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Low Dimensional Manifolds

Pure Rotation is too Simple

» In practice the data may undergo several distortions.
» e.g. digits undergo ‘thinning’, translation and rotation.
» For data with ‘structure”:

» we expect fewer distortions than dimensions;
» we therefore expect the data to live on a lower dimensional
manifold.

» Conclusion: deal with high dimensional data by looking
for lower dimensional non-linear embedding.



Existing Methods

Spectral Approaches

» Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).
» Uses eigenvectors of similarity matrix.

> Isomap (Tenenbaum et al., 2000) is MDS with a particular
proximity measure.

» Kernel PCA (Scholkopf et al., 1998)

» Provides a representation and a mapping — dimensional
expansion.

» Mapping is implied throught he use of a kernel function as a
similarity matrix.

» Locally Linear Embedding (Roweis and Saul, 2000).

> Looks to preserve locally linear relationships in a low
dimensional space.



Existing Methods II

Iterative Methods

» Multidimensional Scaling (MDS)

» Iterative optimisation of a stress function (Kruskal, 1964).
» Sammon Mappings (Sammon, 1969).

> Strictly speaking not a mapping — similar to iterative MDS.
» NeuroScale (Lowe and Tipping, 1997)

» Augmentation of iterative MDS methods with a mapping.
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Existing Methods III

Probabilistic Approaches

» Probabilistic PCA (Tipping and Bishop, 1999; Rowetis, 1998)

» A linear method.
» Density Networks (MacKay, 1995)

» Use importance sampling and a multi-layer perceptron.
» Generative Topographic Mapping (GTM) (Bishop et al., 1998)

» Uses a grid based sample and an RBF network.
Difficulty for Probabilistic Approaches

» Propagate a probability distribution through a non-linear
mapping.



The New Model

A Probabilistic Non-linear PCA

» PCA has a probabilistic interpretation (Tipping and Bishop, 1999;
Roweis, 1998).

» It is difficult to ‘non-linearise’.
Dual Probabilistic PCA

» We present a new probabilistic interpretation of PCA
(Lawrence, 2005).

» This interpretation can be made non-linear.

» The result is non-linear probabilistic PCA.



Notation

g— dimension of latent/embedded space
p— dimension of data space
n— number of data points

centred data, Y = [y1,... ,ynl:]T = [y:,1, .. .,y;,p] € RXp
latent variables, X = [x1, ... ,xn,;]T = [lel, . ,x:,q] € R"™1
mapping matrix, W € RP*1

a;. is a vector from the ith row of a given matrix A
a, j is a vector from the jth row of a given matrix A



Reading Notation

Xand Y are design matrices

» Covariance given by n 1YTY.
» Inner product matrix given by YY'.



Linear Dimensionality Reduction

Linear Latent Variable Model

» Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + €.,

where

€ ~ N (0,0°1).
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Linear Latent Variable Model

Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Standard Latent
variable approach:

» Define Gaussian prior
over latent space, X.

> Integrate out latent
variables.

p(YIX, W) = H N (yi:Wx;,, 1)

i=1

p) =[N (x:10)
i=1

p(YIW) = ﬁ N (yi:0, WWT + 621)
i=1
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Computation of the Marginal Likelihood

Yi: = wxi,: +€. X~ N(Or I) ; €™ N(O/ UZI)

Wx;. ~ N (0,WWT),

Wx;. + €.~ N (0, WWT + GZI)
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Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [ [N (:10,0), C=WWT +cI
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,

N=

W=U[LRT, L=(A;-0%)

where R is an arbitrary rotation matrix.
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Dual Probabilistic PCA

» Define linear-Gaussian
relationship between X
latent variables and
data.
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n
p(YX W) = [ [V (yi:Wxi., 1)
i=1
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Dual Probabilistic PCA
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Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

» Define Gaussian prior
over parameters, W.

» Integrate out
parameters.

< —52

n
pOIXW) = [T (3 Wi, 01)
i=1

4
pW) =[N (wilo7)

i=1

14
p o) = [ [ AV (3,10, XX +01)
=1
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Computation of the Marginal Likelihood

V. =Xwjtej, wi~N@©OI), €.~N(001)

Xw.; ~ N (0,XX"),

Xw.;+ei~N (0, XX + 021)



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,
2005)

1‘
-

p
pOYX) = [ AV (3410, XX + 01)
j=1



Linear Latent Variable Model IV
Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p) = [[N(y.10.K), K=XXT+0
=1



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p
p) = [[N(y.10.K), K=XXT+0
=1

logp (YIX) = —g log K| — %tr (K‘lYYT) + const.
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Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p(YIX) = H N(y:j10,K), K=XXT+0
j=1

logp (YIX) = —-% log K| - —tr( _1YYT) + const.

If U are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

X=ULR", L=(A,- azl)%

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [[ N (3:10,C), C=WWT +4%
i=1

logp (YIW) = —g log|C| - %tr (C_lYTY) + const.

If U, are first g principal eigenvectors of n7'Y"Y and the
corresponding eigenvalues are A,

W=ULR", L=(A,- 021)%

where R is an arbitrary rotation matrix.



Equivalence of Formulations

The Eigenvalue Problems are equivalent

» Solution for Probabilistic PCA (solves for the mapping)

Y'YU,=U,A, W=ULR"

» Solution for Dual Probabilistic PCA (solves for the latent
positions)
YYTU,'] = U;Aq X= U,;LRT

» Equivalence is from

[N

U, =YTUA,



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

» Define Gaussian prior
over parameteters, W.

> Integrate out
parameters.

< —52

p(YIX, W) = H N (yi:Wxi,, 1)

i=1

r
pW) =[]~ (wilo1)

i=1

p
pOX) = [TV (v.10,XX7 +021)
j=1



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood
shows ...

< —52

p(YIX) =

T

4
N (y,710,XXT + 0?1}
=1



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood X
shows ...
» The covariance matrix

is a covariance < o2
function.

p
p ) = [ [N (310, K)
=1

K =XX" + %I



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood
shows ...

» The covariance matrix
is a covariance
function.

» We recognise it as the
‘linear kernel’.

o

p
P = [ [N (y00.K)
=1

K =XX" + %I

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood
shows ...

» The covariance matrix
is a covariance
function.

» We recognise it as the
‘linear kernel’.

» We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

o

P
P = [N (y00.K)
j=1

K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

» The EQ covariance has the form k; j = k (xi,:, xj,:) , Where

2
i - Xf,:||z]

k(xi,:,xj,:) = aexp [— 7

» No longer possible to optimise wrt X via an eigenvalue
problem.

» Instead find gradients with respect to X, a, £ and 02 and
optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

» Facilitating animation through modeling human motion
(Grochow et al., 2004)

Tracking

» Tracking using human motion models (Urtasun et al., 2005, 2006)
Assisted Animation

» Generalizing drawings for animation (Baxter and Anjyo, 2006)
Shape Models

» Inferring shape (e.g. pose from silhouette). (Ek et al., 2008b,a;
Priacuriu and Reid, 2011a,b)



Example: Latent Doodle Space

(Baxter and Anjyo, 2006)
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Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Generalization with much less Data than Dimensions

» Powerful uncertainly handling of GPs leads to surprising
properties.

» Non-linear models can be used where there are fewer data
points than dimensions without overfitting.



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

» We introduce a prior that is based on the Fisher criteria

p(X) oc exp {—%tr (SZ—UlSh)} ,

d

with S;, the between class matrix and S;, the within class
matrix




Prior for Supervised Learning

(Urtasun and Darrell, 2007)

» We introduce a prior that is based on the Fisher criteria

p(X) oc exp {—%tr (S;}Sb)} ,

d

with S;, the between class matrix and S;, the within class
matrix

Sw =

1

L
(M; — Mo)(M; — My)"
-1

2|3

where X0 = [xgi), e, x,(;?] are the n; training points of class
i, M; is the mean of the elements of class i, and My is the
mean of all the training points of all classes.



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

» We introduce a prior that is based on the Fisher criteria

p(X) oc exp {—%tr (S;}Sb)} ,

d

with S;, the between class matrix and S;, the within class
matrix

L

"
Sw = Z #(Mi —Mo)(M; — Mp) "
i1

L

Si=y.,

1% o) (i) T
— X, — M)’ —M;
> [ g O - M) - M)

; i i .. .
where X = [x(l), e, x;?] are the n; training points of class
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Prior for Supervised Learning

(Urtasun and Darrell, 2007)

» We introduce a prior that is based on the Fisher criteria

p(X) oc exp {—%tr (S;}Sb)} ,

d

with S;, the between class matrix and S;, the within class
matrix




GaussianFace

(Lu and Tang, 2014)

» First system to surpass human performance on cropped
Learning Faces in Wild Data.
http://tinyurl.com/nkt%9a38

» Lots of feature engineering, followed by a Discriminative
GP-LVM.

0.98-~" e
L
0.9 B / .

0.94 1 A
oself A~
g

0.88 1 High dimensional LBP (95.17%) [Chen et al. 2013]
Fisher Vector Faces (93.03%) [Simonyan etal. 2013]

TL Joint Bayesian (96.33%) [Cao etal. 2013]

true positive rate
o

0.86 [f7-

Y

Figure 5: The two rows present examples of matched anc
i hed pairs respectively from LFW that were incorrectly

0.84 ~— Human, cropped (97.53%) [Kumar etal. 2009]
DeepFace-ensemble (97.35%) [Taigman etal. 2014]
0.82 ConwNet-RBM (92.52%) [Sun etal. 2013]

----- GaussianFace-FE + GaussianFace-BC (98.52%)

0.8

0.05 01 0.18 02 classified by the GaussianFace model.
false positive rate
Figure 4: The ROC curve on LFW. Our method achieves the best Conclusion and Future Work

performance. beatine human-level performance. I R


http://tinyurl.com/nkt9a38
http://arxiv.org/abs/1404.3840

Continuous Character Control

(Levine et al., 2012)

» Graph diffusion prior for enforcing connectivity between
motions.
- d
log p(X) = w Z log Kij
ij

with the graph diffusion kernel K? obtain from
d_ - _ -2yl
Kij = exp(fH) with H=-T“LT

the graph Laplacian, and T is a diagonal matrix with
Tii = X w(xi, X)),

{Xk w(x;, xg) ifi=j
L,‘j =

—w(x;,x;)  otherwise.

and w(x;, x;) = [Ix; — x;||”7 measures similarity.



Character Control: Results



Other Topics

v

Local distance preservation
Dynamical models
Hierarchical models
Bayesian GP-LVM

v

v

v



Back Constraints [

Local Distance Preservation (Lawrence and Quifionero Candela, 2006)

» Most dimensional reduction techniques preserve local
distances.

» The GP-LVM does not.
» GP-LVM maps smoothly from latent to data space.

» Points close in latent space are close in data space.
» This does not imply points close in data space are close in
latent space.

» Kernel PCA maps smoothly from data to latent space.

» Points close in data space are close in latent space.
» This does not imply points close in latent space are close in
data space.



Back Constraints I1

Forward Mapping (demBackMapping in oxford toolbox)

» Mapping from 1-D latent space to 2-D data space.

y1=x*—-05, yp=-2>+05

]Ro
=Ro



Back Constraints I1

Forward Mapping (demBackMapping in oxford toolbox)

» Mapping from 1-D latent space to 2-D data space.

y1=x*—-05, yp=-2>+05

]Ro
=Ro



Back Constraints I1

Forward Mapping (demBackMapping in oxford toolbox)

» Mapping from 1-D latent space to 2-D data space.

y1=x2-05, y,=—2*+05

Y1
Y2 ‘

Ko
Ko



Back Constraints I1

Backward Mapping (demBackMapping in oxford toolbox)

» Mapping from 2-D data space to 1-D latent.

x=05(3+13+1)

8e
8]e




Back Constraints I1

Backward Mapping (demBackMapping in oxford toolbox)

» Mapping from 2-D data space to 1-D latent.
pping P

x=05(3+13+1)

8e
8]e




Back Constraints I1

Backward Mapping (demBackMapping in oxford toolbox)

» Mapping from 2-D data space to 1-D latent.

x:O.S(y%+y§+1)

) 05 15

]e



NEUROSCALE

Multi-Dimensional Scaling with a Mapping

» Lowe and Tipping (1997) made latent positions a function
of the data.

xij = fj(yizv)
» Function was either multi-layer perceptron or a radial
basis function network.
» Their motivation was different from ours:

» They wanted to add the advantages of a true mapping to
multi-dimensional scaling.



Back Constraints in the GP-LVM

Back Constraints

» We can use the same idea to force the GP-LVM to respect
local distances.(Lawrence and Quifionero Candela, 2006)

» By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.

» This works because in the GP-LVM we maximise wrt
latent variables, we don’t integrate out.
» Can use any ‘smooth’ function:

1. Neural network.
2. RBF Network.
3. Kernel based mapping.



Optimising BC-GPLVM

Computing Gradients

» GP-LVM normally proceeds by optimising
L(X) = logp (YIX)

with respect to X using g—)L(.
» The back constraints are of the form

xij = fi(yisv)

where v are parameters.

» We can compute % via chain rule and optimise parameters
of mapping.



Motion Capture Results

demStickl and demStick3

Figure : The latent space for the motion capture data with (right) and
without (left) back constraints.



Motion Capture Results
demStickl and demStick3

1.5

1

Yy 4’ '/

-06 -04 -02 0

Figure : The latent space for the motion capture data with (right) and
without (left) back constraints.



Stick Man Results

demStickResults

(@) (b) (© (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.



Adding Dynamics

MAP Solutions for Dynamics Models

» Data often has a temporal ordering.
» Markov-based dynamics are often used.
For the GP-LVM

» Marginalising such dynamics is intractable.
» But: MAP solutions are trivial to implement.

v

v

Many choices: Kalman filter, Markov chains efc..

v

Wang et al. (2006) suggest using a Gaussian Process.



Gaussian Process Dynamics

GP-LVM with Dynamics

» Autoregressive Gaussian process mapping in latent space
between time points.

- —
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GP-LVM with Dynamics

» Autoregressive Gaussian process mapping in latent space
between time points.
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Gaussian Process Dynamics

GP-LVM with Dynamics

» Autoregressive Gaussian process mapping in latent space
between time points.

I —

t t+1



Motion Capture Results

demStickl and demStick?2

Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
exponentiated quadratic kernel.



Motion Capture Results

demStickl and demStick?2

1.5

=

-

-4 -2 0 2 4

Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
exponentiated quadratic kernel.



Regressive Dynamics

Inner Groove Distortion
» Autoregressive
unimodal dynamics,
p (Xelxi-1) -
» Forces spiral
visualisation.

» Poorer model due to
inner groove distortion.



Regressive Dynamics

Direct use of Time Variable

» Instead of auto-regressive dynamics, consider regressive
dynamics.

» Take t as an input, use a prior p (X|t).
» User a Gaussian process prior for p (X|t).

» Also allows us to consider variable sample rate data.



Motion Capture Results

demStickl, demStick?2 and demStick5

Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an exponentiated quadratic
kernel.



Motion Capture Results

demStickl, demStick2 and demStick5

b

=

Figure : The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an exponentiated quadratic
kernel.



Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

» Regressive dynamics provides a simple hierarchy.
» The input space of the GP is governed by another GP.

» By stacking GPs we can consider more complex
hierarchies.

» Ideally we should marginalise latent spaces

» In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Both Subjects

B}

i

2 XXKXXXX’XB
T4 o
o % el
2 S /{3\ }}/W\
Subject 1 \ubject 2
,Axxxxi‘} 1 T m&
i ¥ e, C of
S | AT
I
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it 1

Figure : Hierarchical model of a "high five’.



Within Subject Hierarchy
(Lawrence and Moore, 2007)

Decomposition of Body

PN

N

head

aht abdomen
ri arm
left arm g leftleg right leg

Figure : Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)
' :XX A B c
e 5| e §
S - <§ $ 1\
D E F

Figure : Hierarchical model of a walk and a run.




Selecting Data Dimensionality

v

GP-LVM Provides probabilistic non-linear dimensionality
reduction.

v

How to select the dimensionality?

v

Need to estimate marginal likelihood.

v

In standard GP-LVM it increases with increasing g.



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

» Start with a standard
GP-LVM.

4
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Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

» Start with a standard
GP-LVM.

» Apply standard latent
variable approach:

» Define Gaussian prior
over latent space, X.

4
pOX) = [ [N (.0 K)
j=1



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
» Start with a standard

GP-LVM.

» Apply standard latent
variable approach:
» Define Gaussian prior

over latent space, X.
> Integrate out latent

variables.

r
p() = [ [ N (y00.K)

i1

-

q
p(X) = H N(x:,]-IO, al._zl)



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

» Start with a standard
GP-LVM.

» Apply standard latent a2
variable approach:

> Define Gaussian prior
over latent space, X.

r
» Integrate out latent p(YIX) = H N (y.10,K)
variables. j=1
» Unfortunately
. . q
integration is -2
. X) = N(x.il0,a; "1
intractable. P9 g ( ! )

p (Yloy) =22



Standard Variational Approach Fails

» Standard variational bound has the form:

L = (log p(ylX)),x) + KL (g(X) [ p(X))



Standard Variational Approach Fails

» Standard variational bound has the form:

L = (log p(ylX)),x) + KL (g(X) [ p(X))

» Requires expectation of log p(y|X) under g(X).

1 -1 1 n
log p(ylX) = —EyT (Kf,f + 021) y=35 log |Kf,f + 021|—§ log2m



Standard Variational Approach Fails

» Standard variational bound has the form:

L = (log p(ylX)),x) + KL (g(X) [ p(X))

» Requires expectation of log p(y|X) under g(X).
log p(ylX) = Lo (K + 021)_1 L lo |K + cf21|—E log2m
eP\y FY \Bif Y5108 Rt 5 08

» Extremely difficult to compute because K¢ is dependent
on X and appears in the inverse.



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

p = [[a [ N (510, 1) pwdu
i=1



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

p20 > [ [or [ (51 Epiaun o°1) pludu
i=1
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» Consider collapsed variational bound,
[ pop0oax> [ TTen (v By 1) p00aXpw
i=1

» Apply variational lower bound to the inner integral.
f HCiN (Y| Epitux ,UZI)P(X)dX
i=1

> <Z log ci>
i=1 9(X)
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+ KL (g(X) [ p(X))



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

[ pop0oax> [ TTen (v By 1) p00aXpw
=1

» Apply variational lower bound to the inner integral.
f HCiN (Y| Epitux ,UZI)P(X)dX
i=1

> <Z log Ci>
i=1 9(X)
+ <logN (yl Epetu,x) - ‘72[)>q(X)
+ KL (g(X) [ p(X))

» Which is analytically tractable for Gaussian g(X) and some
covariance functions.



Required Expectations
» Need expectations under g(X) of:

1 -
log ci = = |kii — K} Kqukiu
202 '

and

1 1 o
log N (¥1(Bpmy 0°T) = =3 log 2m0° = (y: = KeuKu)

» This requires the expectations

<Kf’“ >‘1(X)

and
<Kf,u Ka,luKu,f>q(X)

which can be computed analytically for some covariance
functions.



Priors for Latent Space

Titsias and Lawrence (2010)

» Variational marginalization of X allows us to learn
parameters of p(X).

» Standard GP-LVM where X learnt by MAP, this is not
pOSSible (see e.g. Wang et al., 2008).

» First example: learn the dimensionality of latent space.



Graphical Representations of GP-LVM

latent
space

@ data
space
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w~N©OI x~N(QOa)
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Graphical Representations of GP-LVM

w; ~N(O,a;) x~N(@OI)

Y~ N(xTw, 02)



Non-linear f(x)

» In linear case equivalence because f(x) = w'x
pwi) ~ N (0, a)

» In non linear case, need to scale columns of X in prior for
fX).

» This implies scaling columns of X in covariance function
1 T
k(xi,:z xj,:) = exp (_E(X:,i - x:,j) A(x:,i - X:,j))
A is diagonal with elements 2. Now keep prior spherical
9
P =[N (x0,1)
j=1

» Covariance functions of this type are known as ARD (see e g.
Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).



Automatic dimensionality detection

* Achieved by employing an Automatic Relevance Determination
(ARD) covariance function for the prior on the GP mapping

« [~ GP(0,kf) with
2
ky(xi, %)) = 0% exp (—%25:1 Wy (Tig — Tj,q) )

Example

1
0
=t i

Deep Gaussian processes 26



Gaussian Process Dynamical Systems

2011)

7

(Damianou et al.




Gaussian Process over Latent Space

» Assume a GP prior for p(X).
» Input to the process is time, p(X|t).



Interpolation of HD Video



Modeling Multiple ‘Views’

> Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

» Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,

2008b)

» Effective when the ‘views’ are correlated.
» But not all information is shared between both “views’.

» PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

> In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

» Shared models

» either allow information relevant to a single view to be
mixed in the shared signal,
» or are unable to model such private information.

» Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

@ X @
o)

» Probabilistic CCA is case when dimensionality of Z matches Y®
(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)

;o"'ﬂ

7

A

X7
Y
XA

Y,
)

8

Peq




Shared GP-LVM

~
WA
(210

YA

W7
,/_,,g%?@
X7\
2

Separate ARD parameters for mappings to YV and Y.



Example: Yale faces

* Dataset Y: 3 persons under all illumination conditions
* Dataset Z: As above for 3 different persons

* Align datapoints x,,and z, only based on the lighting direction

Deep Gaussian processes 29



Results

XY.Z

* Latent space X initialised with
14 dimensions

XZ
* Weights define a segmentation // ‘ \\\

of X

1283|4567 891011121314

/Xi\

12 3|4567 891011121314 Y
w

w?
*Video / demo...




Potential applications..?
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Deep Gaussian processes
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Manifold Relevance Determination



Latent Force Models

Neil D. Lawrence

GPRS
25th—27th February 2015




Outline

Latent Force Models



Outline

Latent Force Models

Second Order ODE

Motion Capture Example

NTT A Y 1 1" ™TOP e g 1TTY 1T *



Linear Dimensionality Reduction

» Find a lower dimensional plane embedded in a higher
dimensional space.
» The plane is described by the matrix W € R,

f

f

X
X2 3 X1



Dimensionality Reduction

» Linear relationship between the data, X, and a reduced
dimensional representation, F.

X=FW +e¢,

e~N(0,X)
» Problem is we don’t know what F should be!



Marionette Analogy

observed

J 7



Marionette Analogy

F unobserved

observed




F is a Latent Variable

\4

Define a probability distribution for F.

v

Marginalize out F (integrate over).

v

Optimize with respect to W.
For Gaussian distribution, F ~ N (0, 1)
» and ~ = ¢’I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and X constrained to be diagonal, we have factor analysis.

\4



Dimensionality Reduction: Temporal Data

f®

|

Figure : PCA: Pure sampling from a Gaussian does not retain
temporal effects.



Dimensionality Reduction: Temporal Data

f®

Figure : Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data

f®

Figure : General Gaussian processes allow for priors over smooth
functions.



Mechanical Analogy

Back to Mechanistic Models!

» These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, fi(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € R,

Diagonal matrix of spring constants, D € RP*?.

Original System: W = SD™1.

v

v



Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD +e.

v

Now have a second order mechanical system.

It will exhibit inertia and resonance.

v

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), { f,-(t)}?:l, we call
this a latent force model.



Physical Analogy
PHYSICAL ANALOGY MARIONETTE

pulleys C (t)
SPri "j
k ! / Mass

xlk) o) &

h obseryabions /'

lateak inpul:



Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance
matrices for the output displacements.

» For one displacement the model is

q
myXi(t) + cpXi () + dixi(t) = by + Z sikfi(t), 4)
pary

where, my is the kth diagonal element from M and
similarly for ¢, and d. sj is the 7, kth element of S.

» Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

, t—t)>
k(1) = exp (_%) 0il-



Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = L ZS]’ exp(— a]t)f fi(7) exp(a;t) sin(w;(t — 7))dt

]11

()

A

» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEEES
10125 | 2 | 1 |

Y,

¥,

JAU)

A\ }

f(t) v,0 ¥,(0 Y40




Covariance for ODE Model

» Analogy

X = Z‘ el.Tfi fi~N(OX) > x~ N(O,Z e;rziei]
i

O\

i

» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEENES
| 0.125 | 2 | 1 |

)

¥,

A\ .

) ¥,0 ¥,0 ¥,

bAU




Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = L ZS]’ exp(— a]t)f fi(7) exp(a;t) sin(w;(t — 7))dt

]11

()

A

» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEEES
10125 | 2 | 1 |

Y,

¥,

JAU)

A\ }

f(t) v,0 ¥,(0 Y40




Joint Sampling of x () and f (¢)

» 1fmSample

2 L L L
50 55 60 65 70

Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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» 1fmSample
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Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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» 1fmSample
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50 55 60 65 70

Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).



Joint Sampling of x () and f (¢)

» 1fmSample

25 L L L
50 55 60 65 70

Figure : Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).



Covariance for ODE

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = LZ‘sﬂexp( a]t)f fi(7) exp(a;t) sin(w;(t—T1))dt

]11

» Joint distribution
for x1 (t), x2 (¢),
x3 () and f (¢).

» Damping ratios:
ERENE
10125 | 2 | 1 |

()

A

Y,

¥,

JAU)

A\ }

f(t) v,0 ¥,(0 Y40




Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.
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» Multivariate time series of angles representing joint
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» Objective: generalize from training data to realistic
motions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.

» Objective: generalize from training data to realistic
motions.

» Use 2nd Order Latent Force Model with
mass/spring/damper (resistor inductor capacitor) at each
joint.



Prediction of Test Motion

» Model left arm only.
» 3 balancing motions (18, 19, 20) from subject 49.

» 18 and 19 are similar, 20 contains more dramatic
movements.

» Train on 18 and 19 and testing on 20
» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other
movements.

» Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table : Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65
Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results II

11111111

(@) Inferred  Latent (b) Wrist (c) Hand X Rotation
Force

(d) Hand Z Rotation (e) Thumb X Rotation (f) Thumb Z Rotation

Figure : Predictions from LFM (solid line, grey error bars) and direct
reoression (crosses with stick error bars).



Motion Capture Experiments

» Data set is from the CMU motion capture data base!.

» Two different types of movements: golf-swing and
walking.

» Train on a subset of motions for each movement and test
on a different subset.

» This assesses the model’s ability to extrapolate.

» For testing: condition on three angles associated to the root
nodes and first five and last five frames of the motion.

» Golf-swing use leave one out cross validation on four
motions.

» For the walking train on 4 motions and validate on 8
motions.



Motion Capture Results

Table : RMSE and R? (explained variance) for golf swing and walking

Movement | Method RMSE R? (%)
INDGP | 21.55+2.35 | 30.99 +9.67
Golf swing MTGP | 21.19+2.18 | 45.59 +7.86
SLEM | 21.52+1.93 | 49.32 +3.03
LEM 18.09 +1.30 | 72.25 + 3.08
IND GP | 8.03+255 | 30.55+ 10.64
Walking MTGP | 775205 | 37.77 +4.53
SLFM 781 +£2.00 | 36.84+4.26
LFM 7.23+218 | 48.15+5.66
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» First Order Differential Equation

dm; (1)
dt

= b]' +s;p (t) - djmj ()
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et al., 2006; Gao et al., 2008.
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Example: Transcriptional Regulation

v

First Order Differential Equation

dm; (1)

T = b]' +s;p (t) - djmj ()

v

Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

mj(t) — concentration of gene j’'s mRNA

v

v

p(t) — concentration of active transcription factor

v

Model parameters: baseline b;, sensitivity s; and decay d;

\4

Application: identifying co-regulated genes (targets)



Example: Transcriptional Regulation

v

First Order Differential Equation

dm; (t)
d—]t = bj +s;p (t) — djm; (¢)

» Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

» mj(t) — concentration of gene j’s mRNA

» p(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when p(t) is not
observed?



Covariance for Transcription Model

RBF covariance function for p (t)

_ t
m; (t) = % + s;exp (—dit)f p (u) exp (d;u) du.
i 0

p(®) \\ \
» Joint distribution
for my (t)r myp (t), m () \\ \

mg (t), and p (¢).

» Here: ma(f) \ \ \
s3]

(A [ [ ]d
(5T [T TTT05]05] mg(t)

p(t)  my(t)  ma(t)  ms(t)



Covariance for Transcription Model

RBF covariance function for p (t)

m=>b/d+ Z elp p~N(OZ)—>m~ N[b/d,z eiTZiei)

i i

p(t) \\ \
» Joint distribution
for my (), my (1), () \\ \

ms3 (t), and p (t).

» Here: ma(t) \ \ \
[ s3]

(A [ [ s ]d
(5 TS5 [T TTT05]705] mg(t)

p(t)  my(t)  ma(t)  ms(t)



Covariance for Transcription Model

RBF covariance function for p (t)

_ t
m; (t) = % + s;exp (—dit)f p (u) exp (d;u) du.
i 0

p(®) \\ \
» Joint distribution
for my (t)r myp (t), m () \\ \

mg (t), and p (¢).

» Here: ma(f) \ \ \
s3]

(A [ [ ]d
(5T [T TTT05]05] mg(t)

p(t)  my(t)  ma(t)  ms(t)



Joint Sampling of p () and m (¢)

» simSample

0.8

0.6

0.4

0.2

0

-0.2
0

Figure : Joint samples from the ODE covariance, black: p (t), red:
my (t) (high decay/sensitivity), green: m; (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).



Joint Sampling of p () and m (¢)

» simSample
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Figure : Joint samples from the ODE covariance, black: p (t), red:
my (t) (high decay/sensitivity), green: m; (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).



Joint Sampling of p () and m (¢)

» simSample

1 2 3 4 5

Figure : Joint samples from the ODE covariance, black: p (t), red:
my (t) (high decay/sensitivity), green: m; (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).



Joint Sampling of p () and m (¢)

» simSample

1 2 3 4 5

Figure : Joint samples from the ODE covariance, black: p (t), red:
my (t) (high decay/sensitivity), green: m; (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

» Radiation can damages molecules including DNA.
» Most DNA damage is quickly repaired—single strand
breaks, backbone break.
» Double strand breaks are more serious—a complete
disconnect along the chromosome.
» Cell cycle stages:
» Gj: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have

divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G;. In G, there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

» Responsible for Repairing DNA damage
» Activates DNA Repair proteins

» Pauses the Cell Cycle (prevents replication of damage
DNA)

» Initiates apoptosis (cell death) in the case where damage
can’t be repaired.

» Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure : p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the
Month” feature).


http://www.rcsb.org/

Figure : Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2.
(also governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A
(CDKN1A). A regulator of cell cycle progression.
(also governed by SREBP-1a, Sp1, Sp3,... ).
hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily,
member 10b. A transducer of apoptosis signals.



Modelling Assumption

» Assume p53 affects targets as a single input module
network motif (SIM).

Figure : p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

» First Order Differential Equation

dm]‘ ®
dt

=bj+sjp(t) —dm;(t)



Ordinary Differential Equation Model

» First Order Differential Equation

dm]‘ ®
T = b] + Sip (t) - d]m] (t)

» Proposed by Barenco et al. (2006).



Ordinary Differential Equation Model

» First Order Differential Equation

dm]‘ ®
—ar " bitsip®—dm;(®)

» Proposed by Barenco et al. (2006).

» mj(t) — concentration of gene j’s mRNA



Ordinary Differential Equation Model
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Ordinary Differential Equation Model

» First Order Differential Equation

dm]‘ ®
—ar " bitsip®—dm;(®)

» Proposed by Barenco et al. (2006).

» mj(t) — concentration of gene j’s mRNA

» p(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when p(t) is not
observed?



p53 Results with GP

Vol. 24 ECCB 2008, pages i70-i75
doi:10.1093/bioinformatics/btn278

Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities

Pei Gao', Antti Honkela?, Magnus Rattray' and Neil D. Lawrence®*

13chool of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adapt\ve Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT A challenging problem for parameter estimation in ODE models
Motivation: Inference of latent chemical species in biochemical occurs where one or more chemical species influencing the dynamics
interaction networks is a key problem in estimation of the structure are controlled outside of the sub-system being modelled. For



p53 Results with GP
(Gao et al., 2008)

Inferred ps3 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=0.4489
D=0.4487
$=0.40601

1
-0.5 [0
] 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene p21 MRNA gene BIK mRNA gene hPA26 MRNA
4 4 5 .
B=10637

6022518 D=061474

3 D=08 $=071201
s=1 3




Ranking with ERK Signalling

» Target Ranking for Elk-1.

» Elk-1is phosphorylated by ERK from the EGF signalling
pathway.

» Predict concentration of Elk-1 from known targets.
» Rank other targets of Elk-1.



Elk-1 (MLP covariance)
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations
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Model-based method for transcription factor
target identification with limited data

Antti Honkela*', Charles Girardot®, E. Hilary Gustafson®, Ya-Hsin Liu®, Eileen E. M. Furlong®,

Neil D. Lawrence®', and Magnus Rattray“'

*Department of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; *Genome Biology U
European Molecular Biology Laboratory, Heidelberg, Germany; and “School of Computer Science, University of Manchester, Manchester, Units

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the

used for genome-wide scoring of putative target gen
is required to apply our method is wild-type time seri
lected over a period where TF activity is changing. Ou
allows for complementary evidence from expression



Cascaded Differential Equations

(Honkela et al., 2010)

» Transcription factor protein also has governing mRNA.
» This mRNA can be measured.

» In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription
factor that counts.

» In development phosphorylation plays less of a role.
» Build a simple cascaded differential equation to model this.



Covariance for Translation/Transcription Model

RBF covariance function for f (f)

p(t)=cexp (—6t)f f(u) exp (6u)du
0

d

» Joint distribution f \ \ \
for my (), ma (b),
p(H)and f (1), r N Ny

» Here:
Glalslals] ™9 ™

[T[5][5][05]05]

. t
m; (t) = E + s5;exp (—dit)f p (1) exp (d;u) du.
i 0




Twist Results

» Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series
network identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
0.8
delta 0.0768465
sigma 1
0.6
D 0.0760771
04 S0.0956793
B 0.000847107
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure : Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x10~° Inferred twi protein Driving Input

1
0.8
delta 517.034
sigma 1
0.6
D 542.062
04 S 266101
B 3.81368e-06
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure : Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein Driving Input

-1 -1
2 4 6 8 10 12 2 4 6 8 10 12
FBgn0011206
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0.8
delta 0.0543985
sigma 1
0.6
D 0.0502381
04 S0.0823117
B 0.000447727
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure : Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
0.8
delta 3.17042e-05
sigma 1
0.6
D 0.000118374
04 S 0.0531884
B 7.20183e-08
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure : Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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B 3.83826e-06
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-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure : Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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FBgn0035257
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sigma 1
0.6
D 0.0211176
04 S0.0661116
B 0.000204487
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-1 0
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Figure : Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
0.3 4
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Figure : Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in
tissues of interest



Results

Relative enrichment (%)

Relative enrichment (%)
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Summary

» Cascade models allow genomewide analysis of potential
targets given only expression data.

» Once a set of potential candidate targets have been
identified, they can be modelled in a more complex
manner.

» We don’t have ground truth, but evidence indicates that
the approach can perform as well as knockouts.



Partial Differential Equations and Latent Forces

Mauricio Alvarez

» Can extend the concept to latent functions in PDEs.

» Jura data: concentrations of heavy metal pollutants from
the Swiss Jura.

» Consider a latent function that represents how the
pollutants were originally laid down (initial condition).

» Assume pollutants diffuse at different rates resulting in the
concentrations observed in the data set.

Ixy(x, ) i . 9Pxy(x, 1)
or 9 ax?

4

=1

» Latent function f,(x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

Mauricio Alvarez

» The solution to the system (Polyanin, 2002) is then given by

R
X060 =Y Sy fR Gy X', X
r=1

where Gy(x, X/, t) is the Green’s function given as

L

j=1

(JC]‘—JC)2

t
(x X, 1) = 2d d/sz/Z

with Ty = x4t



Covariance Function

Mauricio Alvarez

» For latent function given by a GP with the RBF covariance
function this is tractable.

R 5,5l
i |Ly + Lyg + L,[1/2

kXqu (X/ X,/ t) =

X exp [—% (x-x)" (L,p + Ly + Lr)_1 (x— x’)] ,

where Ly, L;; and L, are diagonal isotropic matrices with
entries 2kpt, 2kt and 1/€2 respectively. The covariance
function between the output and latent functions is given
by
ky, 7, (6, X', ) Snltd”
XX, )= =75
ol Ly + Ly|1/2

[ 1 " NT [+ I \_1/ /\]



Prediction of Metal Concentrations

Mauricio Alvarez

» Replicate experiments in (Goovaerts, 1997, pp. 248,249):
» Primary variable (Cd, Cu, Pb, Co) predicted in conjunction
with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn
for Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).2
» Condition on the secondary variables to improve
prediction for primary variables.

» Compare results for the diffusion kernel with independent
GPs and “ordinary co-kriging” (Goovaerts, 1997,
pp. 248,249).



Jura Results

Mauricio Alvarez

Table : Mean absolute error and standard deviation for ten repetitions
of the experiment for the Jura dataset. IGPs stands for independent
GPs, GPDK stands for GP diffusion kernel, OCK for ordinary
co-kriging. For the Gaussian process with diffusion kernel, we learn
the diffusion coefficients and the length-scale of the covariance of the
latent function.

Metals IGPs GPDK OCK
Cd 0.5823+0.0133 | 0.4505+0.0126 | 0.5
Cu 15.9357+0.0907 | 7.1677+0.2266 | 7.8
Pb 22.9141+0.6076 | 10.1097+0.2842 | 10.7
Co 2.0735+0.1070 | 1.7546+0.0895 | 1.5




Convolutions and Computational Complexity

Mauricio Alvarez

» Solutions to these differential equations is normally as a
convolution.

xi () = ff(u)ki(u—t)du+hi(t)

t
% (6) = fo £ () g (o) e + i ()

» Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).
» Convolutions lead to N X d size covariance matrices
O (N3d3) complexity, O (dez) storage.

» Model is conditionally independent over {x; (t)};-j:1 given

f(®).



Independence Assumption

Mauricio Alvarez

» Can assume conditional independence given given
{f (ti)}:{:l. (Alvarez and Lawrence, 2009)
» Result is very similar to PITC approximation (Quifionero
Candela and Rasmussen, 2005).
» Reduces to O <N3dk2) complexity, O (dek) storage.

» Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

» Reduces to O (N dk2) complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

» Network of tide height sensors in the solent — tide heights
are correlated.

» Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

» d =3and N = 1000 of the 4320 for the training set.

» Simulate sensor failure by knocking out onse sensor for a
given time.

» For the other two sensors we used all 1000 training
observations.

» Take k = 100.



Tide Height Results

Mauricio Alvarez
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Cokriging Jura

Mauricio Alvarez

» Jura dataset — concentrations of several heavy metals
(Atteia et al., 1994).

» Prediction 259 data, validation 100 data points.

» Predict primary variables (cadmium and copper) at
prediction locations in conjunction with some secondary
variables (nickel and zinc for cadmium; lead, nickel and
zinc for copper) (Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez

°

3 o0s6

ROR

o o
] g 2
5 B8 & 8 &

I °
MEAN ABSOLUTE ERROR Cu

MEAN ABSOLUTE ERI
s o o o
&

4 @ o

IGP P(50) P(100) P(200) P(500) FGP CK IGP P(50) P(100) P(200) P(500) FGP  CK

(a) Cadmium (b) Copper

Figure : Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and
CK stands for ordinary co-kriging.



MAP-Laplace Approximation

Laplace’s method: approximate posterior mode as Gaussian

p(p|m)=N(p A )OceXp(——(p p) Ap- p))

where p = argmaxp(p | m) and A = —=VVlogp (p | m) [p=p is the
Hessian of the negative posterior at that point. To obtain p and

A, we define the following function ¢ (p) as:

log p(plm) o< Y(p) = logp (m | p) +logp (p)



MAP-Laplace Approximation

Assigning a GP prior distribution to p(f), it then follows that

1 1 n
1 =——p'Klp-= _
ogp(p) = -5p K 'p - 5 log|K| - - log 2
where K is the covariance matrix of p(t). Hence,

Vy(p) = Vlog p(mlp) - K'p
VVY(p) = VVlogp(mlp) - K ' = -W - K



Estimation of ¢(p)

Newton’s method is applied to find the maximum of ¢(p) as

P =p — (VVi(p)) ' Vi(p)
= (W+K™)™ (Wp — Vlog p(mlp))

In addition, A = —~VVi(p) = W + K~! where W is the negative
Hessian matrix. Hence, the Laplace approximation to the
posterior is a Gaussian with mean p and covariance matrix
Alas

p(p | m) =N A™) = NP, (W+K )™



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters 0 and covariance parameters ¢

p(mi6,9) = [ p(mip,0)p (pig)dp = [ exp (w )y
Using Taylor expansion of {(p),

1 ~ 1
bymm&@:kgﬂmmﬁﬁﬂ—?fK1p—?%ﬂ+KW|

The parameters 1 = {8, ¢} can be then estimated by using

dlogp(min) _ dlogp(mm) ~  dlogp(min) Ip
on - on explicit p on



SOS Response

» DNA damage in bacteria may occur as a result of activity
of antibiotics.

» LexA is bound to the genome preventing transcription of
the SOS genes.

» RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

» This allows several of the LexA targets to transcribe.

» The SOS pathway may be essential in antibiotic resistance
Cirz et al. (2005).

» Aim is to target these proteins to produce drugs to increase
efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

» Data from Courcelle et al. (2001)

» UV irradiation of E. coli. in both wild-type cells and lexAl
mutants, which are unable to induce genes under LexA
control.

» Response measured with two color hybridization to cDNA
arrays.



Khanin et al. Model

Given measurements of gene expression at N time points
(to, t1,...,tn-1), the temporal profile of a gene i, m; (t), that
solves the ODE in Eq. 1 can be approximated by

e b |
m; (t) = m?e dit 4 d—l + st et du.
i 0

b N-
m; (t) = mde™t + — + g;e™ Z (edftf“ - ed"tf)
di ]+1 t] =0

I\)

on each subinterval
(t],t] + 1), j=0,...,N—2. This is under the simplifying

assumption that p (t) is a piece-wise constant function on each
subinterval (t]-, ti+ l). Repression model: F(p(t)) = L

y+ep(f) :

where p; = M



Khanin et al. Results
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Figure : Fig. 2 from Khanin et al. (2006): Reconstructed activity level
of master repressor LexA, following a UV dose of 40 J/m2.



Khanin et al. Results
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Figure : Fig. 3 from Khanin et al. (2006): Reconstructed profiles for
four genes in the LexA SIM.



Repression Model

Pei Gao

» We can use the same model of repression,

Fip(t) = ———

In the case of repression we have to include the transient
term,

b

. !
mj(t) = a]-e_dft + d—; + s]-j(; e_df(t_”)F]-(p (u))du



Results for the repressor LexA

Pei Gao
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Figure : Our results using an MLP kernel. From Gao et al. (2008).



Use Samples to Represent Posterior

Michalis Titsias

» Sample in Gaussian processes

p (plm) e p (mip) p (p)
» Likelihood relates GP to data through

t
mj(t) = aje_dft + d_] + sjf e_df(t_”)l-"j(p (u))du
j 0

» We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm

» Initialize p©

» Form a Markov chain. Use a proposal distribution
Qp™D|p®) and accept with the M-H step

(1 Paip pe™*D) Q(pipY)
" p(mip®)p(p®)  Q(p!+Dip®)
» p can be very high dimensional (hundreds of points)

» How do we choose the proposal Q(p!*V[p®))?
» Can we use the GP prior p(p) as the proposal?



p53 System Again

» One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dm;® _ exp(p(t))

a0 ety M0

» We have 5 genes

» Gene expressions are available for T = 7 times and there
are 3 replicas of the time series data

» TF (p) is discretized using 121 points

» MCMC details:

» 7 control points are used (placed in a equally spaced grid)

» Running time 4/5 hours for 2 million sampling iterations
plus burn in

» Acceptance rate for p after burn in was between 15% — 25%



Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein
concentrations

Inferred p53 protein Inferred p53 protein Inferred p53 protein
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Linear model (Barenco et al. predictions are shown as crosses)
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p53 Data Kinetic parameters

Basal rates Decay rates

Sensitivities Gamma parameters

WJJML%ﬁﬁm

TNFRSF10D

Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model



Results on SOS System

» Again consider the Michaelis-Menten kinetic equation
dm;(t) 1

T = ]+S]W —d]m](t)

\4

We have 14 genes (5 kinetic parameters each)

» Gene expressions are available for T = 6 time slots

\4

TF (p) is discretized using 121 points
MCMC details:

» 6 control points are used (placed in a equally spaced grid)

» Running time was 5 hours for 2 million sampling iterations
plus burn in

» Acceptance rate for p after burn in was between 15% — 25%

v



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration

Inferred protein




Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value
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Results in E.coli data: Confidence intervals for the
kinetic parameters

Basal rates Decay rates
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A “middle-out” approach for inferring regulatory
networks

Task: find targets of a small number of co-regulating
transcription factors (TFs) from time-series expression data:

» Stage 1: Sub-network training (~100 targets):

» Fit regulation model on sub-network of known structure
» Infer TF protein concentration functions

» Stage 2: Genome-wide scanning;:

» Fit alternative regulation models to all potential targets
» Score models and identify well supported TF-target links

» Challenges:

» Fitting and scoring >10000 models
» Not all regulation is modelled: an open system



A “middle-out” approach for inferring regulatory
networks

» Training stage: Parameter estimation on known network
(a): Training phase
@ mRNA (observed with noise)
@ TF protein (unobserved)
—3) Translation
—> Transcriptional regulation

(b): Prediction phase
Q l | ] \:/
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A “middle-out” approach for inferring regulatory

networks
» Training stage: Parameter estimation on known network
(a): Training phase
@ mRNA (observed with noise)
@ TF protein (unobserved)

—3) Translation
—> Transcriptional regulation

VIR AR &
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» Scanning stage: Bayesian evidence model scoring for



A “middle-out” approach for inferring regulatory
networks

» Training stage with post-translational modification

@ mRNA - observed with noise
.‘m‘. @ TF protein - unobserved

= Transcriptional regulation

» Scanning stage: Bayesian evidence model scoring for
target inference
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Model of transcriptional regulation

» Transcription

dt

= F(pa(t), ..., px(); 0;) — djm;(t)

mj(t) — target gene j mRNA concentration function
pi(t) — transcription factor 7 protein concentration function
E(p; 0;) — regulation model, d; - mRNA decay rate



Model of transcriptional regulation

» Transcription

dt

= F(pa(t), ..., px(); 0;) — djm;(t)

mj(t) — target gene j mRNA concentration function
pi(t) — transcription factor 7 protein concentration function
E(p; 0;) — regulation model, d; - mRNA decay rate

» Translation (optional)

dz
” )~ f(t) - st

fi(t) — transcription factor i mRNA concentration function
0; — protein decay rate
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Gaussian process inference over latent functions

» Transcription factors considered inputs to the system

» Modelled as samples from a Gaussian process prior
distribution

» Equations linear in m(t) can be solved as a function of p(t)
so no need for numerical ODE solver to compute
likelihood

» Useful way to close an open system
» Can ignore TF mRNA data and treat p(t) as latent function

» Bayesian MCMC used to infer p(t) and all model
parameters

Gao et al. (2008); Titsias et al. (2009); Honkela et al. (2010);
Titsias et al. (2012)



Artificial data: one experimental condition

Ground Truth TFs

Inferred TF concentrations after training stage

A

0 10 0 10 0 10
time time time



Artificial data: two experimental conditions

True TFs condition1  True TFs condition 2

Inferred TF concentrations for condition 1

time time time



Artificial data: two experimental conditions

True TFs condition1  True TFs condition 2

Inferred TF concentrations for condition 2

time time time
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Artificial data: scanning performance for all TFs
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Drosophila training

» Sub-network of 96 genes targeted by 5 TFs during
Drosophila mesoderm development (Zinzen et al., 2009).

» Data: wild-type times series, 3 replicates (Tomancak et al.,
2002).

tin bin twist bap Mef2
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Drosophila scanning: model ranking

» Rank target gene regulation models by their posterior
probability across all 2° = 32 possible models

» Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.

Enrichment (%)
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Coregulated Target Example

= =
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
time (h) time (h) time (h) time (h)
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
time (h) time (h) time (h)
(a) Only BAP (b) Only MEF2 (c) BAP & MEF2

A highly ranked putative joint target of BAP amd MEF2. The
candidate gene is confirmed as a joint target by independent
ChIP-chip studies Zinzen et al. (2009).



Drosophila scanning: link ranking

» TF-target link and link-pair ranking according to posterior
probability of particular single TF or double TF regulations

» Validate predicted links by enrichment for genes within
2kb of ChIP-chip TF binding predictions from Zinzen et al.
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Summary and Conclusion

» Middle-out approach: sub-network training followed by
genome-wide scanning

» Training: Bayesian inference of regulation model
parameters and TF protein concentration functions

» Scanning: Bayesian model scoring for inferring TF-target
link probabilities

» More informative conditions — better performance
» Robust to existence of some unknown regulating TFs

» Significant enrichment of inferred TF-target links for
nearby ChIP-chip binding in drosophila development
example
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