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Multiple Output Gaussian Processes

I In this section we will study Gaussian processes with
multiple outputs.

I they have various names, vector valued functions,
multiple outputs, multidimensional GPs, multi-task
learning.

I Key idea, we want to relate several different functions.
I Sounds more complex, but actually it’s a special case of a

normal GP where one input is discrete.
I Question: how to embed covariation between the

functions.
I Start by introducing Kalman filter/smoother.



Simple Markov Chain

I Assume 1-d latent state, a vector over time, x = [x1 . . . xT].
I Markov property,

xi =xi−1 + εi,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

I Initial state,
x0 ∼ N (0, α0)

I If x0 ∼ N (0, α) we have a Markov chain for the latent
states.

I Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).
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Gauss Markov Chain
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Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x6 = −1.08, ε7 = 0.989

x7 = −1.08 + 0.989 = −0.0881



Gauss Markov Chain
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Gauss Markov Chain
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Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)



Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)
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Matrix Representation of Latent Variables

x εL1 ×=



Multivariate Process

I Since x is linearly related to εwe know x is a Gaussian
process.

I Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

x = L1ε



Latent Process Mean

〈x〉 = 〈L1ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)



Latent Process Mean

〈x〉 = L10



Latent Process Mean

〈x〉 = 0



Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>



Latent Process Covariance

〈
xx>
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L1εε

>L>1
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Latent Process Covariance
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Latent Process Covariance

〈
xx>

〉
= αL1L>1
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Latent Process

x = L1ε

ε ∼ N (0, αI)
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

x ∼ N
(
0, αL1L>1

)



Covariance for Latent Process II

I Make the variance dependent on time interval.
I Assume variance grows linearly with time.
I Justification: sum of two Gaussian distributed random

variables is distributed as Gaussian with sum of variances.
I If variable’s movement is additive over time (as described)

variance scales linearly with time.



Covariance for Latent Process II

I Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.



Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)

K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

I Precision matrix is not
sparse.

I Each point is dependent
on all the others.

I In this case
non-Markovian.



Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Simple Kalman Filter I

I We have state vector X =
[
x1 . . . xq

]
∈ RT×q and if each state

evolves independently we have

p(X) =

q∏
i=1

p(x:,i)

p(x:,i) = N
(
x:,i|0,K

)
.

I We want to obtain outputs through:

yi,: = Wxi,:



Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =


x:,1
x:,2
...

x:,q





Kronecker Product

aK bK
cK dK
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Stacking and Kronecker Products I
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Column Stacking

⊗ =



For this stacking the marginal distribution over time is given by
the block diagonals.
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For this stacking the marginal distribution over time is given by
the block diagonals.



Two Ways of Stacking

Can also stack each row of X to form column vector:

x =


x1,:
x2,:
...

xT,:


p(x) = N (x|0,K ⊗ I)



Row Stacking

⊗ =



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,

yi,: = Wxi,: + εi,:

ε ∼ N
(
0, σ2I

)



Mapping from Latent Process to Observed

Wx1,:

Wx2,:

Wx3,:

x1,:

x2,:

x3,:

W 0 0

0 W 0

0 0 W

× =



Output Covariance

This leads to a covariance of the form

(I ⊗W)(K ⊗ I)(I ⊗W>) + Iσ2

Using (A ⊗ B)(C ⊗D) = AC ⊗ BD This leads to

K ⊗WW> + Iσ2

or
y ∼ N

(
0,WW>

⊗K + Iσ2
)
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Kronecker Structure GPs

I This Kronecker structure leads to several published
models.

(K(x, x′)) j, j′ = k(x, x′)kT( j, j′),

where k has x and kT has i as inputs.
I Can think of multiple output covariance functions as

covariances with augmented input.
I Alongside x we also input the j associated with the output

of interest.



Separable Covariance Functions

I Taking B = WW> we have a matrix expression across
outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite
matrix.

I B is called the coregionalization matrix.
I We call this class of covariance functions separable due to

their product structure.



Sum of Separable Covariance Functions

I In the same spirit a more general class of kernels is given
by

K(x, x′) =

q∑
j=1

k j(x, x′)B j.

I This can also be written as

K(X,X) =

q∑
j=1

B j ⊗ k j(X,X),

I This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

I We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

I Use of GPs in Geostatistics is called kriging.
I These multi-output GPs pioneered in geostatistics:

prediction over vector-valued output data is known as
cokriging.

I The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

I Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

I In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

I In the LMC, each component f j is expressed as a linear sum

f j(x) =

q∑
j=1

w j, ju j(x).

where the latent functions are independent and have
covariance functions k j(x, x′).

I The processes { f j(x)}qj=1 are independent for q , j′.



Kalman Filter Special Case

I The Kalman filter is an example of the LMC where
ui(x)→ xi(t).

I I.e. we’ve moved form time input to a more general input
space.

I In matrix notation:
1. Kalman filter

F = WX

2. LMC
F = WU

where the rows of these matrices F, X, U each contain q
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

I If one covariance used for latent functions (like in Kalman
filter).

I This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

I The kernel matrix corresponding to a dataset X takes the
form

K(X,X) = B ⊗ k(X,X).



Autokrigeability

I If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x′) (Helterbrand
and Cressie, 1994).

I In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

I In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).



Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]
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LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)
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`2 = 0.2
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LMC in Machine Learning and Statistics

I Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

I Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.

I Setting B = Ip assumes outputs are conditionally
independent given the parameters θ. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

I More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

I Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X,X) =

q∑
j=1

w:, jw>:, j ⊗ k j(X,X).

I Like the Kalman filter, but each latent function has a
different covariance.

I Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.
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Gaussian processes for Multi-task, Multi-output and
Multi-class

I Bonilla et al. (2008) suggest ICM for multitask learning.
I Use a PPCA form for B: similar to our Kalman filter

example.
I Refer to the autokrigeability effect as the cancellation of

inter-task transfer.
I Also discuss the similarities between the multi-task GP

and the ICM, and its relationship to the SLFM and the
LMC.



Multitask Classification

I Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters φ
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

I Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

I Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

I A statistical model used as a surrogate for a
computationally expensive computer model.

I Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

I In Conti and O’Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).
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Approximations in GPs

I Two main challenges:
I Computational complexity and storage of exact inference
O(n3) and O(n2) respectively.

I Non Gaussian likelihoods making requisite integrals
intractable.

I In this section we address these challenges.



Bayes Rule and Gaussian Processes

I So far we have focussed on joint Gaussians and exploited
their properties.

p(y) = N
(
y|0,K + σ2I

)
This is derived from

y(xi) = f (xi) + εi

where
f ∼ N (0,K) and ε ∼ N

(
0, σ2I

)
I Let’s remind ourselves of principles of probabilistic

inference.
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Classical Bayesian Inference

I The way we can perform inference in Gaussian systems is
special (properties of multivarate Gaussians).

I Classically we need to declare a prior, p(f).
I Combine it with a likelihood, p(y|f),

p(f|y) =
p(y|f)p(f)

p(y)

I The easy bit is the multiplication on top. Normally the
tough bit is

p(y) =

∫
p(y|f)p(f)df

it just happens to be trivial for the joint Gaussian case ...



Bayesian Inference, i.i.d. Likelihood

I Or for i.i.d. likelihood,

p(f|y) =

∏n
i=1 p(yi| fi)p(f)

p(y)

I If
p(yi| fi) = N

(
yi| fi, σ2

)
inference is trivial because

yi = fi + εi, εi ∼ N
(
0, σ2

)
.

I In approximate GPs we will return to the more general
formulation.



Variational Compression

(Lawrence, 2007; Titsias, 2009)

I Complexity of standard GP:
I O(n3) in computation.
I O(n2) in storage.

I Via low rank representations of covariance:
I O(nm2) in computation.
I O(nm) in storage.

I Where m is user chosen number of inducing variables.
They give the rank of the resulting covariance.
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Variational Compression

I Inducing variables are a compression of the real
observations.

I They can live in space of f or a space that is related through
a linear operator (Álvarez et al., 2010) — could be gradient
or convolution.

I There are inducing variables associated with each set of
hidden variables, xi.



Variational Compression II

I Importantly conditioning on inducing variables renders
the likelihood independent across the data.

I It turns out that this allows us to variationally handle
uncertainty on the kernel (including the inputs to the
kernel).

I It also allows standard scaling approaches: stochastic
variational inference Hensman et al. (2013), parallelization
Gal et al. (2014) and work by Zhenwen Dai on GPUs to be
applied: an engineering challenge?



Inducing Variable Approximations

I Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csató

and Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quiñonero Candela and Rasmussen (2005) for a review.

I We follow variational perspective of (Titsias, 2009).
I This is an augmented variable method, followed by a

collapsed variational approximation (King and Lawrence, 2006;

Hensman et al., 2012).



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p(y) =

∫
p(y,u)du

y
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Augment standard model with a set
of m new inducing variables, u.

p(y) =

∫
p(y|u)p(u)du

y

u



Augmented Variable Model: Not Wrong but Useful?

Important: Ensure inducing
variables are also Kolmogorov
consistent (we have m∗ other inducing
variables we are not yet using.)

p(u) =

∫
p(u,u∗)du∗ y

u u∗



Augmented Variable Model: Not Wrong but Useful?

Assume that relationship is through
f (represents ‘fundamentals’—push
Kolmogorov consistency up to here).

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

y

f

u
u∗



Augmented Variable Model: Not Wrong but Useful?

Convenient to assume factorization
(doesn’t invalidate model—think delta
function as worst case).

p(y) =

∫ n∏
i=1

p(yi| fi)p(f|u)p(u)dfdu

yi

fi

u
u∗

i = 1 . . . n



Augmented Variable Model: Not Wrong but Useful?

Focus on integral over f.

p(y) =

∫ ∫ n∏
i=1

p(yi| fi)p(f|u)dfp(u)du

yi

fi

u
u∗

i = 1 . . . n



Augmented Variable Model: Not Wrong but Useful?

Focus on integral over f.

p(y|u) =

∫ n∏
i=1

p(yi| fi)p(f|u)df

yi

fi

u∗
u

i = 1 . . . n



Variational Bound on p(y|u)

log p(y|u) = log
∫

p(y|f)p(f|u)df

=

∫
q(f) log

p(y|f)p(f|u)
q(f)

df + KL
(
q(f) ‖ p(f|y,u)

)

(Titsias, 2009)

I Example, set q(f) = p(f|u),

log p(y|u) ≥ log
∫

p(f|u) log p(y|f)df.

p(y|u) ≥ exp
∫

p(f|u) log p(y|f)df.
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Optimal Compression in Inducing Variables

I Maximizing lower bound minimizes the KL divergence
(information gain):

KL
(
p(f|u) ‖ p(f|y,u)

)
=

∫
p(f|u) log

p(f|u)
p(f|y,u)

du

I This is minimized when the information stored about y is
stored already in u.

I The bound seeks an optimal compression from the
information gain perspective.

I If u = f bound is exact (f d-separates y from u).



Choice of Inducing Variables

I Optimizing the bound directly not always practical.
I Free to choose whatever heuristics for the inducing

variables.
I Can quantify which heuristics perform better through

checking lower bound.



Factorizing Likelihoods

I If the likelihood, p(y|f), factorizes

p(y|u) ≥ exp
∫

p(f|u) log
n∏

i=1

p(yi| fi)df.

I Then the bound factorizes.
I Now need a choice of distributions for f and y|f ...
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Factorizing Likelihoods

I If the likelihood, p(y|f), factorizes

p(y|u) ≥
n∏

i=1

exp
〈
log p(yi| fi)

〉
p( fi|u)

I Then the bound factorizes.

I Now need a choice of distributions for f and y|f ...



Factorizing Likelihoods

I If the likelihood, p(y|f), factorizes

p(y|u) ≥
n∏

i=1

exp
〈
log p(yi| fi)

〉
p( fi|u)

I Then the bound factorizes.
I Now need a choice of distributions for f and y|f ...



Gaussian p(yi| fi)

For Gaussian likelihoods:〈
log p(yi| fi)

〉
p( fi|u) = −

1
2

log 2πσ2
−

1
2σ2

(
yi −

〈
fi
〉)2
−

1
2σ2

(〈
f 2
i

〉
−

〈
fi
〉2

)



Gaussian p(yi| fi)

For Gaussian likelihoods:〈
log p(yi| fi)

〉
p( fi|u) = −

1
2

log 2πσ2
−

1
2σ2

(
yi −

〈
fi
〉)2
−

1
2σ2

(〈
f 2
i

〉
−

〈
fi
〉2

)
Implying:

p(yi|u) ≥ exp
〈
log ci

〉
N

(
yi|

〈
fi
〉
, σ2

)



Gaussian Process Over f and u

Define:
qi,i = varp( fi|u)

(
fi
)

=
〈

f 2
i

〉
p( fi|u)

−
〈

fi
〉2

p( fi|u)

We can write:
ci = exp

(
−

qi,i

2σ2

)
If joint distribution of p(f,u) is Gaussian then:

qi,i = ki,i − k>i,uK−1
u,uki,u

ci is not a function of u but is a function of Xu.



Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

p(y) ≥
n∏

i=1

ci

∫
N

(
y| 〈f〉 , σ2I

)
p(u)du

Note that:
〈f〉p(f|u) = Kf,uK−1

u,uu

is linearly dependent on u.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ci

∫
N

(
y|Kf,uK−1

u,uu, σ2
)
N

(
u|0,Ku,u

)
du
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Gaussian case:
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)
∫

p(y|u)p(u)du ≥
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ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)
Maximize log of the bound to find covariance function
parameters,
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u,uKu,f,

)
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)
Maximize log of the bound to find covariance function
parameters,

L ≈ logN
(
y|0, σ2I + Kf,uK−1

u,uKu,f,

)
I If the bound is normalized, the ci terms are removed.

I This results in the projected process approximation
(Rasmussen and Williams, 2006) or DTC (Quiñonero Candela and

Rasmussen, 2005). Proposed by (Smola and Bartlett, 2001; Seeger et al.,

2003; Csató and Opper, 2002; Csató, 2002).



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
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(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)
Maximize log of the bound to find covariance function
parameters,

I If the bound is normalized, the ci terms are removed.
I This results in the projected process approximation

(Rasmussen and Williams, 2006) or DTC (Quiñonero Candela and

Rasmussen, 2005). Proposed by (Smola and Bartlett, 2001; Seeger et al.,

2003; Csató and Opper, 2002; Csató, 2002).



Fully Independent Training Conditional

Define c′i to be

c′i = ci exp

y2
i qi,i

2

 = exp

qi,i(y2
i − σ

−2)

2


Then rewrite the bound:

n∑
i=1

log c′i + logN
(
y|0, σ2I + diag

(
Qf,f

)
+ Kf,uK−1

u,uKu,f

)
where

Qf,f = cov
(
ff>

)
p(f|u)

= Kf,f −Kf,uK−1
u,uKu,f

In FITC the log c′i terms could be negative or positive.



yi, j

w j
xi

σ2

i = 1 . . . n

j = 1 . . . p



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10
-6
-4
-2
0
2
4
6

0 2 4 6 8 10



GP Regression

Analytical tractability of the posterior distribution is assured:

I Gaussian prior:
f ∼ N (0,Kff)

I Gaussian likelihood:

n∏
i=1

p(yi| fi) = N
(
y|f, σ2

i I
)

I Gaussian posterior:

p(f|y) ∝ N (f|0,Kff)N
(
y|f, σ2

i I
)



Bernoulli Distribution

I A mathematical switch allows us to write a probability
table as a function.

P(Y = 1) = π

P(Y = 0) = (1 − π)

I Write as a function

P(Y = y) = πy(1 − π)1−y

I Can think of this construction as a “mathematical switch”.
Known as the Bernoulli distribution.

I Widely used in classification algorithms: π parameter is
made to be dependent on “inputs”.



Binomial Distribution

I Generalization of Bernoulli to
multiple trials.

I Jakob Bernoulli: black and red balls
in an urn. Proportion of red is π.

I Sample with replacement. Binomial
gives the distribution of number of
reds, y, from S extractions

P(y|π,S) =
S!

y!(S − y)!
πy(1 − π)(S−y)

I Mean is given by Sπ and variance
Sπ(1 − π).
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Figure : The binomial distribution for π = 0.4 and S = 20. Mean is
shown as red line, 2 standard deviations are magenta.



The Gamma Density

I Density over positive real values.

p(y|a, b) =
ba

Γ(a)
ya−1 exp

(
−by

)
= G

(
y|µ, σ2

)
I Mean is a

b and variance is a
b2 .

I Also available in multivariate as the Wishart (positive
definite matrices).



Gamma PDF I
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Figure : The Gamma PDF with a = 127 and b = 75. Here it represents
the heights of a population of students and constrains them positive.



Gamma PDF I
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Figure : The Gamma PDF with a = 127 and b = 75 alongside a
Gamma PDF with a = 3 and b = 3.



Categorical Distribution

Multiple outcomes, example: die roll.

die role probability y
1 π1 [1 0 0 0 0 0]
2 π2 [0 1 0 0 0 0]
3 π3 [0 0 1 0 0 0]
4 π4 [0 0 0 1 0 0]
5 π5 [0 0 0 0 1 0]
6 π6 [0 0 0 0 0 1]

P(y) =
∏k

i=1 π
yi
i



Multinomial Distribution

I Generalization of categorical to
multiple trials.

I Generalization of binomial to
multiple outcomes. Proportion of
each colour ball is now πi.

I Sample with replacement.
Multinomial gives the distribution
of number of each of k different
balls, y, from S extractions

P(y|π,S) =
S!∏k

i=1 yi!

k∏
i=1

π
yi
i

I Mean for each colour is given by Sπi
and variance Sπi(1 − πi).



Distributions as Functions

I Probability distribution with a simple table can be limiting.
I The Poisson Distribution — a distribution a a function
I First published by Siméon Denis Poisson (1781-1840) in

1837.
I Defined over the space of all non-negative integers.
I This set is countably infinite: impossible to summarise in a

table!
I The Poisson distribution is therefore defined as

P
(
y|µ

)
=
µy

y!
exp

(
−µ

)
. (2)

where y is any integer from 0 to∞, and µ is a parameter of
the distribution.



A Poisson with µ = 2

I To work out the probability of y in a Poisson µ = 2 we can
start filling a table.

I The values in a table are computed from (2)

y 0 1 2 . . .

P
(
y
)

0.135 0.271 0.271 . . .

Table : Some values for the Poisson distribution with µ = 2.
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Figure : The Poisson distribution for µ = 2. Mean is given by µ (red
line), standard deviation is given by

√
µ (magenta lines show 2

standard deviations).



Gaussian Noise
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Figure : Inclusion of a data point with Gaussian noise.
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Figure : Inclusion of a data point with Gaussian noise.
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Figure : Inclusion of a data point with Gaussian noise.



Classification Noise Model

Probit Noise Model
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y i
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yi = −1 yi = 1

Figure : The probit model (classification). The plot shows p
(
yi| fi

)
for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.



Ordinal Noise Model

Ordered Categories
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Figure : The ordered categorical noise model (ordinal regression).
The plot shows p

(
yi| fi

)
for different values of yi. Here we have

assumed three categories.



Null Category Noise Model

Classification with a Missing Category
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Figure : The null category noise model (semi-supervised learning).
The plot shows p

(
yi| fi

)
for different values of yi. Here we have

assumed three categories.



Non-linear Response Functions

I Non Gaussian likelihood:

p(yi| fi) = Φ( fi)

I Exact computation of the posterior is no longer possible
analytically.

p(f|y) =
p(f)

∏n
i=1 p(yi| fi)∫

p(f)
∏n

i=1 p(yi| fi)df



Link Functions

I Take the output of our function, f (·) use as:
I Success probability in binomial distribution.
I Rate function in Poisson likelihood.
I shape parameter of Gamma distribution.

I Problem: f (·) defined over real line.
I Needs to be squashed down to 0-1 or constrained positive.



Link Functions

I Log link function, model the log rate.

logλ(x) = f (x)

I Logit link function, model the log odds.

logπ(x)
log(1 − π(x))

= f (x)



Generative Model

I From a generative perspective we often naturally think of
the inverse link:

λ(x) = exp( f (x))

π(x) =
1

1 + exp(− f (x))

I Can make some assumptions of the link function clearer.
For example log additive link function:

logλ(x) = f1(x) + f2(x)

is a product of functions:

λ(x) = exp( f1(x)) exp( f2(x))



Example: Logit/Probit Link Function
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Likelihood function
p(yi =1|fi) =Φ(fi)



Laplace Approximation

I Second order Taylor expansion at mode of log likelihood.
I First suggested by Laplace for his English dice example.
I How Laplace independently (of de Moivre) reinvented the

Gaussian density.



Laplace Approximation

log p(f|y) = log p(y|f) + log p(f) + const

log p(f|y) = log p(y|f) −
1
2

f>K−1
ff f

I Find MAP estimate f̂. This is mean of Gaussian
approximation.

I Find Hessian of this system.
I Covariance of approximation is −H−1.

H =

d2 log p(y|f)
d fid f j


i j

−K−1
ff



Expectation Propagation: General Case

I Exact (intractable) posterior:

p(f|y) =
p(f)

∏n
i=1 p(yi| fi)∫

p(f)
∏n

i=1 p(yi| fi)df

I EP posterior approximation:

q(f|y) =

∏K
i=1 ti( fi)
ZEP



Expectation Propagation: Gaussian Approximation

Consider the special case:

p(yi| fi) ≈ ti( fi) = ZiN
(
µ̃i| fi, σ̃2

i

)
Here Zi is a scaling factor so ti is unnormalized.

If
p(f) ∼ N

(
0,Kf,f

)
.

No approximation needed.



EP Posterior Approximation

q(f|y) =

∏n
i=1 t( fi)p(f)

ZEP
= N (f|µ,Σ)

Site functions provide “fake Gaussian observations” with
target value µ̂i and observation variance σ̂2

i .

ZEP =

n∏
i=1

Zi

∫ n∏
i=1

N

(
µ̂i| fi, σ̂2

i

)
p(f)df



EP Posterior Approximation

q(f|y) =

∏n
i=1 ZiN

(
µ̂i| fi, σ̂2

i

)
p(f)

ZEP
= N (f|µ,Σ)

Site functions provide “fake Gaussian observations” with
target value µ̂i and observation variance σ̂2

i .

ZEP =

n∏
i=1

Zi

∫ n∏
i=1

N

(
µ̂i| fi, σ̂2

i

)
p(f)df



Site approximations

I Given initial site approximations: t j( f j) for j , i.
I Need to set

ti( fi) ≈ p(yi| fi)

p(yi| fi)p(f)
∏
j,i

t j( f j) ≈ p(f)
n∏

j=1

t j( f j)

p(yi| fi)
∫

p(f)
∏
j,i

t j( f j)d f j,i ≈

∫
p(f)

n∏
j=1

t j( f j)d f j,i

p(yi| fi)q\i( fi) ≈ N
(

fi|µ̂i, σ̂
2
i

)
Ẑi



Cavity Distribution

q\i( fi) =

∏
j,i t( f j)p(f)∫ ∏

j,i t( f j)p(f)
df



Tilted Distribution

p̂i( fi|yi) =
p(yi| fi)q\i( fi)

Ẑ
where

Ẑi =

∫
p(yi| fi)q\i( fi)d fi



Minimization of the KL divergence

µ̂i, σ̂i = argminµ̂i,σ̂i
KL

(
p(yi| fi)q\i( fi)

Ẑ
‖N

(
fi|µ̂i, σ̂

2
i

))
This is the KL between tilted distribution and marginal of
approximation.
Since the approximation is Gaussian, KL is minimal when:

I µ̂i = 〈 fi〉p(yi| fi)q\i( fi)

I σ̂2
i = 〈 fi〉2p(yi| fi)q\i( fi)

− µ̃2
i



Scale of Site Approximation

I Since the approximation is un-normalized, we set scale as
follows:

Ẑi =

∫
p(yi| fi)q\i( fi)d fi



Classification Noise Model

Probit Noise Model
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-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1

Figure : The probit model (classification). The plot shows p
(
yi| fi

)
for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.
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Figure : An EP style update with a classification noise model.
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Ordinal Noise Model

Ordered Categories
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Figure : The ordered categorical noise model (ordinal regression).
The plot shows p

(
yi| fi

)
for different values of yi. Here we have

assumed three categories.



Ordinal Regression
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Figure : An EP style update with an ordered category noise model.



Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0| f∗

)

Figure : An EP style update with an ordered category noise model.



Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0| f∗

)
p
(

f∗|X, x∗,y, y∗
)

Figure : An EP style update with an ordered category noise model.



Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0| f∗

)
p
(

f∗|X, x∗,y, y∗
)

q
(

f∗|X, x∗,y
)

Figure : An EP style update with an ordered category noise model.



Null Category Noise Model

Classification with a Missing Category
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Figure : The null category noise model (semi-supervised learning).
The plot shows p

(
yi| fi

)
for different values of yi. Here we have

assumed three categories.
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Predictions

I Predictive distribution of q( f∗|y) is also Gaussian:〈
f∗
〉

q( f∗|y) = k>∗
(
Kf,f + Σt

)−1
µ̃

var
(

f∗
)

= k∗,∗ − k>∗
(
Kf,f + Σt

)−1
k∗



Example: People who speak an indigenous language
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Computational Complexity

I Major problem for Gaussian processes is the high
computational complexity.

I O(n3) computation and O(n2) storage. For multioutput
case O(n3p3) computation and O(n2p2) storage.

I Motivates sparse and low rank approximations.



The Informative Vector Machine

Reduce Complexity

I Including n data points through EP still leads to an O
(
n3

)
complexity.

I IVM algorithm resolves these problems with a sparse
representation for the data set.

I Inspiration: the support vector machine.
I IVM use a simple selection heuristic to incorporate m most

informative points (Lawrence et al., 2003; Seeger, 2004;
Lawrence et al., 2005).

I Computational complexity: O
(
n3

)
to O

(
m2n

)
.

I Infromation theoretic (Chaloner and Verdinelli, 1995)
criteria used to select points.



Data Point Selection

Entropy Criterion

I Original IVM criterion inspired by support vectors being
those that reduce the size of the ‘version space’ most.

I The equivalent Bayesian interpretation is volume of the
posterior: measured by entropy.

I Entropy change associted with a data point is simple and
quick to compute.

I For jth inclusion of ith data point:

∆H j,i = −
1
2

log
∣∣∣Σ j,i

∣∣∣ +
1
2

log
∣∣∣Σ j−1

∣∣∣
= −

1
2

log
∣∣∣∣I − Σ j−1diag

(
ν j

)∣∣∣∣
= −

1
2

log
(
1 − ν j,iς j−1,i

)
. (3)



IVM Parameter Updates

Optimising Kernel Parameters

I Need to express the marginal likelihood for optimization.
I Seeger (2004) achieves by expressing the likelihood in

terms of both the active and inactive sets.
I We simply express the likelihood in terms of the active set

only.
I Given the active set, I, and the site parameters, m and β,

optimise approximation wrt kernel parameters using
gradient methods.

I Active set and kernel parameters are interdependent:
active set is reselected between optimisations of kernel
parameters.



Results

Toy Problems

I Two toy data sets for classification with probit noise. First
uses an ARD set up and one irrelevant direction.

I A second demonstation: sampled 500 data points
uniformly from a unit square in two dimensions.

I Sample then made from a GP prior of a function at these
points.

I This function was ’squashed’ by a cumulative Gaussian
and a class assigned according to this probability.



IVM Classification

Classification
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Figure : Contours: Red solid line at p
(
y|x

)
= 0.5 , blue dashed lines at

p
(
y|x

)
= 0.25 and p

(
y|x

)
= 0.75. Active points are blue dots. Left: data

sampled from from a mixture of Gaussians. Right: Data uniformly sampled
on the 2–dimensional unit square. Class labels are assigned by sampling
from a known Gaussian process prior.



Ordered Categories

Ordered Categories

I Two results from two problems on ordered categorical
data.

I First example the categories are separable linearly.
I Second example: sampled ordered categorical data in

polar co-ordinates.



Ordered Categories

Toy Problems
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Figure : .Left: a linear solution is found. Right: this categories in this
example were sampled in polar co-ordinates.



USPS digits

Large Data Set

I USPS digit data set of 16 × 16 greyscale images.
I Contains 7291 training images and 2007 test images.
I Three different kernels with the IVM algorithm.

I For each data-set we use a ‘base kernel’ consisting of a
linear part, a white noise term and a bias part.

I Three variations on this base kernel were then used: it was
changed by adding first an RBF kernel, then an MLP kernel
and finally a variant of the RBF ARD kernel.

I Set m = 500.



USPS digits

Classification error %

0 1 2 3 4 5 6 7 8 9 Overall

RBF 0.65 0.70 1.40 1.05 1.49 1.25 0.75 0.60 1.20 0.75 4.58

MLP 0.55 0.70 1.49 1.20 1.64 1.25 0.80 0.60 1.20 0.75 4.78

RBF ARD 0.55 0.60 1.49 1.10 1.79 1.20 0.80 0.60 1.20 0.85 4.68

Table : Table of results on the USPS digit data. A comparison with a
summary of results on this data-set Schölkopf and Smola (2001, Table
7.4) shows that the IVM is in line with other results on this data.
Furthermore these results were achieved with fully automated model
selection.



Incorporating Invariances

Virtual Support Vectors

I Invariances present: rotations, translations.
I Could augment the original data set with transformed data

points.
I This leads to a rapid expansion in the size of the data set.
I Schölkopf et al. (1996) suggest augmenting only support

vectors.
I Augmented points known as ‘virtual support vectors’.
I This algorithm gives state-of-the-art performance on the

USPS data set.



USPS with Virtual Informative Vectors

Virtual Informative Vectors (Lawrence et al., 2005)

I Schölkopf et al. (1996): biggest improvement using
translation invariances.

I Applied standard IVM classification algorithm to the data
set using an RBF kernel combined with a linear term.

I Took the active set from these experiments and aumented
it:

I original active set plus four translations: up down lweft
and right

I results in an augmented active set of 2500 points.

I Reselect active set of size m = 1, 000 for final results.



Performance on USPS

Classification Error %

0 1 2 3 4

0.648 ± 0.00 0.389 ± 0.03 0.967 ± 0.06 0.683 ± 0.05 1.06 ± 0.02

5 6 7 8 9 Overall

0.747 ± 0.06 0.523 ± 0.03 0.399 ± 0.00 0.638 ± 0.04 0.523 ± 0.04 3.30 ± 0.03

Table : Experiments are summarised by the mean and variance of the
% classification error across ten runs with different random seeds.
Results match those given by the virtual SVM but model selection
was automatic here.



Posterior variance update

I Complexity is dominated by the computation of the
posterior covariance:

Σ =
(
K−1

f,f + Σ−1
t

)−1



Sparse EP

I q(f|y) is computed as before, but an sparse approximation
is used instead of the exact covariance Kf,f.

I FITC approximation: O(nm2)

Kf,f ≈ Kf,uK−1
u,uKu,f + diag

(
Kf,f −Qf,f

)
I DTC approximation: O(nm2)

Kf,f ≈ Kf,uK−1
u,uKu,f



EP-FITC (generalized FITC)
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EP-DTC

Compatible with sparse variational approach:

L = logN
(
µt|0,Qf,f + Σt

)
−

1
2

tr
(
(Kf,f −Qf,f)Σti

)
− ZEP



Sparse variational + EP-DTC
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