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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

I 3648 Dimensions
I 64 rows by 57

columns

I Space contains more
than just this digit.

I Even if we sample
every nanosecond
from now until the
end of the universe,
you won’t see the
original six!
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo
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Low Dimensional Manifolds

Pure Rotation is too Simple

I In practice the data may undergo several distortions.
I e.g. digits undergo ‘thinning’, translation and rotation.

I For data with ‘structure’:
I we expect fewer distortions than dimensions;
I we therefore expect the data to live on a lower dimensional

manifold.

I Conclusion: deal with high dimensional data by looking
for lower dimensional non-linear embedding.



Existing Methods

Spectral Approaches

I Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).
I Uses eigenvectors of similarity matrix.

I Isomap (Tenenbaum et al., 2000) is MDS with a particular
proximity measure.

I Kernel PCA (Schölkopf et al., 1998)

I Provides a representation and a mapping — dimensional
expansion.

I Mapping is implied throught he use of a kernel function as a
similarity matrix.

I Locally Linear Embedding (Roweis and Saul, 2000).

I Looks to preserve locally linear relationships in a low
dimensional space.



Existing Methods II

Iterative Methods

I Multidimensional Scaling (MDS)
I Iterative optimisation of a stress function (Kruskal, 1964).
I Sammon Mappings (Sammon, 1969).

I Strictly speaking not a mapping — similar to iterative MDS.

I NeuroScale (Lowe and Tipping, 1997)

I Augmentation of iterative MDS methods with a mapping.



Existing Methods III

Probabilistic Approaches

I Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

I A linear method.

I Density Networks (MacKay, 1995)

I Use importance sampling and a multi-layer perceptron.

I Generative Topographic Mapping (GTM) (Bishop et al., 1998)

I Uses a grid based sample and an RBF network.
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Existing Methods III

Probabilistic Approaches

I Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

I A linear method.

I Density Networks (MacKay, 1995)

I Use importance sampling and a multi-layer perceptron.

I Generative Topographic Mapping (GTM) (Bishop et al., 1998)

I Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

I Propagate a probability distribution through a non-linear
mapping.



The New Model

A Probabilistic Non-linear PCA

I PCA has a probabilistic interpretation (Tipping and Bishop, 1999;

Roweis, 1998).
I It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

I We present a new probabilistic interpretation of PCA
(Lawrence, 2005).

I This interpretation can be made non-linear.
I The result is non-linear probabilistic PCA.



Notation

q— dimension of latent/embedded space
p— dimension of data space
n— number of data points

centred data, Y =
[
y1,:, . . . ,yn,:

]> =
[
y:,1, . . . ,y:,p

]
∈ <

n×p

latent variables, X =
[
x1,:, . . . , xn,:

]> =
[
x:,1, . . . , x:,q

]
∈ <

n×q

mapping matrix, W ∈ <p×q

ai,: is a vector from the ith row of a given matrix A
a:, j is a vector from the jth row of a given matrix A



Reading Notation

X and Y are design matrices

I Covariance given by n−1Y>Y.
I Inner product matrix given by YY>.



Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where
εi,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
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N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,

2005)

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,XX> + σ2I

)



Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2

log |K| −
1
2

tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)
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Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

I Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from

Uq = Y>U′qΛ
−

1
2

q



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Define linear-Gaussian
relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N

(
wi,:|0, I

)

p (Y|X) =
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j=1

N

(
y:, j|0,XX> + σ2I

)



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the
marginal likelihood
shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the
marginal likelihood
shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Y

W X

σ2

p (Y|X) =

p∏
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N

(
y:, j|0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

I The EQ covariance has the form ki, j = k
(
xi,:, x j,:

)
, where

k
(
xi,:, x j,:

)
= α exp

−
∥∥∥xi,: − x j,:

∥∥∥2
2

2`2

 .
I No longer possible to optimise wrt X via an eigenvalue

problem.
I Instead find gradients with respect to X, α, ` and σ2 and

optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

I Facilitating animation through modeling human motion
(Grochow et al., 2004)

Tracking

I Tracking using human motion models (Urtasun et al., 2005, 2006)

Assisted Animation

I Generalizing drawings for animation (Baxter and Anjyo, 2006)

Shape Models

I Inferring shape (e.g. pose from silhouette). (Ek et al., 2008b,a;
Priacuriu and Reid, 2011a,b)



Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

http://vimeo.com/3235882

http://vimeo.com/3235882


Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Generalization with much less Data than Dimensions

I Powerful uncertainly handling of GPs leads to surprising
properties.

I Non-linear models can be used where there are fewer data
points than dimensions without overfitting.



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

I We introduce a prior that is based on the Fisher criteria

p(X) ∝ exp

− 1
σ2

d

tr
(
S−1

w Sb

) ,

with Sb the between class matrix and Sw the within class
matrix



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

I We introduce a prior that is based on the Fisher criteria

p(X) ∝ exp

− 1
σ2

d

tr
(
S−1

w Sb

) ,

with Sb the between class matrix and Sw the within class
matrix

Sw =

L∑
i=1

ni

n
(Mi −M0)(Mi −M0)>

where X(i) = [x(i)
1 , · · · , x

(i)
ni

] are the ni training points of class
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I We introduce a prior that is based on the Fisher criteria
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d

tr
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with Sb the between class matrix and Sw the within class
matrix

Sw =

L∑
i=1

ni

n
(Mi −M0)(Mi −M0)>

Sb =

L∑
i=1

ni

n

 1
ni

ni∑
k=1

(x(i)
k −Mi)(x

(i)
k −Mi)>


where X(i) = [x(i)

1 , · · · , x
(i)
ni

] are the ni training points of class
i, Mi is the mean of the elements of class i, and M0 is the
mean of all the training points of all classes.

I As before the model is learned by maximizing p(Y|X)p(X).
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Figure : 2D latent spaces learned by D-GPLVM on the oil dataset are
shown, with 100 training examples and different values of σd. Note
that as 1/σ2

d increases the model becomes more discriminative but has
worse generalization.



GaussianFace

(Lu and Tang, 2014)

I First system to surpass human performance on cropped
Learning Faces in Wild Data.
http://tinyurl.com/nkt9a38

I Lots of feature engineering, followed by a Discriminative
GP-LVM.
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High dimensional LBP (95.17%) [Chen et al. 2013] 
Fisher Vector Faces (93.03%) [Simonyan et al. 2013]
TL Joint Bayesian (96.33%) [Cao et al. 2013]
Human, cropped (97.53%) [Kumar et al. 2009]
DeepFace-ensemble (97.35%) [Taigman et al. 2014]
ConvNet-RBM (92.52%) [Sun et al. 2013]
GaussianFace-FE + GaussianFace-BC (98.52%)

false positive rate

tru
e 

po
si

tiv
e 

ra
te

Figure 4: The ROC curve on LFW. Our method achieves the best
performance, beating human-level performance.

papers comparing human and computer-based face verifica-
tion performance (Tang and Wang 2004; O’Toole et al. 2007;
Phillips and O’Toole 2014). It has been shown that the
best current face verification algorithms perform better than
humans in the good and moderate conditions. So, it is really
not that difficult to beat human performance in some specific
scenarios.

As pointed out by (O’Toole et al. 2012; Sinha et al.
2005), humans and computer-based algorithms have dif-
ferent strategies in face verification. Indeed, by contrast to
performance with unfamiliar faces, human face verification
abilities for familiar faces are relatively robust to changes
in viewing parameters such as illumination and pose. For
example, Bruce (Bruce 1982) found human recognition
memory for unfamiliar faces dropped substantially when
there were changes in viewing parameters. Besides, humans
can take advantages of non-face configurable information
from the combination of the face and body (e.g., neck,
shoulders). It has also been examined in (Kumar et al. 2009),
where the human performance drops from 99.20% (tested
using the original LFW images) to 97.53% (tested using the
cropped LFW images). Hence, the experiments comparing
human and computer performance may not show human
face verification skill at their best, because humans were
asked to match the cropped faces of people previously unfa-
miliar to them. To the contrary, those experiments can fully
show the performance of computer-based face verification
algorithms. First, the algorithms can exploit information
from enough training images with variations in all viewing
parameters to improve face verification performance, which
is similar to information humans acquire in developing face
verification skills and in becoming familiar with individuals.
Second, the algorithms might exploit useful, but subtle,
image-based detailed information that give them a slight, but
consistent, advantage over humans.

Therefore, surpassing the human-level performance may
only be symbolically significant. In reality, a lot of chal-
lenges still lay ahead. To compete successfully with humans,
more factors such as the robustness to familiar faces and
the usage of non-face information, need to be considered in
developing future face verification algorithms.

Figure 5: The two rows present examples of matched and
mismatched pairs respectively from LFW that were incorrectly
classified by the GaussianFace model.

Conclusion and Future Work
This paper presents a principled Multi-Task Learning ap-
proach based on Discriminative Gaussian Process Latent
Variable Model, named GaussianFace, for face verification
by including a computationally more efficient equivalent
form of KFDA and the multi-task learning constraint to
the DGPLVM model. We use Gaussian Processes approx-
imation and anchor graphs to speed up the inference and
prediction of our model. Based on the GaussianFace model,
we propose two different approaches for face verification.
Extensive experiments on challenging datasets validate the
efficacy of our model. The GaussianFace model finally
surpassed human-level face verification accuracy, thanks to
exploiting additional data from multiple source-domains to
improve the generalization performance of face verification
in the target-domain and adapting automatically to complex
face variations.

Although several techniques such as the Laplace approx-
imation and anchor graph are introduced to speed up the
process of inference and prediction in our GaussianFace
model, it still takes a long time to train our model for
the high performance. In addition, large memory is also
necessary. Therefore, for specific application, one needs
to balance the three dimensions: memory, running time,
and performance. Generally speaking, higher performance
requires more memory and more running time. In the future,
the issue of running time can be further addressed by the
distributed parallel algorithm or the GPU implementation
of large matrix inversion. To address the issue of memory,
some online algorithms for training need to be developed.
Another more intuitive method is to seek a more efficient
sparse representation for the large covariance matrix.

References
Ahonen, T.; Hadid, A.; and Pietikainen, M. 2006. Face
description with local binary patterns: Application to face
recognition. TPAMI.
Ben-Hur, A.; Horn, D.; Siegelmann, H. T.; and Vapnik, V.
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Berg, T., and Belhumeur, P. N. 2012. Tom-vs-pete classifiers
and identity-preserving alignment for face verification. In
BMVC.
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Continuous Character Control

(Levine et al., 2012)

I Graph diffusion prior for enforcing connectivity between
motions.

log p(X) = wc

∑
i, j

log Kd
ij

with the graph diffusion kernel Kd obtain from

Kd
ij = exp(βH) with H = −T−1/2LT−1/2

the graph Laplacian, and T is a diagonal matrix with
Tii =

∑
j w(xi, x j),

Li j =


∑

k w(xi, xk) if i = j
−w(xi, x j) otherwise.

and w(xi, x j) = ||xi − x j||
−p measures similarity.



Character Control: Results



Other Topics

I Local distance preservation Details

I Dynamical models Details

I Hierarchical models Details

I Bayesian GP-LVM Details



Back Constraints I

Local Distance Preservation (Lawrence and Quiñonero Candela, 2006)

I Most dimensional reduction techniques preserve local
distances.

I The GP-LVM does not.
I GP-LVM maps smoothly from latent to data space.

I Points close in latent space are close in data space.
I This does not imply points close in data space are close in

latent space.

I Kernel PCA maps smoothly from data to latent space.
I Points close in data space are close in latent space.
I This does not imply points close in latent space are close in

data space.



Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

I Mapping from 1-D latent space to 2-D data space.
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Back Constraints II
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

I Mapping from 1-D latent space to 2-D data space.
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

I Mapping from 2-D data space to 1-D latent.
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

I Mapping from 2-D data space to 1-D latent.

x = 0.5
(
y2

1 + y2
2 + 1

)

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

x

y 1

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

x

y 2



Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

I Mapping from 2-D data space to 1-D latent.
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NEUROSCALE

Multi-Dimensional Scaling with a Mapping

I Lowe and Tipping (1997) made latent positions a function
of the data.

xi, j = f j
(
yi,:; v

)
I Function was either multi-layer perceptron or a radial

basis function network.
I Their motivation was different from ours:

I They wanted to add the advantages of a true mapping to
multi-dimensional scaling.



Back Constraints in the GP-LVM

Back Constraints

I We can use the same idea to force the GP-LVM to respect
local distances.(Lawrence and Quiñonero Candela, 2006)

I By constraining each xi to be a ‘smooth’ mapping from yi
local distances can be respected.

I This works because in the GP-LVM we maximise wrt
latent variables, we don’t integrate out.

I Can use any ‘smooth’ function:

1. Neural network.
2. RBF Network.
3. Kernel based mapping.



Optimising BC-GPLVM

Computing Gradients

I GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

I The back constraints are of the form

xi, j = f j
(
yi,:; v

)
where v are parameters.

I We can compute dL
dv via chain rule and optimise parameters

of mapping.



Motion Capture Results

demStick1 and demStick3

Figure : The latent space for the motion capture data with (right) and
without (left) back constraints.



Motion Capture Results

demStick1 and demStick3
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Figure : The latent space for the motion capture data with (right) and
without (left) back constraints.



Stick Man Results

demStickResults
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Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.
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Adding Dynamics

MAP Solutions for Dynamics Models

I Data often has a temporal ordering.
I Markov-based dynamics are often used.
I For the GP-LVM

I Marginalising such dynamics is intractable.
I But: MAP solutions are trivial to implement.

I Many choices: Kalman filter, Markov chains etc..
I Wang et al. (2006) suggest using a Gaussian Process.



Gaussian Process Dynamics

GP-LVM with Dynamics

I Autoregressive Gaussian process mapping in latent space
between time points.

t
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Gaussian Process Dynamics

GP-LVM with Dynamics

I Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1



Motion Capture Results

demStick1 and demStick2

Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
exponentiated quadratic kernel.



Motion Capture Results

demStick1 and demStick2
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Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
exponentiated quadratic kernel.



Regressive Dynamics

Inner Groove Distortion
I Autoregressive

unimodal dynamics,
p (xt|xt−1) .

I Forces spiral
visualisation.

I Poorer model due to
inner groove distortion.



Regressive Dynamics

Direct use of Time Variable

I Instead of auto-regressive dynamics, consider regressive
dynamics.

I Take t as an input, use a prior p (X|t).
I User a Gaussian process prior for p (X|t) .
I Also allows us to consider variable sample rate data.



Motion Capture Results

demStick1, demStick2 and demStick5

Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an exponentiated quadratic
kernel.



Motion Capture Results

demStick1, demStick2 and demStick5
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Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an exponentiated quadratic
kernel.
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

I Regressive dynamics provides a simple hierarchy.
I The input space of the GP is governed by another GP.

I By stacking GPs we can consider more complex
hierarchies.

I Ideally we should marginalise latent spaces
I In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure : Hierarchical model of a ’high five’.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

Figure : Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure : Hierarchical model of a walk and a run.

Return



Selecting Data Dimensionality

I GP-LVM Provides probabilistic non-linear dimensionality
reduction.

I How to select the dimensionality?
I Need to estimate marginal likelihood.
I In standard GP-LVM it increases with increasing q.



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
I Start with a standard

GP-LVM.

I Apply standard latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

I Unfortunately
integration is
intractable.

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
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Bayesian GP-LVM
I Start with a standard

GP-LVM.
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Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
I Start with a standard

GP-LVM.
I Apply standard latent

variable approach:
I Define Gaussian prior

over latent space, X.
I Integrate out latent

variables.
I Unfortunately

integration is
intractable.

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)

p (X) =

q∏
j=1

N

(
x:, j|0, α−2

i I
)

p (Y|α) =??



Standard Variational Approach Fails

I Standard variational bound has the form:

L =
〈
log p(y|X)

〉
q(X) + KL

(
q(X) ‖ p(X)

)

I Requires expectation of log p(y|X) under q(X).

log p(y|X) = −
1
2

y>
(
Kf,f + σ2I

)−1
y−

1
2

log
∣∣∣Kf,f + σ2I

∣∣∣−n
2

log 2π

I Extremely difficult to compute because Kf,f is dependent
on X and appears in the inverse.
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Variational Bayesian GP-LVM

I Consider collapsed variational bound,

p(y) ≥
n∏

i=1

ci

∫
N

(
y| 〈f〉 , σ2I

)
p(u)du

I Apply variational lower bound to the inner integral.
I Which is analytically tractable for Gaussian q(X) and some

covariance functions.
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Required Expectations

I Need expectations under q(X) of:

log ci =
1

2σ2

[
ki,i − k>i,uK−1

u,uki,u

]
and

logN
(
y| 〈f〉p(f|u,Y) , σ

2I
)

= −
1
2

log 2πσ2
−

1
2σ2

(
yi −Kf,uK−1

u,uu
)2

I This requires the expectations〈
Kf,u

〉
q(X)

and 〈
Kf,uK−1

u,uKu,f

〉
q(X)

which can be computed analytically for some covariance
functions.



Priors for Latent Space

Titsias and Lawrence (2010)

I Variational marginalization of X allows us to learn
parameters of p(X).

I Standard GP-LVM where X learnt by MAP, this is not
possible (see e.g. Wang et al., 2008).

I First example: learn the dimensionality of latent space.
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Graphical Representations of GP-LVM
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Graphical Representations of GP-LVM
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Graphical Representations of GP-LVM
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Graphical Representations of GP-LVM
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Non-linear f (x)

I In linear case equivalence because f (x) = w>x

p(wi) ∼ N (0, αi)

I In non linear case, need to scale columns of X in prior for
f (x).

I This implies scaling columns of X in covariance function

k(xi,:, x j,:) = exp
(
−

1
2

(x:,i − x:, j)>A(x:,i − x:, j)
)

A is diagonal with elements α2
i . Now keep prior spherical

p (X) =

q∏
j=1

N

(
x:, j|0, I

)
I Covariance functions of this type are known as ARD (see e.g.

Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).



Automatic dimensionality detection 

• Achieved by employing an Automatic Relevance Determination 
(ARD) covariance function for the prior on the GP mapping 
 

•                                 with  
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Gaussian Process Dynamical Systems

(Damianou et al., 2011)
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Gaussian Process over Latent Space

I Assume a GP prior for p(X).
I Input to the process is time, p(X|t).



Interpolation of HD Video



Modeling Multiple ‘Views’

I Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

I Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Y(1)

X

Y(2)

I Effective when the ‘views’ are correlated.

I But not all information is shared between both ‘views’.

I PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

I In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

I Shared models
I either allow information relevant to a single view to be

mixed in the shared signal,
I or are unable to model such private information.

I Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,
1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

I Probabilistic CCA is case when dimensionality of Z matches Y(i)

(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6
Latent
space

Data
space



Shared GP-LVM

y(1)
1 y(1)

2 y(1)
3 y(1)

4 y(2)
1 y(2)

2 y(2)
3 y(2)

4

x1 x2 x3 x4 x5 x6
Latent
space

Data
space

Separate ARD parameters for mappings to Y(1) and Y(2).



Example: Yale faces 
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• Dataset Y: 3 persons under all illumination conditions 

• Dataset Z: As above for 3 different persons 

• Align datapoints xn and zn only based on the lighting direction 

Deep Gaussian processes 



Results 
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• Latent space X initialised with 
14 dimensions 
 
 

• Weights define a segmentation 
of X 
 

• Video / demo… 

Deep Gaussian processes 

[Damianou et al. ‘12] 



Potential applications..? 

31 Deep Gaussian processes 



Manifold Relevance Determination
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Linear Dimensionality Reduction

I Find a lower dimensional plane embedded in a higher
dimensional space.

I The plane is described by the matrix W ∈ <p×q.
f 2

f1

X = FW
−→

x1x2
x3

Figure : Mapping a two dimensional plane to a higher dimensional
space in a linear way. Data are generated by corrupting points on the
plane with noise.



Dimensionality Reduction

I Linear relationship between the data, X, and a reduced
dimensional representation, F.

X = FW + ε,

ε ∼ N (0,Σ)

I Problem is we don’t know what F should be!



Marionette Analogy

X observed

F unobserved



Marionette Analogy

X observed

F unobserved



F is a Latent Variable

I Define a probability distribution for F.
I Marginalize out F (integrate over).
I Optimize with respect to W.
I For Gaussian distribution, F ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,
1999; Roweis, 1998).

I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data
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Figure : PCA: Pure sampling from a Gaussian does not retain
temporal effects.



Dimensionality Reduction: Temporal Data
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Figure : Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data
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Figure : General Gaussian processes allow for priors over smooth
functions.



Mechanical Analogy

Back to Mechanistic Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:
I the latent functions, fi(t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.
I It will exhibit inertia and resonance.
I There are many systems that can also be represented by

differential equations.
I When being forced by latent function(s),

{
fi(t)

}q
i=1, we call

this a latent force model.



Physical Analogy



Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance
matrices for the output displacements.

I For one displacement the model is

mkẍk(t) + ckẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi(t), (4)

where, mk is the kth diagonal element from M and
similarly for ck and dk. sik is the i, kth element of S.

I Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

k fi fl(t, t
′) = exp

− (t − t′)2

2`2
i

 δil.



Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)
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0.6

0.8



Covariance for ODE Model

I Analogy

x =
∑

i

e>i fi fi ∼ N (0,Σi)→ x ∼ N

0,
∑

i

e>i Σiei


I Joint distribution
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Damping ratios:
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Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)
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1
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Joint Sampling of x (t) and f (t)

I lfmSample
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Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x2 (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t−τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).

I Damping ratios:
ζ1 ζ2 ζ3
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
2013)

I Motion capture data: used for animating human motion.
I Multivariate time series of angles representing joint

positions.
I Objective: generalize from training data to realistic

motions.
I Use 2nd Order Latent Force Model with

mass/spring/damper (resistor inductor capacitor) at each
joint.
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2013)
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Prediction of Test Motion

I Model left arm only.
I 3 balancing motions (18, 19, 20) from subject 49.
I 18 and 19 are similar, 20 contains more dramatic

movements.
I Train on 18 and 19 and testing on 20
I Data was down-sampled by 32 (from 120 fps).
I Reconstruct motion of left arm for 20 given other

movements.
I Compare with GP that predicts left arm angles given other

body angles.



Mocap Results

Table : Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure : Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Motion Capture Experiments

I Data set is from the CMU motion capture data base1.
I Two different types of movements: golf-swing and

walking.
I Train on a subset of motions for each movement and test

on a different subset.
I This assesses the model’s ability to extrapolate.
I For testing: condition on three angles associated to the root

nodes and first five and last five frames of the motion.
I Golf-swing use leave one out cross validation on four

motions.
I For the walking train on 4 motions and validate on 8

motions.



Motion Capture Results

Table : RMSE and R2 (explained variance) for golf swing and walking

Movement Method RMSE R2 (%)

Golf swing

IND GP 21.55 ± 2.35 30.99 ± 9.67
MTGP 21.19 ± 2.18 45.59 ± 7.86
SLFM 21.52 ± 1.93 49.32 ± 3.03
LFM 18.09 ± 1.30 72.25 ± 3.08

Walking

IND GP 8.03 ± 2.55 30.55 ± 10.64
MTGP 7.75 ± 2.05 37.77 ± 4.53
SLFM 7.81 ± 2.00 36.84 ± 4.26
LFM 7.23 ± 2.18 48.15 ± 5.66



Example: Transcriptional Regulation

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?
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Covariance for Transcription Model

RBF covariance function for p (t)

mi (t) =
bi

di
+ si exp (−dit)

∫ t

0
p (u) exp (diu) du.

I Joint distribution
for m1 (t), m2 (t),
m3 (t), and p (t).

I Here:
d1 s1 d2 s2 d3 s3
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Joint Sampling of p (t) and m (t)

I simSample
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Figure : Joint samples from the ODE covariance, black: p (t), red:
m1 (t) (high decay/sensitivity), green: m2 (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

I Radiation can damages molecules including DNA.
I Most DNA damage is quickly repaired—single strand

breaks, backbone break.
I Double strand breaks are more serious—a complete

disconnect along the chromosome.
I Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have

divided.
I S: Cell is undergoing meitosis (DNA synthesis).

I Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

I Responsible for Repairing DNA damage
I Activates DNA Repair proteins
I Pauses the Cell Cycle (prevents replication of damage

DNA)
I Initiates apoptosis (cell death) in the case where damage

can’t be repaired.
I Large scale feeback loop with NF-κB.



p53 DNA Damage Repair

Figure : p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the
Month” feature).

http://www.rcsb.org/


p53

Figure : Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2.
(also governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A
(CDKN1A). A regulator of cell cycle progression.
(also governed by SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death

(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily,

member 10b. A transducer of apoptosis signals.



Modelling Assumption

I Assume p53 affects targets as a single input module
network motif (SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure : p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

I First Order Differential Equation

dm j (t)
dt

= b j + s jp (t) − d jm j (t)

I Proposed by Barenco et al. (2006).
I m j(t) – concentration of gene j’s mRNA
I p(t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when p(t) is not

observed?
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p53 Results with GP
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
Pei Gao1, Antti Honkela2, Magnus Rattray1 and Neil D. Lawrence1,∗
1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT

Motivation: Inference of latent chemical species in biochemical
interaction networks is a key problem in estimation of the structure
and parameters of the genetic, metabolic and protein interaction
networks that underpin all biological processes. We present a
framework for Bayesian marginalization of these latent chemical
species through Gaussian process priors.
Results: We demonstrate our general approach on three different
biological examples of single input motifs, including both activation
and repression of transcription. We focus in particular on the problem
of inferring transcription factor activity when the concentration
of active protein cannot easily be measured. We show how the
uncertainty in the inferred transcription factor activity can be
integrated out in order to derive a likelihood function that can
be used for the estimation of regulatory model parameters. An
advantage of our approach is that we avoid the use of a coarse-
grained discretization of continuous time functions, which would lead
to a large number of additional parameters to be estimated. We
develop exact (for linear regulation) and approximate (for non-linear
regulation) inference schemes, which are much more efficient than
competing sampling-based schemes and therefore provide us with
a practical toolkit for model-based inference.
Availability: The software and data for recreating all the experiments
in this paper is available in MATLAB from http://www.cs.man.
ac.uk/∼neill/gpsim.
Contact: neill@cs.man.ac.uk

1 INTRODUCTION
Ordinary differential equations (ODEs) are the most common
framework in use for modelling biological sub-systems (Alon,
2006). Well established methodologies have been developed for
estimating the parameters of these equations in the context of a
particular experiment or set of experiments, using e.g. least squares
and maximum likelihood combined with an appropriate optimization
algorithm (Mendes and Kell, 1998). More recently, significant
progress has been made on Bayesian parameter estimation in the
context of ODEs (Coleman and Block, 2006). Through the use
of advanced Monte Carlo techniques it is even possible to, given
a specific data set, rank model structures through the use of
Bayes factors (Vyshemirsky and Girolami, 2008). This shows the
potential for ODE models to be closely integrated with biological
investigations, informing the process of biological experimental
design.

∗
To whom correspondence should be addressed.

A challenging problem for parameter estimation in ODE models
occurs where one or more chemical species influencing the dynamics
are controlled outside of the sub-system being modelled. For
example, a signalling pathway can be triggered by a signal external
to the pathway itself. In a regulatory sub-system, one or more
transcription factors (TFs) may influence the expression of a
set of target genes, but these TFs may not be regulated at the
transcriptional level, instead being activated by another sub-system
such as a signalling pathway. Similarly, in a metabolic pathway
external metabolites and enzymes will influence the dynamics of
the pathway. If these external chemical species have a constant
influence, e.g. as in the case of steady state behaviour of a
metabolic pathway, then they can simply be treated as additional
parameters of the model and their effect can be estimated along
with the other model parameters. However, more often these
external factors are time-varying quantities. In this case, they are
functional parameters and cannot be estimated by the standard
methods discussed above. One approach for dealing with this is to
discretize in time, treating the time-varying function as a sequence of
discrete parameters. However, this leaves the problem of choosing
the correct granularity for the discretization and either ignoring
temporal continuity, or assuming a simple Markovian relationship
and thereby introducing further parameters and assumptions. Here,
we propose an alternative approach. We deal with these parameters
as continuous functions of time, avoiding the need for arbitrary
discretization.

To further compound the problem of dealing with the time-varying
effects of these chemical species, their concentration is often not
directly observable and their dynamics must therefore be inferred
indirectly according to their influence on measured elements of the
system. This is a common problem and it is a natural consequence
of the fact that some quantities are relatively easy to measure
in a high throughput manner (e.g. mRNA concentrations with a
microarray), whereas others are much more difficult to measure
(e.g. the concentration of TFs located in the nucleus). In this article,
we advocate the use of Gaussian processes (GPs) to define prior
distributions over these latent chemical species. This allows us to
marginalize their contributions in the interaction network of interest.
We present a basic toolkit of algorithms based on GPs which allow
us to consider different response models (Michaelis Menten kinetics,
repression responses) and cascades of interactions in which chemical
species of interest are missing. The application domain we consider
is inference of TF activity in both developmental and signalling
networks.

Inference of TF activity in a given network is a well studied
problem with both genome wide approaches (Liao et al., 2003;
Sanguinetti et al., 2006a,b) and algorithms designed for a subset
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p53 Results with GP

(Gao et al., 2008)
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Ranking with ERK Signalling

I Target Ranking for Elk-1.
I Elk-1 is phosphorylated by ERK from the EGF signalling

pathway.
I Predict concentration of Elk-1 from known targets.
I Rank other targets of Elk-1.



Elk-1 (MLP covariance)
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
Antti Honkelaa,1, Charles Girardotb, E. Hilary Gustafsonb, Ya-Hsin Liub, Eileen E. M. Furlongb,
Neil D. Lawrencec,1, and Magnus Rattrayc,1

aDepartment of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; bGenome Biology Unit,
European Molecular Biology Laboratory, Heidelberg, Germany; and cSchool of Computer Science, University of Manchester, Manchester, United Kingdom

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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Cascaded Differential Equations

(Honkela et al., 2010)

I Transcription factor protein also has governing mRNA.
I This mRNA can be measured.
I In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription
factor that counts.

I In development phosphorylation plays less of a role.
I Build a simple cascaded differential equation to model this.



Covariance for Translation/Transcription Model

RBF covariance function for f (t)

p (t) = σ exp (−δt)
∫ t

0
f (u) exp (δu) du

mi (t) =
bi

di
+ si exp (−dit)

∫ t

0
p (u) exp (diu) du.

I Joint distribution
for m1 (t), m2 (t),
p (t) and f (t).

I Here:
δ d1 s1 d2 s2

1 5 5 0.5 0.5

f (t) p(t) m1(t) m2(t)

f (t)

p(t)

m1(t)

m2(t)



Twist Results

I Use mRNA of Twist as driving input.
I For each gene build a cascade model that forces Twist to be

the only TF.
I Compare fit of this model to a baseline (e.g. similar model

but sensitivity zero).
I Rank according to the likelihood above the baseline.
I Compare with correlation, knockouts and time series

network identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Figure : Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

I Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

I Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

I Optionally focus on genes with annotated expression in
tissues of interest



Results

20 100 250
0

20

40

60

80

100

**
*

**
*

**
*

*

**
*

**
*

*

** **
*

Global ChIP: twi

Top N to consider

R
el

at
iv

e 
en

ric
hm

en
t (

%
)

20 100 250
0

20

40

60

80

100

**
*

**
*

**
*

* **
*

**
*

**
*

**
**

**
*

**
*

Global ChIP: mef2

Top N to consider

R
el

at
iv

e 
en

ric
hm

en
t (

%
)

20 100 250
0

20

40

60

80

100

** **
*

**
***

**
*

**
*

**

** **

Focused ChIP: twi

Top N to consider

20 100 250
0

20

40

60

80

100
**

**
*

**
*

**

**
*

**
*

**

** **
*

**
*

**
*

**
*

Focused ChIP: mef2

Top N to consider

 

 

Single−target GP
Multiple−target GP
Knock−outs
Correlation
Filtered
Random

’***’: p < 0.001, ’**’: p < 0.01, ’*’: p < 0.05



Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been
identified, they can be modelled in a more complex
manner.

I We don’t have ground truth, but evidence indicates that
the approach can perform as well as knockouts.



Partial Differential Equations and Latent Forces

Mauricio Alvarez

I Can extend the concept to latent functions in PDEs.
I Jura data: concentrations of heavy metal pollutants from

the Swiss Jura.
I Consider a latent function that represents how the

pollutants were originally laid down (initial condition).
I Assume pollutants diffuse at different rates resulting in the

concentrations observed in the data set.

∂xq(x, t)
∂t

=

d∑
j=1

κq
∂2xq(x, t)

∂x2
j

,

I Latent function fr(x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

Mauricio Alvarez

I The solution to the system (Polyanin, 2002) is then given by

xq(x, t) =

R∑
r=1

Srq

∫
Rd

fr(x′)Gq(x, x′, t)dx′

where Gq(x, x′, t) is the Green’s function given as

Gq(x, x′, t) =
1

2dπd/2Td/2
q

exp

− d∑
j=1

(x j − x′j)
2

4Tq

 ,

with Tq = κqt.



Covariance Function

Mauricio Alvarez

I For latent function given by a GP with the RBF covariance
function this is tractable.

kxpxq(x, x
′, t) =

R∑
r=1

SrpSrq|Lr|
1/2

|Lrp + Lrq + Lr|1/2

× exp
[
−

1
2

(x − x′)>
(
Lrp + Lrq + Lr

)−1
(x − x′)

]
,

where Lrp,Lrq and Lr are diagonal isotropic matrices with
entries 2κpt, 2κqt and 1/`2

r respectively. The covariance
function between the output and latent functions is given
by

kxq fr(x, x
′, t) =

Srq|Lr|
1/2

|Lrq + Lr|1/2

× exp
[
−

1
2

(x − x′)>
(
Lrq + Lr

)−1
(x − x′)

]
.



Prediction of Metal Concentrations

Mauricio Alvarez

I Replicate experiments in (Goovaerts, 1997, pp. 248,249):
I Primary variable (Cd, Cu, Pb, Co) predicted in conjunction

with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn
for Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).2

I Condition on the secondary variables to improve
prediction for primary variables.

I Compare results for the diffusion kernel with independent
GPs and “ordinary co-kriging” (Goovaerts, 1997,
pp. 248,249).



Jura Results

Mauricio Alvarez

Table : Mean absolute error and standard deviation for ten repetitions
of the experiment for the Jura dataset. IGPs stands for independent
GPs, GPDK stands for GP diffusion kernel, OCK for ordinary
co-kriging. For the Gaussian process with diffusion kernel, we learn
the diffusion coefficients and the length-scale of the covariance of the
latent function.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5



Convolutions and Computational Complexity

Mauricio Alvarez

I Solutions to these differential equations is normally as a
convolution.

xi (t) =

∫
f (u) ki (u − t) du + hi (t)

xi (t) =

∫ t

0
f (u) gi (u) du + hi (t)

I Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

I Convolutions lead to N × d size covariance matrices
O

(
N3d3

)
complexity, O

(
N2d2

)
storage.

I Model is conditionally independent over {xi (t)}di=1 given
f (t).



Independence Assumption

Mauricio Alvarez

I Can assume conditional independence given given{
f (ti)

}k
i=1. (Álvarez and Lawrence, 2009)

I Result is very similar to PITC approximation (Quiñonero
Candela and Rasmussen, 2005).

I Reduces to O
(
N3dk2

)
complexity, O

(
N2dk

)
storage.

I Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

I Reduces to O
(
Ndk2

)
complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

I Network of tide height sensors in the solent — tide heights
are correlated.

I Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

I d = 3 and N = 1000 of the 4320 for the training set.
I Simulate sensor failure by knocking out onse sensor for a

given time.
I For the other two sensors we used all 1000 training

observations.
I Take k = 100.



Tide Height Results

Mauricio Alvarez

(a) Bramblemet Inde-
pendent

(b) Bramblemet PITC

(c) Cambermet Inde-
pendent

(d) Cambermet PITC

Figure : Predictive Mean and variance using independent GPs and
the PITC approximation for the tide height signal in the sensor
dataset.



Cokriging Jura

Mauricio Alvarez

I Jura dataset — concentrations of several heavy metals
(Atteia et al., 1994).

I Prediction 259 data, validation 100 data points.
I Predict primary variables (cadmium and copper) at

prediction locations in conjunction with some secondary
variables (nickel and zinc for cadmium; lead, nickel and
zinc for copper) (Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez
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Figure : Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and
CK stands for ordinary co-kriging.



MAP-Laplace Approximation

Laplace’s method: approximate posterior mode as Gaussian

p
(
p | m

)
= N

(
p̂,A−1

)
∝ exp

(
−

1
2
(
p − p̂

)>A
(
p − p̂

))
where p̂ = argmaxp(p | m) and A = −∇∇ log p

(
p | m

)
|p=p̂ is the

Hessian of the negative posterior at that point. To obtain p̂ and

A, we define the following function ψ
(
p
)

as:

log p(p|m) ∝ ψ(p) = log p
(
m | p

)
+ log p

(
p
)



MAP-Laplace Approximation

Assigning a GP prior distribution to p(t), it then follows that

log p
(
p
)

= −
1
2

p>K−1p −
1
2

log |K| −
n
2

log 2π

where K is the covariance matrix of p(t). Hence,

∇ψ(p) = ∇ log p(m|p) −K−1p

∇∇ψ(p) = ∇∇ log p(m|p) −K−1 = −W −K−1



Estimation of ψ(p)

Newton’s method is applied to find the maximum of ψ(p) as

pnew = p − (∇∇ψ(p))−1
∇ψ(p)

= (W + K−1)−1 (
Wp − ∇ log p(m|p)

)
In addition, A = −∇∇ψ(p̂) = W + K−1 where W is the negative
Hessian matrix. Hence, the Laplace approximation to the
posterior is a Gaussian with mean p̂ and covariance matrix
A−1as

p(p | m) ' N(p̂,A−1) = N(p̂, (W + K−1)−1)



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters θ and covariance parameters `

p (m|θ,φ) =

∫
p
(
m|p,θ

)
p
(
p|φ

)
dp =

∫
exp

(
ψ

(
p
))

dp

Using Taylor expansion of ψ(p),

log p(m|θ,φ) = log p
(
m|p̂,θ,φ

)
−

1
2

p>K−1p −
1
2

log |I + KW|

The parameters η = {θ,φ} can be then estimated by using

∂ log p (m|η)
∂η

=
∂ log p (m|η)

∂η
|explicit +

∂ log p (m|η)
∂p̂

∂p̂
∂η



SOS Response

I DNA damage in bacteria may occur as a result of activity
of antibiotics.

I LexA is bound to the genome preventing transcription of
the SOS genes.

I RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

I This allows several of the LexA targets to transcribe.
I The SOS pathway may be essential in antibiotic resistance

Cirz et al. (2005).
I Aim is to target these proteins to produce drugs to increase

efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

I Data from Courcelle et al. (2001)
I UV irradiation of E. coli. in both wild-type cells and lexA1

mutants, which are unable to induce genes under LexA
control.

I Response measured with two color hybridization to cDNA
arrays.



Khanin et al. Model

Given measurements of gene expression at N time points
(t0, t1, . . . , tN−1), the temporal profile of a gene i, mi (t), that
solves the ODE in Eq. 1 can be approximated by

mi (t) = m0
i e−dit +

bi

di
+ sie−dit

∫ t

0
F(p (u))ediudu.

mi (t) = m0
i e−dit +

bi

di
+ sie−dit 1

t j+1 − t j

N−2∑
j=0

F(p̄ j)
(
edit j+1 − edit j

)

where p̄ j =
(p(t j)+p(t j+1))

2 on each subinterval(
t j, t j + 1

)
, j = 0, . . . ,N − 2. This is under the simplifying

assumption that p (t) is a piece-wise constant function on each
subinterval

(
t j, t j + 1

)
. Repression model: F(p(t)) = 1

γ+ep(t) .



Khanin et al. Results

Figure : Fig. 2 from Khanin et al. (2006): Reconstructed activity level
of master repressor LexA, following a UV dose of 40 J/m2.



Khanin et al. Results

Figure : Fig. 3 from Khanin et al. (2006): Reconstructed profiles for
four genes in the LexA SIM.



Repression Model

Pei Gao

I We can use the same model of repression,

F j
(
p (t)

)
=

1
γ j + ep(t)

In the case of repression we have to include the transient
term,

m j (t) = α je−d jt +
b j

d j
+ s j

∫ t

0
e−d j(t−u)F j(p (u))du



Results for the repressor LexA

Pei Gao

0 20 40 60
2

2.5

3

3.5

4
Inferred LexA Activity

0 20 40 60
−2

0

2

4

6

8

10
recN mRNA

B = 5.939
D = 0.99765
S = 3.6777
Alpha = −5.7436
Gamma = 1.0981

0 20 40 60

0.8

1

1.2

1.4

1.6

1.8

2
dinI mRNA

B = 0.12014
D = 0.15738
S = 0.39292
Alpha = 0.050427
Gamma = 0.804

0 20 40 60
0.8

1

1.2

1.4

1.6

1.8

2
ruvB mRNA

B = 0.33778
D = 0.4716
S = 1.4644
Alpha = 0.086826
Gamma = 0.98543

0 20 40 60
0.5

1

1.5

2

2.5
lexA mRNA

B = 0.54745
D = 0.88736
S = 3.1595
Alpha = −0.092467
Gamma = 1.129

0 20 40 60
0

2

4

6

8

10

12
umuC mRNA

B = 3.1858e−06

D = 0.011655

S = 0.77513

Alpha = 1.7179

Gamma = 1.0556

Figure : Our results using an MLP kernel. From Gao et al. (2008).



Use Samples to Represent Posterior

Michalis Titsias

I Sample in Gaussian processes

p
(
p|m

)
∝ p

(
m|p

)
p
(
p
)

I Likelihood relates GP to data through

m j (t) = α je−d jt +
b j

d j
+ s j

∫ t

0
e−d j(t−u)F j(p (u))du

I We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm

I Initialize p(0)

I Form a Markov chain. Use a proposal distribution
Q(p(t+1)

|p(t)) and accept with the M-H step

min
(
1,

p(m|p(t+1))p(p(t+1))
p(m|p(t))p(p(t))

Q(p(t)
|p(t+1))

Q(p(t+1)|p(t))

)
I p can be very high dimensional (hundreds of points)
I How do we choose the proposal Q(p(t+1)

|p(t))?
I Can we use the GP prior p(p) as the proposal?



p53 System Again

I One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dm j(t)
dt

= b j + s j
exp(p(t))

exp(p(t)) + γ j
− d jm j(t)

I We have 5 genes
I Gene expressions are available for T = 7 times and there

are 3 replicas of the time series data
I TF (p) is discretized using 121 points
I MCMC details:

I 7 control points are used (placed in a equally spaced grid)
I Running time 4/5 hours for 2 million sampling iterations

plus burn in
I Acceptance rate for p after burn in was between 15% − 25%



Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein
concentrations
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p53 Data Kinetic parameters
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Results on SOS System

I Again consider the Michaelis-Menten kinetic equation

dm j(t)
dt

= b j + s j
1

exp(p(t)) + γ j
− d jm j(t)

I We have 14 genes (5 kinetic parameters each)
I Gene expressions are available for T = 6 time slots
I TF (p) is discretized using 121 points
I MCMC details:

I 6 control points are used (placed in a equally spaced grid)
I Running time was 5 hours for 2 million sampling iterations

plus burn in
I Acceptance rate for p after burn in was between 15% − 25%



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions

0 10 20 30 40 50 60
2.5

3

3.5

4

4.5

5

5.5

6

6.5
ruvB Gene

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5
sbmC Gene

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
sulA Gene

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
umuC Gene

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
umuD Gene

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5
uvrB Gene



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration
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Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value
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Results in E.coli data: Confidence intervals for the
kinetic parameters
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A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

I Stage 1: Sub-network training (∼100 targets):
I Fit regulation model on sub-network of known structure
I Infer TF protein concentration functions

I Stage 2: Genome-wide scanning:
I Fit alternative regulation models to all potential targets
I Score models and identify well supported TF-target links

I Challenges:
I Fitting and scoring >10000 models
I Not all regulation is modelled: an open system
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A “middle-out” approach for inferring regulatory
networks

I Training stage: Parameter estimation on known network

mRNA (observed with noise)

(a): Training phase

TF protein (unobserved)

Translation

Transcriptional regulation

(b): Prediction phase

I Scanning stage: Bayesian evidence model scoring for
target inference
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A “middle-out” approach for inferring regulatory
networks

I Training stage with post-translational modification

mRNA – observed with noise

TF protein ‐ unobserved

Transcriptional regulation

I Scanning stage: Bayesian evidence model scoring for
target inference



Model of transcriptional regulation

I Transcription

dm j(t)
dt

= F
(
p1(t), . . . , pK(t);θ j

)
− d jm j(t)

m j(t) – target gene j mRNA concentration function
pi(t) – transcription factor i protein concentration function
F(p;θ j) – regulation model, d j – mRNA decay rate

I Translation (optional)

dpi(t)
dt

= fi(t) − δipi(t)

fi(t) – transcription factor i mRNA concentration function
δi – protein decay rate
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Gaussian process inference over latent functions

I Transcription factors considered inputs to the system
I Modelled as samples from a Gaussian process prior

distribution
I Equations linear inm(t) can be solved as a function of p(t)

so no need for numerical ODE solver to compute
likelihood

I Useful way to close an open system
I Can ignore TF mRNA data and treat p(t) as latent function
I Bayesian MCMC used to infer p(t) and all model

parameters

Gao et al. (2008); Titsias et al. (2009); Honkela et al. (2010);
Titsias et al. (2012)
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Artificial data: one experimental condition
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Artificial data: two experimental conditions

True TFs condition 1 True TFs condition 2
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Artificial data: two experimental conditions
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Artificial data: scanning performance for each TF
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Artificial data: scanning performance for all TFs
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Drosophila training

I Sub-network of 96 genes targeted by 5 TFs during
Drosophila mesoderm development (Zinzen et al., 2009).

I Data: wild-type times series, 3 replicates (Tomancak et al.,
2002).
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Drosophila scanning: model ranking

I Rank target gene regulation models by their posterior
probability across all 25 = 32 possible models

I Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
(2009).
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Coregulated Target Example
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A highly ranked putative joint target of BAP amd MEF2. The
candidate gene is confirmed as a joint target by independent

ChIP-chip studies Zinzen et al. (2009).



Drosophila scanning: link ranking

I TF-target link and link-pair ranking according to posterior
probability of particular single TF or double TF regulations

I Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
(2009).
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Summary and Conclusion

I Middle-out approach: sub-network training followed by
genome-wide scanning

I Training: Bayesian inference of regulation model
parameters and TF protein concentration functions

I Scanning: Bayesian model scoring for inferring TF-target
link probabilities

I More informative conditions→ better performance
I Robust to existence of some unknown regulating TFs
I Significant enrichment of inferred TF-target links for

nearby ChIP-chip binding in drosophila development
example
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