N}(\mathbf{y} \mid \mathbf{0}, \mathbf{K})= & -\frac{1}{2} \log |\mathbf{K}|-\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2} \\
& -\frac{n}{2} \log 2 \pi
\end{aligned}
$$

The parameters are inside the covariance function (matrix).

$$
k_{i, j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; \boldsymbol{\theta}\right)
$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

The parameters are inside the covariance function (matrix).

$$
k_{i, j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; \boldsymbol{\theta}\right)
$$

Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

$$
\mathbf{K}=\mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\top}
$$

Diagonal of $\boldsymbol{\Lambda}$ represents distance along axes.
\mathbf{R} gives a rotation of these axes.

Capacity control: $\log |\mathbf{K}|$

Capacity control: $\log |\mathbf{K}|$

Capacity control: $\log |\mathbf{K}|$

Capacity control: $\log |\mathbf{K}|$

$|\boldsymbol{\Lambda}|=\lambda_{1} \lambda_{2}$

Capacity control: $\log |\mathbf{K}|$

$|\Lambda|=\lambda_{1} \lambda_{2}$

Capacity control: $\log |\mathbf{K}|$

$|\Lambda|=\lambda_{1} \lambda_{2}$

Capacity control: $\log |\mathbf{K}|$

$|\boldsymbol{\Lambda}|=\lambda_{1} \lambda_{2}$

Capacity control: $\log |\mathbf{K}|$

$$
|\boldsymbol{\Lambda}|=\lambda_{1} \lambda_{2} \lambda_{3}
$$

Capacity control: $\log |\mathbf{K}|$

$|\Lambda|=\lambda_{1} \lambda_{2}$

Capacity control: $\log |\mathbf{K}|$

$\mid \mathbf{R} \boldsymbol{\Lambda} \boldsymbol{|}=\lambda_{1} \lambda_{2}$

Data Fit: $\frac{\mathrm{y}^{\top} \mathrm{K}^{-1} \mathrm{y}}{2}$

Data Fit: $\frac{\mathrm{y}^{\top} \mathrm{K}^{-1} \mathrm{y}}{2}$

Data Fit: $\frac{\mathrm{y}^{\top} \mathrm{K}^{-1} \mathrm{y}}{2}$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$
E(\boldsymbol{\theta})=\frac{1}{2} \log |\mathbf{K}|+\frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}
$$

Gene Expression Example

- Given given expression levels in the form of a time series from Della Gatta et al. (2008).
- Want to detect if a gene is expressed or not, fit a GP to each gene (Kalaitzis and Lawrence, 2011).

A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression

Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal nature of the data based on a Gaussian process. Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing that the proposed approach considerably outperforms the current state of the art.

Contour plot of Gaussian process likelihood.

 $\log _{10}$ length scalex

Optima: length scale of 1.2221 and $\log _{10}$ SNR of 1.9654 log likelihood is -0.22317 .

 $\log _{10}$ length scalex

Optima: length scale of 1.5162 and $\log _{10}$ SNR of $0.21306 \log$ likelihood is -0.23604 .

Optima: length scale of 2.9886 and $\log _{10}$ SNR of $-4.506 \log$ likelihood is -2.1056 .

Basis Function Form

Radial basis functions commonly have the form

$$
\phi_{k}\left(\mathbf{x}_{i}\right)=\exp \left(-\frac{\left|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right|^{2}}{2 \ell^{2}}\right) .
$$

- Basis function maps data into a "feature space" in which a linear sum is a non linear function.

Figure : A set of radial basis functions with width $\ell=2$ and location parameters $\boldsymbol{\mu}=\left[\begin{array}{lll}-4 & 0 & 4\end{array}\right]^{\top}$.

Basis Function Representations

- Represent a function by a linear sum over a basis,

$$
\begin{equation*}
f\left(\mathbf{x}_{i,:} ; \mathbf{w}\right)=\sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i,:}\right) \tag{1}
\end{equation*}
$$

- Here: m basis functions and $\phi_{k}(\cdot)$ is k th basis function and

$$
\mathbf{w}=\left[w_{1}, \ldots, w_{m}\right]^{\top}
$$

- For standard linear model: $\phi_{k}\left(\mathbf{x}_{i,:}\right)=x_{i, k}$.

Random Functions

Functions derived using:

$$
f(x)=\sum_{k=1}^{m} w_{k} \phi_{k}(x)
$$

where elements of \mathbf{w} are independently sampled from a Gaussian density,

$$
w_{k} \sim \mathcal{N}(0, \alpha)
$$

Figure : Functions sampled using the basis set from figure 4 . Each line is a separate sample, generated by a weighted sum of the basis set. The weights, w are sampled from a Gaussian density with variance $\alpha=1$.

Covariance Functions

RBF Basis Functions

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \phi(\mathbf{x})^{\top} \phi\left(\mathbf{x}^{\prime}\right)
$$

$$
\begin{gathered}
\phi_{k}(x)=\exp \left(-\frac{\left\|x-\mu_{k}\right\|_{2}^{2}}{\ell^{2}}\right) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Covariance Functions

RBF Basis Functions

$$
\begin{gathered}
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\phi}\left(\mathbf{x}^{\prime}\right) \\
\phi_{k}(x)=\exp \left(-\frac{\left\|x-\mu_{k}\right\|_{2}^{2}}{\ell^{2}}\right) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$
\begin{aligned}
y_{i} & \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right) \\
\sum_{i=1}^{n} y_{i} & \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
\end{aligned}
$$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$
\begin{aligned}
y_{i} & \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right) \\
\sum_{i=1}^{n} y_{i} & \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
\end{aligned}
$$

2. Scaling a Gaussian leads to a Gaussian.

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$
\begin{aligned}
y_{i} & \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right) \\
\sum_{i=1}^{n} y_{i} & \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
\end{aligned}
$$

2. Scaling a Gaussian leads to a Gaussian.

$$
y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$
\begin{aligned}
y_{i} & \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right) \\
\sum_{i=1}^{n} y_{i} & \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
\end{aligned}
$$

2. Scaling a Gaussian leads to a Gaussian.

$$
\begin{gathered}
y \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
w y \sim \mathcal{N}\left(w \mu, w^{2} \sigma^{2}\right)
\end{gathered}
$$

Multivariate Consequence

- If

$$
\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)
$$

Multivariate Consequence

- If

$$
\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- And

$$
\mathbf{y}=\mathbf{W} \mathbf{x}
$$

Multivariate Consequence

- If

$$
\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- And

$$
\mathbf{y}=\mathbf{W x}
$$

- Then

$$
\mathbf{y} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{\mu}, \mathbf{W} \Sigma \mathbf{W}^{\top}\right)
$$

Basis Function Models

- If

$$
f(\mathbf{x} ; \mathbf{w})=\sum_{k=1}^{m} w_{k} \phi_{k}(\mathbf{x})
$$

Basis Function Models

- If

$$
f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\top} \phi(\mathbf{x})
$$

Basis Function Models

- If

$$
\begin{gathered}
f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}) \\
\mathbf{f}=\mathbf{\Phi} \mathbf{w}
\end{gathered}
$$

Basis Function Models

- If

$$
\begin{gathered}
f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}) \\
\mathbf{f}=\mathbf{\Phi} \mathbf{w}
\end{gathered}
$$

- If

$$
\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha \mathbf{I})
$$

Then

$$
\mathbf{f} \sim \mathcal{N}\left(\mathbf{0}, \alpha \Phi \Phi^{\top}\right)
$$

Selecting Number and Location of Basis

- Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

- Consider uniform spacing over a region:

$$
k\left(x_{i}, x_{j}\right)=\alpha \phi_{k}\left(x_{i}\right)^{\top} \phi_{k}\left(x_{j}\right)
$$

Selecting Number and Location of Basis

- Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

- Consider uniform spacing over a region:

$$
k\left(x_{i}, x_{j}\right)=\alpha \sum_{k=1}^{m} \phi_{k}\left(x_{i}\right) \phi_{k}\left(x_{j}\right)
$$

Selecting Number and Location of Basis

- Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

- Consider uniform spacing over a region:

$$
k\left(x_{i}, x_{j}\right)=\alpha \sum_{k=1}^{m} \exp \left(-\frac{\left(x_{i}-\mu_{k}\right)^{2}}{2 \ell^{2}}\right) \exp \left(-\frac{\left(x_{j}-\mu_{k}\right)^{2}}{2 \ell^{2}}\right)
$$

Selecting Number and Location of Basis

- Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

- Consider uniform spacing over a region:

$$
k\left(x_{i}, x_{j}\right)=\alpha \sum_{k=1}^{m} \exp \left(-\frac{\left(x_{i}-\mu_{k}\right)^{2}}{2 \ell^{2}}-\frac{\left(x_{j}-\mu_{k}\right)^{2}}{2 \ell^{2}}\right)
$$

Selecting Number and Location of Basis

- Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

- Consider uniform spacing over a region:

$$
k\left(x_{i}, x_{j}\right)=\alpha \sum_{k=1}^{m} \exp \left(-\frac{x_{i}^{2}+x_{j}^{2}-2 \mu_{k}\left(x_{i}+x_{j}\right)+2 \mu_{k}^{2}}{2 \ell^{2}}\right)
$$

Uniform Basis Functions

- Set each center location to

$$
\mu_{k}=a+\Delta \mu \cdot(k-1) .
$$

Uniform Basis Functions

- Set each center location to

$$
\mu_{k}=a+\Delta \mu \cdot(k-1) .
$$

- Specify the basis functions in terms of their indices,

$$
\begin{aligned}
k\left(x_{i}, x_{j}\right)= & \alpha^{\prime} \Delta \mu \sum_{k=1}^{m} \exp \left(-\frac{x_{i}^{2}+x_{j}^{2}}{2 \ell^{2}}\right. \\
& \left.-\frac{2(a+\Delta \mu \cdot(k-1))\left(x_{i}+x_{j}\right)+2(a+\Delta \mu \cdot(k-1))^{2}}{2 \ell^{2}}\right)
\end{aligned}
$$

Uniform Basis Functions

- Set each center location to

$$
\mu_{k}=a+\Delta \mu \cdot(k-1)
$$

- Specify the basis functions in terms of their indices,

$$
\begin{aligned}
k\left(x_{i}, x_{j}\right)= & \alpha^{\prime} \Delta \mu \sum_{k=1}^{m} \exp \left(-\frac{x_{i}^{2}+x_{j}^{2}}{2 \ell^{2}}\right. \\
& \left.-\frac{2(a+\Delta \mu \cdot(k-1))\left(x_{i}+x_{j}\right)+2(a+\Delta \mu \cdot(k-1))^{2}}{2 \ell^{2}}\right)
\end{aligned}
$$

- Here we've scaled variance of process by $\Delta \mu$.

Infinite Basis Functions

- Take

$$
\mu_{1}=a \text { and } \mu_{m}=b \text { so } b=a+\Delta \mu \cdot(m-1)
$$

Infinite Basis Functions

- Take

$$
\mu_{1}=a \text { and } \mu_{m}=b \text { so } b=a+\Delta \mu \cdot(m-1)
$$

- This implies

$$
b-a=\Delta \mu(m-1)
$$

Infinite Basis Functions

- Take

$$
\mu_{1}=a \text { and } \mu_{m}=b \text { so } b=a+\Delta \mu \cdot(m-1)
$$

- This implies

$$
b-a=\Delta \mu(m-1)
$$

and therefore

$$
m=\frac{b-a}{\Delta \mu}+1
$$

Infinite Basis Functions

- Take

$$
\mu_{1}=a \text { and } \mu_{m}=b \text { so } b=a+\Delta \mu \cdot(m-1)
$$

- This implies

$$
b-a=\Delta \mu(m-1)
$$

and therefore

$$
m=\frac{b-a}{\Delta \mu}+1
$$

- Take limit as $\Delta \mu \rightarrow 0$ so $m \rightarrow \infty$

Infinite Basis Functions

- Take

$$
\mu_{1}=a \text { and } \mu_{m}=b \text { so } b=a+\Delta \mu \cdot(m-1)
$$

- This implies

$$
b-a=\Delta \mu(m-1)
$$

and therefore

$$
m=\frac{b-a}{\Delta \mu}+1
$$

- Take limit as $\Delta \mu \rightarrow 0$ so $m \rightarrow \infty$
$k\left(x_{i}, x_{j}\right)=\alpha^{\prime} \int_{a}^{b} \exp \left(-\frac{x_{i}^{2}+x_{j}^{2}}{2 \ell^{2}}+\frac{2\left(\mu-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)^{2}-\frac{1}{2}\left(x_{i}+x_{j}\right)^{2}}{2 \ell^{2}}\right) \mathrm{d} \mu$,
where we have used $a+k \cdot \Delta \mu \rightarrow \mu$.

Result

- Performing the integration leads to

$$
\begin{aligned}
& k\left(x_{i}, x_{j}\right)=\alpha^{\prime} \sqrt{\pi \ell^{2}} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \ell^{2}}\right) \\
& \quad \times \frac{1}{2}\left[\operatorname{erf}\left(\frac{\left(b-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)}{\ell}\right)-\operatorname{erf}\left(\frac{\left(a-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)}{\ell}\right)\right]
\end{aligned}
$$

Result

- Performing the integration leads to

$$
\begin{aligned}
& k\left(x_{i}, x_{j}\right)=\alpha^{\prime} \sqrt{\pi \ell^{2}} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \ell^{2}}\right) \\
& \quad \times \frac{1}{2}\left[\operatorname{erf}\left(\frac{\left(b-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)}{\ell}\right)-\operatorname{erf}\left(\frac{\left(a-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)}{\ell}\right)\right]
\end{aligned}
$$

- Now take limit as $a \rightarrow-\infty$ and $b \rightarrow \infty$

Result

- Performing the integration leads to

$$
\begin{aligned}
& k\left(x_{i}, x_{j}\right)=\alpha^{\prime} \sqrt{\pi \ell^{2}} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \ell^{2}}\right) \\
& \quad \times \frac{1}{2}\left[\operatorname{erf}\left(\frac{\left(b-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)}{\ell}\right)-\operatorname{erf}\left(\frac{\left(a-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)}{\ell}\right)\right]
\end{aligned}
$$

- Now take limit as $a \rightarrow-\infty$ and $b \rightarrow \infty$

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \ell^{2}}\right)
$$

where $\alpha=\alpha^{\prime} \sqrt{\pi \ell^{2}}$.

Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.

Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is given by the exponentiated quadratic covariance function.

$$
k\left(x_{i}, x_{j}\right)=\alpha \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \ell^{2}}\right)
$$

Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- Note: The functional form for the covariance function and basis functions are similar.
- this is a special case,
- in general they are very different

Similar results can obtained for multi-dimensional input models Williams (1998); Neal (1996).

Covariance Functions

RBF Basis Functions

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \phi(\mathbf{x})^{\top} \phi\left(\mathbf{x}^{\prime}\right)
$$

$$
\begin{gathered}
\phi_{k}(x)=\exp \left(-\frac{\left\|x-\mu_{k}\right\|_{2}^{2}}{\ell^{2}}\right) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Covariance Functions

RBF Basis Functions

$$
\begin{gathered}
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\phi}\left(\mathbf{x}^{\prime}\right) \\
\phi_{k}(x)=\exp \left(-\frac{\left\|x-\mu_{k}\right\|_{2}^{2}}{\ell^{2}}\right) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Covariance Functions

Where did this covariance matrix come from?
Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- Covariance matrix is built using the inputs to the function \mathbf{x}.
- For the example above it was based on Euclidean distance.
- The covariance function
 is also know as a kernel.

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- Covariance matrix is built using the inputs to the function \mathbf{x}.
- For the example above it was based on Euclidean distance.
- The covariance function
 is also know as a kernel.

Covariance Functions

MLP Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \operatorname{asin}\left(\frac{w \mathbf{x}^{\top} \mathbf{x}^{\prime}+b}{\sqrt{w \mathbf{x}^{\top} \mathbf{x}+b+1} \sqrt{w \mathbf{x}^{\prime \top} \mathbf{x}^{\prime}+b+1}}\right)
$$

- Based on infinite neural network model.

$$
\begin{aligned}
w & =40 \\
b & =4
\end{aligned}
$$

Covariance Functions

MLP Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \operatorname{asin}\left(\frac{w \mathbf{x}^{\top} \mathbf{x}^{\prime}+b}{\sqrt{w \mathbf{x}^{\top} \mathbf{x}+b+1} \sqrt{w \mathbf{x}^{\prime \top} \mathbf{x}^{\prime}+b+1}}\right)
$$

- Based on infinite neural network model.

$$
\begin{aligned}
w & =40 \\
b & =4
\end{aligned}
$$

Constructing Covariance Functions

- Sum of two covariances is also a covariance function.

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

Constructing Covariance Functions

- Product of two covariances is also a covariance function.

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

Multiply by Deterministic Function

- If $f(\mathbf{x})$ is a Gaussian process.
- $g(\mathbf{x})$ is a deterministic function.
- $h(\mathbf{x})=f(\mathbf{x}) g(\mathbf{x})$
- Then

$$
k_{h}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=g(\mathbf{x}) k_{f}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) g\left(\mathbf{x}^{\prime}\right)
$$

where k_{h} is covariance for $h(\cdot)$ and k_{f} is covariance for $f(\cdot)$.

Covariance Functions

Linear Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \mathbf{x}^{\top} \mathbf{x}^{\prime}
$$

- Bayesian linear regression.

$$
\alpha=1
$$

Covariance Functions

Linear Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \mathbf{x}^{\top} \mathbf{x}^{\prime}
$$

- Bayesian linear regression.

$$
\alpha=1
$$

Bochner's Theorem

Given a positive finite Borel measure μ on the real line \mathbb{R}, the Fourier transform Q of μ is the continuous function

$$
Q(t)=\int_{\mathbb{R}} e^{-i t x} \mathrm{~d} \mu(x)
$$

Q is continuous since for a fixed x, the function $e^{-i t x}$ is continuous and periodic. The function Q is a positive definite function, i.e. the kernel $k\left(x, x^{\prime}\right)=Q\left(x^{\prime}-x\right)$ is positive definite.

Bochner's theorem says the converse is true, i.e. every positive definite function Q is the Fourier transform of a positive finite Borel measure. A proof can be sketched as follows.

Covariance Functions

Where did this covariance matrix come from?
Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{2 \ell^{2}}\right)
$$

- In one dimension arises from a stochastic differential equation. Brownian motion in a parabolic tube.
- In higher dimension a Fourier filter of the form $\frac{1}{\pi\left(1+x^{2}\right)}$.

Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{2 \ell^{2}}\right)
$$

- In one dimension arises from a stochastic differential equation. Brownian motion in a parabolic tube.
- In higher dimension a Fourier filter of the form $\frac{1}{\pi\left(1+x^{2}\right)}$.

Covariance Functions

Where did this covariance matrix come from?

Matern 3/2 Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha(1+\sqrt{3} r) \exp (-\sqrt{3} r) \quad \text { where } \quad r=\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}}{\ell}
$$

- Matern 3/2 is a once differentiable covariance.
- Matern family
constructed with Student- t filters in Fourier space.

Covariance Functions

Where did this covariance matrix come from?

Matern 3/2 Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha(1+\sqrt{3} r) \exp (-\sqrt{3} r) \quad \text { where } \quad r=\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}}{\ell}
$$

- Matern 3/2 is a once differentiable covariance.
- Matern family constructed with Student- t filters in Fourier space.

Covariance Functions

Where did this covariance matrix come from?
Matern 5/2 Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha\left(1+\sqrt{5} r+\frac{5}{3} r^{2}\right) \exp (-\sqrt{5} r) \quad \text { where } \quad r=\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}}{\ell}
$$

- Matern $5 / 2$ is a twice differentiable covariance.
- Matern family constructed with Student- t filters in Fourier space.

Covariance Functions

Where did this covariance matrix come from?

Matern 5/2 Covariance Function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha\left(1+\sqrt{5} r+\frac{5}{3} r^{2}\right) \exp (-\sqrt{5} r) \quad \text { where } \quad r=\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}}{\ell}
$$

- Matern $5 / 2$ is a twice differentiable covariance.
- Matern family constructed with Student- t filters in Fourier space.

Covariance Functions

Where did this covariance matrix come from?
Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- Covariance matrix is built using the inputs to the function \mathbf{x}.
- For the example above it was based on Euclidean distance.
- The covariance function
 is also know as a kernel.

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- Covariance matrix is built using the inputs to the function \mathbf{x}.
- For the example above it was based on Euclidean distance.
- The covariance function
 is also know as a kernel.

