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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.



The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (ylu, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with y = 1.7 and variance ¢? = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y - w?
W (o) = e (-2

o2 is the variance of the density and u is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.

vi ~ N (ui,07)



Two Important Gaussian Properties

Sum of Gaussians
» Sum of Gaussian variables is also Gaussian.
2
yi~N (!li, 01-)

And the sum is distributed as

iyi NN[Zn:#zv ” ‘71-2]
i=1 i=1

i=1



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.
vi~N (!li, 01-2)
And the sum is distributed as
n n n
Yo LY
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.
vi~N (!li, 01-2)
And the sum is distributed as
n n n
Yo LY
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.

y~N(u0?)



Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)



Two Dimensional Gaussian

» Consider height, h/m and weight, w/kg.

» Could sample height from a distribution:
p(h) ~ N (1.7,0.0225)
» And similarly weight:

p(w) ~ N (75, 36)



Height and Weight Models

p(h)
p(w)

h/m w/kg

Gaussian distributions for height and weight.
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Independence Assumption

» This assumes height and weight are independent.

p(h, w) = p(h)p(w)

> In reality they are dependent (body mass index) = ;5.
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) = S S exp (—1 [(w ~ )’ + (h— p2)? )]
)= 2
2710% A\ /2710% 2 o} o

1 2



Independent Gaussians




Independent Gaussians

) = s (5= Dy - )

2D 2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = —— exp(~30/- 0Dy - )

2rD)2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

1 1 )
p(y) = T exp (—E(RTY -R7p)' DRy - RTu))
|2rtD|2




Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = —— exp (5 - W) TRDR(y - )

2rD|z

this gives a covariance matrix:

C!'=RD'R”



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = —— exp (-5 - W"C v - )
|21tC|2

this gives a covariance matrix:

C=RDR'
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Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional
Gaussian distribution, f = [f1, f2. .. f25].

» We will plot these points against their index.



Gaussian Distribution Sample
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Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample

2 -
1+ -
,.' ‘x M1
y 0 L = * » —
= P . R

1 k- x“’x

-2 | | | | |
0 5 10 15 20 25

(a) A 25 dimensional correlated ran-  (b) colormap ishowing correlations
dom variable (values ploted against between dimensions.
index)

Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample

2 -
1+ -
,.' ‘x M1
g 0 .» % *
= P . R

1 k- x“’x

-2 | | | | |
0 5 10 15 20 25

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions.
index)

Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample

2 -
1 -
bt
® * x*%n
w0 . -
* »*
1L LI
2 \ \ \ \ \
0 5 10 15 20 25

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions.
index)

Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample

2 -
1 -
bt
® * x*%n
w0 . -
* »*
1L LI
2 \ \ \ \ \
0 5 10 15 20 25

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions.
index)

Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample

2 -
1 -
bt
® * x*%n
w0 . -
* »*
1L LI
2 \ \ \ \ \
0 5 10 15 20 25

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions.
index)

Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample

2 -
1+ -
,.' ‘x M1
= 0 .» % *
= P . R

1 k- x“’x

-2 | | | | |
0 5 10 15 20 25

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions.
index)

Figure : A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample
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dom variable (values ploted against
index)

Figure : A sample from a 25 dimensional Gaussian distribution.
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Prediction with Correlated Gaussians

» Prediction of f, from f; requires conditional density.

» Conditional density is also Gaussian.

K,
p(falfi) = N [le f1,k22 kll)

where covariance of joint density is given by

kip ki
K=
[k2,1 kz,z]
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).

» We observe that
» Conditional density: p(fs| f] = —-0.313).
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Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

P(EIE) = N (EIK KL, K. — KoK 1K

» Here covariance of joint density is given by

[ Kee Kig
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Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.
PEID) = N (Eln, D)
p =K K i f
3 =K., - KK K,
» Here covariance of joint density is given by

[ Kee Ko
K B |:Kf,>(- K*,*



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1=-3.0,x; =-3.0
ki1 =1.00 x exp (_w)

2x2.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

Xy = 120, X1 = -3.0

— 2
kp1 =1.00 x exp (—%)

[l

)

1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x2 =1.20,x, =1.20

ko = 1.00 X exp (_%)
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1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

X3 = 140, X1 = -3.0
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x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?

2
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Covariance Functions

Where did this covariance matrix come from?

2
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x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.
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Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?

2
k(xi,x]') = aexp (——llxi;;/|| )
1.00 0.110 0.0889

x3 =1.40,x3 =1.40
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_ 2
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Covariance Functions

Where did this covariance matrix come from?
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k3 = 1.00 X exp (_%)
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Covariance Functions

Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

Xp = 12, X1 = -3 0.11

_ (1.2--3) )

krp =1.0x% exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

Xy = 12, Xy = 1.2 0.11

_(12-1.2° )

koo =1.0 % exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.
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Where did this covariance matrix come from?
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1.0 0.11

Xx=12,x=12 0.11] 1.0

_(12-1.2° )

koo =1.0 % exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

x3=14,x1=-3 0.11 1.0

_ (14--3) )

ksp =1.0x% exp( SO0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0
0.089
ks> = 1.0 X exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0
0.089| 1.0
ks> = 1.0 X exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0 1.0
0.089 1.0
ks> = 1.0 X exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14, %3 = 1.4 011 10 1.0
0.089 1.0
k33 =1.0x exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
x3=14, %3 = 1.4 011 10 1.0
0.089 1.0 | 1.0
k33 =1.0x exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
Xy =20,2 =-3 011 1.0 1.0
0.089 1.0 1.

fur = 10 exp (~5575)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
X4 =20,x = -3 011 1.0 1.0
0.089 1.0 1.0
ki =10 x exp (- 5535) 0.044

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X, =20, = -3 011 1.0 1.0
0089 1.0 1.0
2.0——3)2
ka1 = 1.0 x exp (-G ) 0.044

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X =20, =12 011 1.0 1.0
0089 1.0 1.0
2.0-1.2)2
ksp = 1.0 x exp (- G552 0.044

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089 0.044

X =20, =12 011 1.0 1.0
0089 1.0 1.0
_ (2.0-1.22
ksp = 1.0 x exp (- G552 0.044| 0.92

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X =20, =12 011 1.0 1.0 092
0089 1.0 1.0
_ (2.0-1.22
ksp = 1.0 x exp (- G552 0.044 0.92

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X, =20,x3 =14 011 1.0 1.0 092
0089 1.0 1.0
_ (2.0-1.4)2
kss = 1.0 x exp (- G555 ) 0.044 0.92

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089 0.044

X, =20,x3 =14 011 1.0 1.0 092
0089 1.0 1.0
_ (2.0-1.4)2
kss = 1.0 x exp (- G555 ) 0.044 0.92|0.96

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044
x4=20,x3=14 011 10 1.0 092

0.089 1.0 1.0 0.96

_ (20-1.4)° )

kaz =1.0% exp( 30

0.044 092 0.96

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044
x4 =2.0,x4 =20 011 10 1.0 092

0.089 1.0 1.0 0.96

_(2.0-2.0 )

kaa =1.0% exp( S0

0.044 092 0.96

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089 0.044
x4 =2.0,x4 =20 011 10 1.0 092

0.089 1.0 1.0 0.96

_(2.0-2.0 )

kaa =1.0% exp( S0

0.044 092 096| 1.0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

X4 = 20, X4 = 2.0

_(2.0-2.0 )

kaa =1.0% exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1=-3.0,x; =-3.0
ki1 = 4.00 x exp (_w)

2x5.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00

x1 =-3.0,x1 =-3.0

— — —. 2
ki1 = 4.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00
Xy = 120, X1 = -3.0

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _||x,»2—;,||2 )

4.00

Xy = 120, X1 = -3.0
2.81

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (xi,x]-) = aexp (_ —HXZZH )
400 281

Xy = 120, X1 = -3.0
2.81

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (Xi, xj) = aexp (— —”ﬁ;’” )
4.00 281

x2 =1.20,x, =1.20
2.81

kop = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00 281

x2 =1.20,x, =1.20
2.81 | 4.00

kop = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (Xi, xj) = aexp (— —”ﬁ;’” )
4.00 281

X3 = 140, X1 = -3.0
2.81 4.00

k3,1 =4.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _||x,»2—;,||2 )

400 281
X3 = 140, X1 = -3.0
281 4.00
__ 2
k31 = 4.00 X exp (—%) 2.72

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00 281 272

X3 = 140, X1 = -3.0
2.81 4.00

k31 =4.00 X exp (—%) 2.72

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00 281 272

x3 =1.40,x, =1.20
281 4.00

_ 2
ka2 = 4.00 x exp (- L2120 7

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00 281 272

x3 =1.40,x, =1.20
281 4.00

— 2
k32 = 4.00 x exp (- 552" ) 2.72 | 4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

_ b=
k(Xi,xj) = aexp (_T

4.00
x3 = 1.40,x, = 1.20
2.81
ka2 = 4.00 x exp (- L2120 7

2.81

4.00

4.00

2.72

4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

_ b=
k(Xi,xj) = aexp (_T

400
X3 = 1_40/ X3 = 1.40
281
kas = 4.00 x exp (- L0 7

2.81

4.00

4.00

2.72

4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

[l

k(xi,x]-) = aexp (— 7

400
X3 = 1_40/ X3 = 1.40
281
kas = 4.00 x exp (- L0 7

2.81

4.00

4.00

2.72

4.00

4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x3 = 140, x3 = 1.40

ks3 = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Gaussian Process Interpolation
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Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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atmospheric carbon levels).



Gaussian Process Interpolation

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Process Interpolation
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atmospheric carbon levels).



Gaussian Process Interpolation
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Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Process Interpolation
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Figure : Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.
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Figure : Examples include WiFi localization, C14 callibration curve.
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Figure : Examples include WiFi localization, C14 callibration curve.
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Figure : Examples include WiFi localization, C14 callibration curve.
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Figure : Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

Figure : Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression
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Figure : Examples include WiFi localization, C14 callibration curve.



Olympic 100m Data

» Gold medal times for
Olympic 100 m runners
since 1896.

Image from Wikimedia
Commons
http://bit.ly/191adDC


http://bit.ly/191adDC

Olympic 100m Data
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Olympic 100 m Data.



Olympic Marathon Data

» Gold medal times for
Olympic Marathon since
1896.

» Marathons before 1924
didn’t have a
standardised distance.

» Present results using
pace per km.

» In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons
http://bit.ly/16kMKHQ


http://bit.ly/16kMKHQ

Olympic Marathon Data
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Gaussian Process Fit to Olympic Marathon Data
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
N(yIO, K) = Texp —¥
(2m)2|K|2

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)



Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—1
N(Y'O, K) = Texp —¥
(2m)2|K|2

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)



Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
lOgN (YlO, K) :—E 10g |K|—¥

- glog2n

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)



Learning Covariance Parameters

Can we determine covariance parameters from the data?

T -1

y Ky

1
E0) = 5 log K| + >

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RA’R”

Diagonal of A represents distance
along axes.
R gives a rotation of these axes.

where A is a diagonal matrix and R'R = L.



Capacity control: log |K|
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Capacity control: log |K|
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Capacity control: log [K]|
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Capacity control: log [K]|

A0 0
A= 0 A 0
0 0 A

|A] = A1A2A3
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Capacity control: log [K]|
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

20

15

y(x)

107! 10° 10
x length scale, £
TK-!

1
E(9) = 5 log K| + yz—y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

20

15

y(x)

107! 10° 10
x length scale, £
TK-!

1
E(9) = 5 log K| + yz—y



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

y(x)
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

y(x)
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x 0 i/ //
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length scale, £
TK-1

1 K
E(9) = 5 log K| + y> v



Gene Expression Example

» Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

» Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).



Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

BMC
Bioinformatics

ESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression

Alfredo A Kalaitzis” and Neil D Lawrence”

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.



http://www.biomedcentral.com/1471-2105/12/180
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Contour plot of Gaussian process likelihood.
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Basis Function Form

Radial basis functions commonly have the form

2
Pk (xi) = exp (—%)

1 ~
» Basis function 2 05 L
maps dataintoa <
“feature space” in
which a linear 0 ! L S~y
sum is a non linear 8 6 4 2 0 2 4 6 8
function. X

Figure : A set of radial basis functions with width
¢ =2 and location parameters p = [-4 0 4]".



Basis Function Representations

» Represent a function by a linear sum over a basis,

fOq5w) = ) wie(xi,), (1)
k=1

» Here: m basis functions and ¢(-) is kth basis function and
w=[w,...,wn]".

» For standard linear model: ¢x(x;.) = x; .



Random Functions

Functions derived
using:

flx) = Z wrPr(x),
P}

where elements of w
are independently
sampled from a
Gaussian density,

Wy ~ N(O,a).

f()

[
864202 4 6 8

X
Figure : Functions sampled using the basis set from
figure 4. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
a=1



Covariance Functions

RBF Basis Functions

k(x,x) = ap(x)" (x)
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k(x,x) = ap(x)" (x)

(P (x = exp[ ||x _{“k“Z]




Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi~ N (i, 7)
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui0?)

iyi NN[in’f ” ‘712]
i=1 i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.

y~N(g,0%)

wy ~ N(wy, wzoz)



Multivariate Consequence

> If
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> If
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Multivariate Consequence

> If
XNN(le)

» And
y = Wx

» Then
y~N(Wp, WEWT)



Basis Function Models

» If
fosw) = Y wir(x)
k=1



Basis Function Models

> If
fOcw) =wTé(x)



Basis Function Models

> If
fOcw) =w'(x)
f=>dw



Basis Function Models

» If
fw) =w'(x)
f=dw
» If
w ~ N(0,al)
Then

f~N(0,a087)



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

k(xi, xj) = agy(x;) " r(x;)



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

k(7)) = quko@)qbk(x])



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

. (x; — ) (xj = )
xz,x] aZe ( 2{7’;’( )exp[ ]2—52")

=1



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

. (¢ — w)? (= )’
k() “Z;e [ 20 2



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

m X3 +x]2.—2‘uk(xi+xj)+2[ui
xl, x] az; ex 7 ,




Uniform Basis Functions

» Set each center location to

(,lk=tZ+A‘LL‘(k—1).



Uniform Basis Functions

» Set each center location to

(,lk=tZ+A‘LL‘(k—1).

» Specify the basis functions in terms of their indices,
m x? + x?
o ! ]
k(xi,x]-) = Ay;exp( Y
2(L1+Ay-(k—1))(9q+xj)+2(a+Ay-(k—1))2
- 202 '




Uniform Basis Functions

» Set each center location to

(,lk=tZ+A‘LL‘(k—1).

» Specify the basis functions in terms of their indices,
m x? + x?
o ! ]
k(xi,x]-) = Ay;exp( Y
2(L1+Ay-(k—1))(9q+xj)+2(a+Ay-(k—1))2
- 202 '

» Here we’ve scaled variance of process by Ap.



Infinite Basis Functions

» Take
pr=aand y, =bsob=a+ Au-(m-1)
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Infinite Basis Functions

» Take
pr=aand y, =bsob=a+ Au-(m-1)

» This implies
b—a=Au(m-1)

and therefore

» Take limit as Ay — 0som — oo

+

2 2 1. 4 2 1. ' 2
k(x;, xj) = o fb exp (_X,-ZJ;ZXJ. 2(# 2 (xl +x2]2 5 (x, +x]) )dy,

where we have used a + k- Ay — p.



Result

» Performing the integration leads to

442

2
k(xix)) = ' Vi@ exp [—M]

XE 7 i




Result

» Performing the integration leads to

442

1 erf[(b—%(Xi”f))J_erf{(“—%(xi”f))]]/

X3 ; 7

2
k(xixj) = a’ mexp [—M]

» Now take limitasa — —coand b — oo



Result

» Performing the integration leads to

442

1 erf[(b—%(Xi”f))J_erf{(“—%(xi”f))]]/

X3 ; 7

2
k(xixj) = a’ mexp [—M]

» Now take limitasa — —coand b — oo

(xi—xj)z
k(xi,xj) = aexp iz |

where a = a’ Vrf?.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is given by the exponentiated
quadratic covariance function.

(xi - x]-)2

k(xi,xj) =aexp|-— 1



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is the exponentiated quadratic.

» Note: The functional form for the covariance function and
basis functions are similar.

» this is a special case,
» in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).
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RBF Basis Functions

k(x,x) = ap(x)" (x)

(P (x = exp[ ||x _{“k“Z]




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.



Covariance Functions

MLP Covariance Function

k(x,x") = qasin

wx'x +b )

VoxTx+b+1Vux’Tx +b+1

» Based on infinite neural
network model.

w =40
b=4




Covariance Functions

MLP Covariance Function

k(x,x") = aasin

wx'x' +b )

Vox™x+b+ 1 Vux’Tx +b+1

» Based on infinite neural 2 -
network model. 1 -
0 ,
w =40
1L
b=4 2 b
| | | |




Constructing Covariance Functions

» Sum of two covariances is also a covariance function.

k(x,x") = ki(x,x") + ka(x,x")



Constructing Covariance Functions

» Product of two covariances is also a covariance function.

k(x,x") = ky(x, x")ka(x, x")



Multiply by Deterministic Function

\4

If f(x) is a Gaussian process.

\4

g(x) is a deterministic function.

h(x) = f(x)g(x)
Then

\4

v

kn(x,x") = §()k(x,x")g(x)

where kj, is covariance for h(-) and ky is covariance for f(-).



Covariance Functions

Linear Covariance Function

k(x,x") = ax"x’

» Bayesian linear
regression.

a=1

F

-




Covariance Functions

Linear Covariance Function

k(x,x') = ax"x’

3 ~
2 L
» Bayesian linear 1k
regression. 0 F
a=1 1E
2L

-3 | | | |



Bochner’s Theorem

Given a positive finite Borel measure i on the real line IR, the
Fourier transform Q of u is the continuous function

Q) = fR e dp().

Q is continuous since for a fixed x, the function e™* is
continuous and periodic. The function Q is a positive definite
function, i.e. the kernel k(x, x") = Q(x” — x) is positive definite.

Bochner’s theorem says the converse is true, i.e. every positive
definite function Q is the Fourier transform of a positive finite
Borel measure. A proof can be sketched as follows.



Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k(x,x") = aexp(—lx_x l)

202

» In one dimension arises
from a stochastic
differential equation.
Brownian motion in a
parabolic tube.

» In higher dimension a

Fourier filter of the form
1
n(1+x2)"




Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

IX—X’I)

k(x,x") = aexp (—7

» In one dimension arises

from a stochastic 1% B
differential equation. 1
Brownian motion in a 0.5
parabolic tube. O.g I
» In higher dimension a -1
Fourier filter of the form 1_'2 i ‘ | | |
1

n(1+x2)° -1 NRK n N8 1



Covariance Functions

Where did this covariance matrix come from?

Matern 3/2 Covariance Function

k(x,x") = ac(l + \/51’) exp (— \/gr) where r

» Matern 3/2 is a once
differentiable
covariance.

» Matern family
constructed with
Student-t filters in
Fourier space.




Covariance Functions

Where did this covariance matrix come from?

Matern 3/2 Covariance Function
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» Matern 3/2 is a once 3
differentiable 2
covariance. 1
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Covariance Functions

Where did this covariance matrix come from?

Matern 5/2 Covariance Function

_ Ix=x'll
t

k(x,x) =« (1 + V5r + grz) exp (— \/gr) where r=

» Matern 5/2 is a twice
differentiable
covariance.

» Matern family
constructed with
Student-t filters in
Fourier space.




Covariance Functions

Where did this covariance matrix come from?

Matern 5/2 Covariance Function

5 _ /7
k(x,x') =« (1 + Vor + grz) exp (— \/gr) where r = w
» Matern 5/2 is a twice 3
differentiable 2 L
covariance. 1 \—/—\
» Matern family 2 %
constructed with :2 B

Student-t filters in 3 | | | |
Fourier space. -1 05 0 05 1




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.
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