
Global Optimisation
with Gaussian Processes

Michael A. Osborne
Machine Learning Research Group
Department o Engineering Science

University o Oxford

Global optimisation considers objective functions
that are multi-modal and expensive to evaluate.

Optimisation is a decision problem: we must select
evaluations to determine the minimum. Hence we
need to specify a loss function and a probability
distribution.

By deining a loss function (including the cost o
observation), we can select evaluations optimally by
minimising the expected loss.

input
x

objective

function y(x)
output

y

We deine a loss function that is equal to the lowest
function value found: the lower this value, the lower
our loss.

Assuming we have only one evaluation remaining,
the loss o it returning value y given that the current
lowest value obtained is η is

This loss function makes computing the expected loss
simple: as such, we’ll take a myopic approximation
and only ever consider the next evaluation (rather
than all possible future evaluations).

The expected loss is the expected lowest value o the
function we’ve evaluated after the next evaluation.

: All available
information.

: next eval.
location.

We choose a Gaussian process as the probability
distribution for the objective function, giving a
tractable expected loss.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We can use Gaussian processes for optimisation.

We have shifted an optimisation problem over an
objective to an optimisation problem over an
expected loss: the Gaussian process has served as a
surrogate (or emulator) for the objective.

input
x

expected loss

function λ(x)
output

λ

This is useful because the expected loss is cheaper to
evaluate than the objective, and admits gradient and
Hessian observations to aid the optimisation.

input
x

expected loss

function λ(x)
output

λ, Diλ, DiDjλ

λ2

Our Gaussian process is speciied by hyper-
parameters λ and σ, giving expected length scales o
the function in output and input spaces respectively.

σ

λ

σ

Hyperparameter values can have a signiicant
inluence: below, A has small input scale and prior C
has large input scale. In optimisation, amongst other
things, hyperparameters specify a ‘step size’.

Management o hyperparameters is important for
optimisation: we start with no data!

Management o hyperparameters is important.

Management o hyperparameters is important.

Management o hyperparameters is important.

Management o hyperparameters is important.

Management o hyperparameters is important.

Management o hyperparameters is important.

Management o hyperparameters is important.

Management o hyperparameters is important (we’ll
come back to this!).

We can improve upon our myopic approximation by
considering multiple function evaluations into the
future using (expensive) sampling.

•  In is our total information up to index n
•  M represents the index o our inal decision
•  All nodes along the dark line are correlated

We tested on a range o
problems.

 •  Ackley 2/5
•  Branin
•  6-hump Camelback
•  Goldstein-Price
•  Griewank 2/5
•  Hartman 3/6
•  Rastigrin
•  Shekel 5/7/10
•  Shubert

Gaussian process global optimisation (GPGO)
outperforms tested alternatives for global
optimisation over 140 test problems.

0.622 0.626
0.722

0.779

0

1

RBF DIRECT GPGO GPGO (Best)

m
yo

pi
c

 2
-s

te
p

lo
ok

ah
ea

d

d/G

Start pt

True global
optimum

Optimum
found after set

number of fn
evals

d

G

We can extend GPGO to optimise dynamic
functions, by simply taking time as an additional
input (that we have no control over).

We can use GPGO to select the optimal subset o
sensor locations for weather prediction.

Consider functions o sets, such as the predictive
quality o a set o sensors. In order to perform
inference about such functions, we build a covariance
function over sets.

To build such a covariance, we need the distance d
(A,B) between sets A and B. For δ suficiently large,
d(A,B) is

large somewhat
large

small small

d(A,B) is the minimum total distance that nodes
would have to be moved in order to render set A
identical to set B, i nodes can be ‘merged’ along the
way.

d(A,B) is the minimum total distance that nodes
would have to be moved in order to render set A
identical to set B (the Earth-mover’s distance).

Above, we assume equally weighted nodes (weights
are indicated by the thickness o the outline).

We also wish to determine weights that relect the
importance o sensors to the overall network (more
isolated nodes are more important).

The mean prediction at a point given
observations from set A is

This term weights the observations from A: we use it
as a measure o the importance o the nodes. Note
that we integrate over and normalise.

We sequentially selected subsets o 5 sensors (from
50 around the UK) so as to optimize the quality o
our predictions (Q) about air temperature from 1959
to 1984.

Q Q

Observe Evaluate

GPGO

A) All sensors
B) Sensors selected by greedy mutual information
procedure (MI). MI is not adaptive to data!
C) Sensors we selected in 1969.
D) Sensors we selected in 1979.

(A) (B) (C) (D)

We could extend GPGO to additionally ind the
optimal number o set elements by deining the cost
o additional elements.

Gaussian distributed variables are joint Gaussian
with any afine transform o them.

A function over which we have a Gaussian process is
joint Gaussian with any integral or derivative o it, as
integration and differentiation are afine.

() ()

() ()
j

i

i

xxxx
jiDD

xx
jjiD

xxK
xx

xxK

xxK
x

xxK

==

=

∂

∂

∂

∂
=

∂

∂
=

'

, ',
'

,

,,
derivative
observation at xi
and function
observation at xj.

derivative
observation at xi
and derivative
observation at xj.

We can modify covariance functions to manage
derivative or integral observations.

We can modify the squared exponential covariance
to manage derivative observations.

The performance o Gaussian process global
optimisation can be improved by including
observations o the gradient o a function.

The performance o Gaussian process global
optimisation can be improved by including
observations o the gradient o a function.

1 0.9999 0 0
0.9999 1 0 0
0 0 1 0.1
0 0 0.1 1

Too similar

Conditioning becomes an issue when we have
multiple close observations, giving rows in the
covariance matrix that are very similar.

Conditioning is a particular problem in optimisation,
where we often take many samples around a local
minimum to exactly determine it.

1.01 0.9999 0 0
0.9999 1.01 0 0
0 0 1.01 0.1
0 0 0.1 1.01

Suciently
dissimilar

The usual solution to conditioning problems is to
add a small positive quantity (jitter) to the diagonal o
the covariance matrix.

As jitter is effectively imposed noise, adding jitter to
all diagonal elements dilutes the informativeness o
our data.

We can readily incorporate observations o the
derivative into the Gaussian process used in GPGO.

This also gives us a way to resolve conditioning
issues (that result from the very close observations
that are taken during optimisation).

We can readily incorporate observations o the
derivative into the Gaussian process used in GPGO.

This also gives us a way to resolve conditioning
issues (that result from the very close observations
that are taken during optimisation).

We can readily incorporate observations o the
derivative into the Gaussian process used in GPGO.

This also gives us a way to resolve conditioning
issues (that result from the very close observations
that are taken during optimisation).

We can readily incorporate observations o the
derivative into the Gaussian process used in GPGO.

This also gives us a way to resolve conditioning
issues (that result from the very close observations
that are taken during optimisation).

We can readily incorporate observations o the
derivative into the Gaussian process used in GPGO.

This also gives us a way to resolve conditioning
issues (that result from the very close observations
that are taken during optimisation).

Likewise, we can use observations o an integrand ℓ
in order to perform inference for its integral, Z: this
is known as Bayesian Quadrature.

Modelling data is problematic due to parameters,
such as the parameters o a polynomial model.

We could minimise errors (or maximise likelihood)
to ind a `best-it’, at the risk o overitting.

The Bayesian approach is to average over many
possible parameters, requiring integration.

The Bayesian approach is to average over many
possible parameters, requiring integration.

Inference requires integrating (or marginalising)
over the many possible states o the world consistent
with our data, which is often non-analytic.

ϑ

Probability(y) = the area under this curve:

Probability
Density
p(y, ϑ)

There are many different approaches to quadrature
(numerical integration) for probabilistic integrals;
integrand estimation is usually undervalued.

parameter

lo
g-

lik
el

ih
oo

d

Optimisation (as in maximum likelihood),
particularly using global optimisers, gives a
reasonable heuristic for exploring the integrand.

parameter

lo
g-

lik
el

ih
oo

d

However, maximum likelihood is an unreasonable
way o estimating a multi-modal or broad likelihood
integrand: why throw away all those other samples?

lo
g-

lik
el

ih
oo

d

parameter

In particular, maximum likelihood is inadequate for
the hyper-parameters o a Gaussian process used for
optimisation.

Approximating the posterior over hyperparameters
(above right) as a delta function results in insuficient
exploration o the objective function!

Monte Carlo schemes give even more powerful
methods o exploration, that have
revolutionised Bayesian inference.

parameter

lo
g-

lik
el

ih
oo

d

parameter

lo
g-

lik
el

ih
oo

d
These methods force us to be uncertain
about our action, which is unlikely to
result in actions that minimise a sensible
expected loss.

Monte Carlo schemes give a fairly reasonable
method o exploration; but an unreasonable
means o integrand estimation.

parameter

lo
g-

lik
el

ih
oo

d

Bayesian quadrature (aka Bayesian Monte Carlo)
gives a powerful method for estimating the
integrand: a Gaussian process.

parameter

lo
g-

lik
el

ih
oo

d

Consider the
integral

 .

Bayesian quadrature
achieves more
accurate results than
Monte Carlo, and
provides an estimate
o our uncertainty.

Doubly-Bayesian quadrature (BBQ) additionally
explores the integrand so as to minimise the
uncertainty about the integral.

Integrand

Sample
number

Bayesian optimisation is a means o optimising
expensive, multi-modal objective functions;
Bayesian quadrature is a means o integrating over
expensive, multi-modal integrands.

Thanks! I would like to also like thank my
collaborators:

David Duvenaud,
Roman Garnett,
Zoubin Ghahramani,
Carl Rasmussen,
and Stephen Roberts.

References
 http://www.robots.ox.ac.uk/~mosb

