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Global optimisation considers objective functions 
that are multi-modal and expensive to evaluate.  



Optimisation is a decision problem: we must select 
evaluations to determine the minimum. Hence we 
need to specify a loss function and a probability 
distribution. 



By deining a loss function (including the cost o 
observation), we can select evaluations optimally by 
minimising the expected loss.  
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We deine a loss function that is equal to the lowest 
function value found: the lower this value, the lower 
our loss.   
 
Assuming we have only one evaluation remaining, 
the loss o it returning value y given that the current 
lowest value obtained is η is 



  

This loss function makes computing the expected loss 
simple: as such, we’ll take a myopic approximation 
and only ever consider the next evaluation (rather 
than all possible future evaluations). 
 
 
 
 
  
 
The expected loss is the expected lowest value o the 
function we’ve evaluated after the next evaluation.  

: All available   
information. 

: next eval.  
location. 



We choose a Gaussian process as the probability 
distribution for the objective function, giving a 
tractable expected loss. 



We can use Gaussian processes for optimisation. 
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We can use Gaussian processes for optimisation. 



We have shifted an optimisation problem over an 
objective to an optimisation problem over an 
expected loss: the Gaussian process has served as a 
surrogate (or emulator) for the objective.  
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This is useful because the expected loss is cheaper to 
evaluate than the objective, and admits gradient and 
Hessian observations to aid the optimisation.  
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λ2 

Our Gaussian process is speciied by hyper-
parameters λ and σ, giving expected length scales o 
the function in output and input spaces respectively. 
 

σ 

λ 

σ 



Hyperparameter values can have a signiicant 
inluence: below, A has small input scale and prior C 
has large input scale. In optimisation, amongst other 
things, hyperparameters specify a ‘step size’.  
 



Management o hyperparameters is important for 
optimisation: we start with no data! 
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Management o hyperparameters is important (we’ll 
come back to this!). 



  

We can improve upon our myopic approximation by 
considering multiple function evaluations into the 
future using (expensive) sampling.  

•  In is our total information up to index n 
•  M represents the index o our inal decision 
•  All nodes along the dark line are correlated 



  

We tested on a range o 
problems. 
 
 •  Ackley 2/5 
•  Branin 
•  6-hump Camelback 
•  Goldstein-Price 
•  Griewank 2/5 
•  Hartman 3/6 
•  Rastigrin 
•  Shekel 5/7/10 
•  Shubert 



  

Gaussian process global optimisation (GPGO) 
outperforms tested alternatives for global 
optimisation over 140 test problems. 
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We can extend GPGO to optimise dynamic 
functions, by simply taking time as an additional 
input (that we have no control over). 



We can use GPGO to select the optimal subset o 
sensor locations for weather prediction. 



Consider functions o sets, such as the predictive 
quality o a set o sensors. In order to perform 
inference about such functions, we build a covariance 
function over sets. 



To build such a covariance, we need the distance d
(A,B) between sets A and B. For δ suficiently large, 
d(A,B) is 

large somewhat 
large 

small small 



d(A,B) is the minimum total distance that nodes 
would have to be moved in order to render set A 
identical to set B, i nodes can be ‘merged’ along the 
way. 



d(A,B) is the minimum total distance that nodes 
would have to be moved in order to render set A 
identical to set B (the Earth-mover’s distance).  

Above, we assume equally weighted nodes (weights 
are indicated by the thickness o the outline). 



We also wish to determine weights that relect the 
importance o sensors to the overall network (more 
isolated nodes are more important). 



The mean prediction at a point       given 
observations from set A is 

This term weights the observations from A: we use it 
as a measure o the importance o the nodes. Note 
that we integrate over       and normalise.  



We sequentially selected subsets o 5 sensors (from 
50 around the UK) so as to optimize the quality o 
our predictions (Q) about air temperature from 1959 
to 1984. 

Q Q 

Observe Evaluate 

GPGO 



A) All sensors 
B) Sensors selected by greedy mutual information 
procedure (MI). MI is not adaptive to data! 
C) Sensors we selected in 1969. 
D) Sensors we selected in 1979.  

(A) (B) (C) (D) 



We could extend GPGO to additionally ind the 
optimal number o set elements by deining the cost 
o additional elements. 
 



Gaussian distributed variables are joint Gaussian 
with any afine transform o them.  
 



A function over which we have a Gaussian process is 
joint Gaussian with any integral or derivative o it, as 
integration and differentiation are afine. 
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derivative 
observation at xi 
and function 
observation at xj. 

derivative 
observation at xi 
and derivative 
observation at xj. 

We can modify covariance functions to manage 
derivative or integral observations. 
 



We can modify the squared exponential covariance 
to manage derivative observations. 
 



The performance o Gaussian process global 
optimisation can be improved by including 
observations o the gradient o a function. 
 



The performance o Gaussian process global 
optimisation can be improved by including 
observations o the gradient o a function. 
 



 
 
 
 

1 0.9999 0 0 
0.9999 1 0 0 
0 0 1 0.1 
0 0 0.1 1 

Too similar 

Conditioning becomes an issue when we have 
multiple close observations, giving rows in the 
covariance matrix that are very similar. 
 

Conditioning is a particular problem in optimisation, 
where we often take many samples around a local 
minimum to exactly determine it.  



1.01 0.9999 0 0 
0.9999 1.01 0 0 
0 0 1.01 0.1 
0 0 0.1 1.01 

Suciently 
dissimilar 

The usual solution to conditioning problems is to 
add a small positive quantity (jitter) to the diagonal o 
the covariance matrix. 
 
 
 

As jitter is effectively imposed noise, adding jitter to 
all diagonal elements dilutes the informativeness o 
our data.  
 



We can readily incorporate observations o the 
derivative into the Gaussian process used in GPGO. 

This also gives us a way to resolve conditioning 
issues (that result from the very close observations 
that are taken during optimisation). 
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This also gives us a way to resolve conditioning 
issues (that result from the very close observations 
that are taken during optimisation). 



Likewise, we can use observations o an integrand ℓ 
in order to perform inference for its integral, Z: this 
is known as Bayesian Quadrature. 



Modelling data is problematic due to parameters, 
such as the parameters o a polynomial model.  



We could minimise errors (or maximise likelihood) 
to ind a `best-it’, at the risk o overitting.  



The Bayesian approach is to average over many 
possible parameters, requiring integration. 



The Bayesian approach is to average over many 
possible parameters, requiring integration. 



Inference requires integrating (or marginalising) 
over the many possible states o the world consistent 
with our data, which is often non-analytic.  

ϑ 

Probability( y ) = the area under this curve: 

Probability 
Density 
p( y, ϑ ) 

 



There are many different approaches to quadrature 
(numerical integration) for probabilistic integrals; 
integrand estimation is usually undervalued.  
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Optimisation (as in maximum likelihood), 
particularly using global optimisers, gives a 
reasonable heuristic for exploring the integrand. 
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However, maximum likelihood is an unreasonable 
way o estimating a multi-modal or broad likelihood 
integrand: why throw away all those other samples? 
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In particular, maximum likelihood is inadequate for 
the hyper-parameters o a Gaussian process used for 
optimisation.  

Approximating the posterior over hyperparameters 
(above right) as a delta function results in insuficient 
exploration o the objective function! 



Monte Carlo schemes give even more powerful 
methods o exploration, that have  
revolutionised Bayesian inference. 
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These methods force us to be uncertain 
about our action, which is unlikely to 
result in actions that minimise a sensible 
expected loss. 



Monte Carlo schemes give a fairly reasonable 
method o exploration; but an unreasonable 
means o integrand estimation. 
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Bayesian quadrature (aka Bayesian Monte Carlo) 
gives a powerful method for estimating the 
integrand: a Gaussian process. 
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Consider the 
integral 
 
                            . 
 
Bayesian quadrature 
achieves more 
accurate results than 
Monte Carlo, and 
provides an estimate 
o our uncertainty. 



Doubly-Bayesian quadrature (BBQ) additionally 
explores the integrand so as to minimise the 
uncertainty about the integral. 

Integrand 

Sample 
number 





Bayesian optimisation is a means o optimising 
expensive, multi-modal objective functions;  
Bayesian quadrature is a means o integrating over 
expensive, multi-modal integrands. 



Thanks! I would like to also like thank my 
collaborators: 
 
David Duvenaud,  
Roman Garnett, 
Zoubin Ghahramani, 
Carl Rasmussen, 
and Stephen Roberts. 
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