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Definition of Gaussian Process: Spatial Case

Spatial Gaussian process (GP) is a spatial random function f(x), such
that joint distribution of f(x1), . . . , f(xn) is always Gaussian.

Can be defined in terms of mean and covariance functions:

m(x) = E[f(x)]

K(x, x′) = E[(f(x)−m(x)) (f(x′)−m(x′))T ].

The joint distribution of a collection of random variables
f(x1), . . . , f(xn) is then given asf(x1)

...
f(xn)

 ∼ N

m(x1)

...
m(xn)

 ,

K(x1, x1) . . . K(x1, xn)
...

. . .

K(xn, x1) K(xn, xn)
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Definition of Gaussian Process: Temporal and
Spatial-Temporal Cases

Temporal Gaussian process (GP) is a temporal random function f(t),
such that joint distribution of f(t1), . . . , f(tn) is always Gaussian.

Mean and covariance functions have the form:

m(t) = E[f(t)]

K(t, t ′) = E[(f(t)−m(t)) (f(t ′)−m(t ′))T ].

Spatio-temporal Gaussian process (GP) is a space-time random
function f(x, t), such that joint distribution of f(x1, t1), . . . , f(xn, tn)
is always Gaussian.

Mean and covariance functions have the form:

m(x, t) = E[f(x, t)]

K(x, x′; t, t ′) = E[(f(x, t)−m(x, t)) (f(x′, t ′)−m(x′, t ′))T ].
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Modeling with Gaussian processes

Gaussian process regression:

GPs are used as non-parametric prior models for ”learning”
input-output Rd 7→ Rm mappings in form y = f(x).
A set of noisy training samples D = {(x1, y1), . . . , (xn, yn)} given.
The values of function f(x) at measurement points and test points are
of interest.

Spatial analysis and Kriging:

The variable x (input) is the spatial location.
GP is used for modeling similarities in f(x) at different locations.
The interpolated/smoothed values of f(x) are of interest.

Signal processing and time series analysis:

In signal processing the input is the time t.
Time series is modeled as Gaussian process f(t) with a known
spectrum or correlation structure.
The filtered/smoothed values at the measurement points and in other
points are of interest.

Simo Särkkä (Aalto University) State Space Representation of GPs June 12th, 2013 6 / 51



Modeling with Gaussian processes (cont.)

Mechanics and electronics:

In stochastic mechanical and electrical models, which typically arise in
stochastic control and optimal filtering context, the input is time t.
The Gaussian process f(t) arises when a physical law in form of
differential equation contains a stochastic (unknown) term.
The filtered/smoothed values at the measurement points and in other
time points are of interest.

Continuum mechanics

In stochastic continuum mechanical models, e.g., in meteorology and
hydrology, the input consists of time t and spatial location x.
Spatio-temporal Gaussian processes arise when a physical law in form
of partial differential equation contains a stochastic term.
The interpolated/smoothed values of f(x, t) at the measurement points
and other points at different times t are of interest.

Simo Särkkä (Aalto University) State Space Representation of GPs June 12th, 2013 7 / 51



Fourier Transform

The Fourier transform of function f (x) : Rd 7→ R is

F [f ](i ω) =

∫
Rd

f (x) exp(− i ωT x) dx.

The inverse Fourier transform of f̃ (i ω) = F [f ](i ω) is

F−1[f̃ ](x) =
1

(2π)d

∫
Rd

f̃ (i ω) exp(i ωT x) dω.

Properties of Fourier transform:

Linearity: For functions f (x), g(x) and constants a, b ∈ R:

F [a f + b g ] = aF [f ] + bF [g ].

Derivative: If f (x) is a k times differentiable function, then

F [∂k f /∂xki ] = (i ωi )
k F [f ].

Convolution: The Fourier transform of the convolution is then the
product of Fourier transforms of f and g :

F [f ∗ g ] = F [f ]F [g ].
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Covariance Functions and Spectral Densities

Stationary GP: k(x, x′) , k(x− x′) or just k(x).

Isotropic GP: k(r) where r = ||x− x′||.
The (power) spectral density of a function/process f (x) is

S(ω) = |f̃ (i ω)|2 = f̃ (i ω) f̃ (− i ω),

where f̃ (i ω) is the Fourier transform of f (x).

Wiener-Khinchin: If f (x) is a stationary Gaussian process with
covariance function k(x) then its spectral density is

S(ω) = F [k].

Gaussian white noise is a zero-mean process with covariance function

kw (x) = q δ(x).

The spectral density of the white noise is

Sw (ω) = q.
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Representations of Temporal Gaussian Processes

Moment representation in terms of mean and covariance function

m(t) = E[f(t)]

K(t, t ′) = E[(f(t)−m(t)) (f(t ′)−m(t ′))T ].

Spectral representation in terms of spectral density function

S(ωt) = E[̃f(i ωt) f̃
T (− i ωt)].

Path or state space representation as solution to a stochastic
differential equation:

df = A f dt + L dβ,

where f ← (f, df/dt, . . .) and β(t) is a vector of Wiener processes, or
equivalently, but more informally

df

dt
= A f + Lw,

where w(t) is white noise.
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Representations of Temporal Gaussian Processes
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Scalar 1d Gaussian Processes

Example of Gaussian process: Ornstein-Uhlenbeck process

m(t) = 0

k(t, t ′) = exp(−λ|t − t ′|)

Path representation: stochastic differential equation (SDE)

df (t) = −λ f (t) dt + dβ(t),

where β(t) is a Brownian motion, or more informally

df (t)

dt
= −λ f (t) + w(t),

where w(t) is a formal white noise process.

The equation has the solution

f (t) = exp(−λ t) f (0) +

∫ t

0
exp(−λ(t − s))w(s) ds.

Has the covariance k(t, t ′) at stationary state.
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Markov Property of Scalar 1d Gaussian Process

Ornstein-Uhlenbeck process f (t) is Markovian in the sense that given
f (t) the past {f (s), s < t} does not affect the distribution of the
future {f (s ′), s ′ > t}.
The marginal mean m(t) and covariance P(t) = k(t, t) satisfy the
differential equations

dm(t)

dt
= −λm(t)

dP(t)

dt
= −2λP(t) + 2λ.

Due to the Markov property, these statistics are sufficient for
computations, i.e., the full covariance k(t, t ′) is not needed.

The related inference algorithms, which utilize the Markov property
are the Kalman filter and Rauch-Tung-Striebel smoother.
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Spectral Representation of 1d Gaussian Process

The spectral density of f(t) can be obtained by computing Fourier
transform of the covariance k(t, t ′) = k(t − t ′):

S(ω) =

∫ ∞
−∞

exp(−λ|τ |) exp(− i ω τ) dτ =
2λ

ω2 + λ2
.

Alternatively, we can take Fourier transform of the original equation
df (t)/dt = −λf (t) + w(t), which yields

(i ω) f̃ (i ω) = −λ f̃ (i ω) + w̃(i ω),

and further

f̃ (i ω) =
w̃(ω)

(iω) + λ

The spectral density is by definition S(ω) = |f̃ (i ω)|2:

S(ω) =
|w̃(i ω)|2

((iω) + λ)((− iω) + λ)
=

2λ

ω2 + λ2
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Vector Valued 1d Gaussian Processes

Vector valued 1d Gaussian processes correspond to linear
time-invariant state space models with white noise input w(t):

df(t)

dt
= A f(t) + Lw(t).

Can be solved in terms of the matrix exponential exp(t A):

f(t) = exp(t A) f(0) +

∫ t

0
exp((t − s)A)Lw(s) ds.

The covariance function and spectral density at stationary state are

K(t, t ′) =

{
P∞ exp((t ′ − t)A)T , if t ′ ≥ t
exp((t − t ′)A)P∞ , if t ′ < t.

S(ω) = (A + iω I)−1LQLT (A− iω I)−T .

where P∞ is the solution to the equation

AP∞ + P∞AT + LQLT = 0.
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Converting Covariance Functions to State Space Models

Consider a Nth order LTI SDE of the form

dN f

dtN
+ aN−1

dN−1f
dtN−1

+ · · ·+ a0f = w(t).

This can be expressed as state space model as

df

dt
=


0 1

. . .
. . .

0 1
−a0 −a1 . . . −aN−1


︸ ︷︷ ︸

A

f +


0
...
0
1


︸ ︷︷ ︸

L

w(t)

f (t) =
(
1 0 · · · 0

)︸ ︷︷ ︸
H

f,

where f = (f , . . . , dN−1f /dtN−1).
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Converting Covariance Functions to State Space Models
(cont.)

By taking the Fourier transform of the equation, we get a spectral
density of the following form for f (t):

S(ω) =
(constant)

(polynomial in ω2)

⇒ We can convert covariance functions into state space models by
writing or approximating the spectral density in the above form:

With certain parameter values, the Matérn has this form:

S(ω) ∝ (λ2 + ω2)−(p+1).

The exponentiated quadratic can be easily approximated:

S(ω) = σ2

√
π

κ
exp

(
−ω

2

4κ

)
≈ (const)

N!/0!(4κ)N + · · ·+ ω2N

In conversion of the spectral density to differential equation, we need
to do so called spectral factorization.
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Converting Covariance Functions to State Space Models
(cont.)

The Gaussian process regression problem of the form

f (x) ∼ GP(0, k(x , x ′))

yi = f (xi ) + ei , ei ∼ N (0, σ2noise).

or actually

f (t) ∼ GP(0, k(t, t ′))

yi = f (ti ) + ei , ei ∼ N (0, σ2noise).

can be thus converted into state estimation problem of the form

df(t)

dt
= A f(t) + Lw(t)

yi = Hf(ti ) + ei .
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Kalman Filter and Rauch-Tung-Striebel Smoother

Kalman filter and RTS smoother can be used for efficiently
computing posteriors of models in form

df(t)

dt
= A f(t) + Lw(t)

yi = Hf(ti ) + ei ,

where yi is the measurement and ei ∼ N(0,Ri ).

Can be equivalently (in weak sense) expressed as discrete-time model

fi = Ui fi−1 + vi

yi = Hfi + ei

Many Gaussian process regression problems with differentiable
covariance function can be efficiently solved with KF & RTS

With n measurements, complexity of KF/RTS is O(n), when the
brute-force GP solution is O(n3).
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Example: Matérn Covariance Function

Example (1D Matérn covariance function)

1D Matérn family is (τ = |t − t ′|):

k(τ) = σ2
21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν
(√

2ν
τ

l

)
,

where ν, σ, l > 0 are the smoothness, magnitude and length scale
parameters, and Kν(·) the modified Bessel function.

The spectral density is of the form

S(ω) =
q

(λ2 + ω2)(ν+1/2)
,

where λ =
√

2ν/l .
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Example: Matérn Covariance Function (cont.)

Example (1D Matérn covariance function (cont.))

The spectral density can be factored as

S(ω) =
q

(λ+ i ω)(p+1) (λ− i ω)(p+1)
,

where ν = p + 1/2.

The transfer function of the corresponding stable part is

G (i ω) =
1

(λ+ i ω)(p+1)
.

For integer values of p (ν = 1/2, 3/2, . . .), we can expand this. For
example, if p = 0 (ν = 1/2), we get the Ornstein–Uhlenbeck process

df (t)

dt
= −λ f (t) + w(t)
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Example: Matérn Covariance Function (cont.)

Example (1D Matérn covariance function (cont.))

p = 1 (ν = 3/2) gives

df(t)

dt
=

(
0 1
−λ2 −2λ

)
f(t) +

(
0
1

)
w(t),

where f(t) = (f (t),df (t)/ dt).

p = 2 in turn gives

df(t)

dt
=

 0 1 0
0 0 1
−λ3 −3λ2 −3λ

 f(t) +

0
0
1

 w(t),
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Example: Exponentiated Quadratic Covariance Function

Example (1D EQ covariance function)

The one-dimensional exponentiated quadratic (EQ or SE) covariance
function:

k(τ) = σ2 exp(−τ2/(2l2))

The spectral density is not a rational function:

S(ω) = σ2
√

2π l exp

(
− l2 ω2

2

)
.

By using the Taylor series we get

S(ω) ≈ constant

1 + l2 ω2 + · · ·+ 1
n! l

2n ω2n

We can factor the result into stable and unstable parts, and further
convert into an n-dimensional state space model.
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Example: Comparison of Exponentiated Quadratic and
Matérn

f
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Inference in Practice

Conventional GP regression:
1 Evaluate the covariance function at the training and test set points.
2 Use GP regression formulas to compute the posterior process statistics.
3 Use the mean function as the prediction.

State-space GP regression:
1 Form the state space model.
2 Run Kalman filter through the measurement sequence.
3 Run RTS smoother through the filter results.
4 Use the smoother mean function as the prediction.

→ Matern 5/2 animation

→ EQ animation
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Benefits of SDE Representation

The computational complexity is O(n), where n is the number of
measurements.

The representation can be naturally combined with physical models
(leading to LFMs).

It is straightforward to form integrated GPs, superpositions of GPs
and many other linearly transformed GPs.

Can be extended to non-stationary processes.

Can be extended to non-Gaussian processes.
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Representations of Spatial Gaussian Processes

Moment representation in terms of mean and covariance function

m(x) = E[f(x)]

K(x, x′) = E[(f(x)−m(x)) (f(x′)−m(x′))T ].

Spectral representation in terms of spectral density function

S(ωx) = E[f̃(i ωx) f̃T (− i ωx)]

Representation as stochastic partial differential equation

A f(x) = w(x),

where A is a linear operator (e.g., matrix of differential operators).
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Representations of Spatial Gaussian Processes
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Stochastic Partial Differential Equation Representation of
Spatial Gaussian Process

The origins of the Matérn covariance function are in stochastic partial
differential equations (SPDEs).

Consider the following SPDE:

∂2f (x1, x2)

∂x21
+
∂2f (x1, x2)

∂x22
− λ2 f (x1, x2) = w(x1, x2),

where w(x1, x2) is a Gaussian white noise process.

Because f and w appears linearly in the equation, the classical PDE
theory tells that the solution is a linear operation on w .

Because w is Gaussian, f is a Gaussian process.

But what are the spectral density and covariance function of f ?
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Spectral and Covariance Representation of Spatial
Gaussian Process

By taking Fourier transform of the example SPDE we get

f̃ (i ω1, i ω2) =
w̃(i ω1, i ω2)

ω2
1 + ω2

2 + λ2
.

The spectral density is then

S(ω1, ω2) =
1

(ω2
1 + ω2

2 + λ2)2

By inverse Fourier transform we get the covariance function

k(x, x′) =
|x− x′|

2λ
K1(λ|x− x′|)

where K1 is the modified Bessel function.

A special case of Matern class covariance functions - so called Whittle
covariance function.
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Converting Covariance Functions to SPDEs

Finding an SPDE such that it has a given stationary covariance
function k(x, x′) = k(x− x′) can be, in principle, done as follows:

Compute the Fourier transform of k(x), i.e., the spectral density S(ω).
Find a function A(i ω) such that

S(ω) = A(i ω)A(− i ω).

Note that because S(ω) is a symmetric and positive function, one (but
not maybe the best) choice is the self-adjoint A(i ω) =

√
S(ω).

Next, form the linear operator corresponding to the function A(i ω):

Ax = F−1[A(i ω)].

The SPDE is then given as

Ax f (x) = w(x),

where w(x) is a Gaussian white noise process.
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Benefits of SPDE Representation

The SPDE representation allows the use of partial differential
equation (PDE) methods to approximate the solutions.

For large data, PDE methods can be used to form computationally
efficient sparse and reduced-rank approximations.

Finite element method (FEM) leads to sparse approximations of the
process.

Eigenbasis of the Laplace operator leads to reduced-rank
approximations.

SPDEs also allow the combination of GPs with physical models.

It is also possible to construct non-stationary processes by altering the
coefficients of the SPDE.
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From Temporal to Spatio-Temporal Processes
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Representations of Spatio-Temporal Gaussian Processes

Moment representation in terms of mean and covariance function

m(x, t) = E[f(x, t)]

K(x, x′; t, t ′) = E[(f(x, t)−m(x, t)) (f(x, t)−m(x, t ′))T ].

Spectral representation in terms of spectral density function

S(ωx , ωt) = E[̃f(i ωx , i ωt) f̃
T (− i ωx ,− i ωt)].

As infinite-dimensional state space model or stochastic differential
equation (SDE):

df(x, t) = A f(x, t) dt + L dβ(x, t).

or more informally

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t).
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Spatio-Temporal Gaussian SPDEs
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GP Regression as Infinite Linear Model

Consider the following finite-dimensional linear model

f ∼ N (0,K0)

y = Hf + e,

where f ∈ Rs , y ∈ Rn, H ∈ Rn×s , and e ∼ N (0,Σ).

The posterior distribution is Gaussian with mean and covariance

m̂ = K0H
T (HK0H

T + Σ)−1y

K̂ = K0 −K0H
T (HK0H

T + Σ)−1HK0.

Note that Kalman filtering model is an extension to this, where f can
depend on time (but does not need to).
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GP Regression as Infinite Linear Model (cont.)

In the infinite-dimensional limit f becomes a member of Hilbert space
of functions f (x) ∈ H(Rd).

The corresponding linear model now becomes

f (x) ∼ GP(0,C0(x, x′))

y = H f (x) + e,

where H : H(Rd) 7→ Rn is a vector of functionals.

The posterior mean and covariance become

m̂(x) = C0(x, x′)H∗
[
HC0(x, x′)H∗ + Σ

]−1
y

Ĉ (x, x′) = C0(x, x′)− C0(x, x′)H∗
[
HC0(x, x′)H∗ + Σ

]−1
×HC0(x, x′),

With H f (x) = (f (x1), . . . , f (xn)) we get GP regression.
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State Space Form of Spatio-Temporal Gaussian Processes

Infinite dimensional generalization of state space model is the
stochastic evolution equation

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t),

where A and L are linear operators in x-variable and w(·) is a
time-space white noise.

The mild solution to the equation is:

f(x, t) = U(t) f(x, 0) +

∫ t

0
U(t − s)Lw(x, s) ds.

U(t) = exp(tA) is the evolution operator – corresponds to
propagator in quantum mechanics.
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Infinite-Dimensional Kalman Filtering and Smoothing

The infinite-dimensional Kalman filter and RTS smoother can be used
in models of the form:

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t)

yi = Hi f(x, ti ) + ei

GP regression is a special case: ∂f(x, t)/∂t = 0.

Weakly equivalent discrete-time model has the form

fi (x) = Ui fi−1(x) + ni (x)

yi = Hi fi (x) + ei

If A and H are “diagonal” in the sense that they only involve
point-wise evaluation in x, we get a finite-dimensional algorithm.

We can approximate with basis function expansions, Galerkin
approximations, FEM, finite-differences, spectral methods, etc.
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Conversion of Spatio-Temporal Covariance into
Infinite-Dimensional State Space Model

First compute the spectral density S(ωx , ωt) by Fourier transforming
the covariance function.

Form rational approximation in variable iωt :

S(ωx , ωt) =
q(iωx)

b0(iωx) + b1(iωx) (iωt) + · · ·+ (iωt)N
.

Form the corresponding Fourier domain SDE:

∂N f̃ (ωx , t)

∂tN
+ aN−1(iωx)

∂N−1f̃ (ωx , t)

∂tN−1
+ · · ·

+ a0(iωx) f̃ (ωx , t) = w̃(ωx , t).
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Conversion of Spatio-Temporal Covariance into
Infinite-Dimensional State Space Model (cont.)

By converting this to state space form and by taking spatial inverse
Fourier transform, we get stochastic evolution equation

∂f(x, t)

∂t
=


0 1

. . .
. . .

0 1
−A0 −A1 . . . −AN−1


︸ ︷︷ ︸

A

f(x, t) +


0
...
0
1


︸ ︷︷ ︸

L

w(x, t)

where Aj are pseudo-differential operators.

We can now use infinite-dimensional Kalman filter and RTS smoother
for efficient estimation of the state f(x, t).
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Example: 2D Matérn covariance function

Example (2D Matérn covariance function)

The multidimensional Matérn covariance function is the following
(r = ||ξ − ξ′||, for ξ = (x1, x2, . . . , xd−1, t) ∈ Rd):

k(r) = σ2
21−ν

Γ(ν)

(√
2ν

r

l

)ν
Kν
(√

2ν
r

l

)
.

The corresponding spectral density is of the form

S(ωr ) = S(ωx , ωt) ∝
C(

λ2 + ||ωx ||2 + ω2
t

)ν+d/2
.

where λ =
√

2ν/l .
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Example: 2D Matérn covariance function (cont.)

Example (2D Matérn covariance function (cont.))

The denominator roots are (iωt) = ±
√
λ2 − ||iωx ||2, which gives

G (iωx , iωt) =
1(

iωt +
√
λ2 − ||iωx ||2

)(ν+d/2)
.

For example, if ν = 1 and d = 2, we get the following

∂f(x , t)

∂t
=

(
0 1

∇2 − λ2 −2
√
λ2 −∇2

)
f(x , t) +

(
0
1

)
w(x , t),

Example realization:

x

t
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Benefits of Stochastic Evolution Equation Representation

Linear time complexity in time direction

Easy to combine with physical models (i.e., partial differential
equations)

Linear operations on GPs easy to implement

Can be extended to non-stationary processes.

Can be extended to non-Gaussian processes.

Simo Särkkä (Aalto University) State Space Representation of GPs June 12th, 2013 48 / 51



Conclusion

Gaussian processes have different representations:

Covariance function.
Spectral density.
Stochastic (partial) differential equation – a state space model.

Temporal (single-input) Gaussian processes
⇐⇒ stochastic differential equations (SDEs) (state space models).

Spatial (multiple-input) Gaussian processes
⇐⇒ stochastic partial differential equations (SPDEs).

Spatio-temporal Gaussian processes
⇐⇒ stochastic evolution equations (inf.-dim. state space models).

Kalman filter and RTS smoother are computationally efficient
algorithms for Bayesian inference in temporal Gaussian processes.

Infinite-dimensional Kalman filters and RTS smoothers can be used
for efficient inference in spatio-temporal Gaussian process models.
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