
Lab session 3: Dimensionality Reduction using
Gaussian Processes

GP Summer School – Sheffield, 10-13th of June 2013

The aim of this lab session is to illustrate the concepts seen during the lectures. We
will focus on three aspects of GPs: sampling, the design of Experiments and uncertainty
propagation. If you are new to Python, you may be interested in the cheatsheet at the
end of this document.

Since the background of the attendees is very diverse, this session will attempt to
cover a large spectrum from the very basic of GPs to more technical questions. This in
mind, the difficulties of the questions of the lab session has been ranked from ⋆ (easy)
to ⋆ ⋆ ⋆ (difficult). Feel free to skip the parts that are either too easy or too technical.

In this section you are asked to work with a dataset called digits.npy. You can
download the dataset and some convenience scripts from http://staffwww.dcs.sheffield.
ac.uk/people/J.Hensman/gpsummer/Lab3.zip. We will call this folder in the following
your Lab3/ folder.

Setting up ipython for this session

This session works with datasets provided in your Lab3/ folder. Thus, make sure to
traverse into this directory, to be able to use the code samples in this script. Otherwise,
you will have to adjust the code snippets accordingly. In order to make all the code
snippets work you need to traverse into your Lab3/ folder and run:
import numpy as np, matplotlib.pyplot as pb
import string
from load_plotting import *
pb.ion()

Tip: Optimizations at the end of this session will take a long time, thus you can skip
the questions and answer them while your optimizations are running.

1 Introduction: Principal Component Analysis

Principal component analysis (PCA) finds a rotation of the observed outputs, such
that the rotated principal component (PC) space maximizes the variance of the data ob-
served, sorted from most to least important (most to least variable in the corresponding
PC).
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To demonstrate PCA we created a dataset Lab3/digits.npy containing all digits
from 0 − 9 handwritten, provided by de Campos et al. [2009]. All digits were cropped
and scaled down to an appropriate format. We will only use some of the digits for the
optimizations and plots in this script, but feel free to exchange the filtering as you wish.
digits = np.load('digits.npy')
which = [0,3,6,7,8,9] # which digits to work on
digits = digits[which,:,:,:]
num_classes, num_samples, height, width = digits.shape
labels = np.array([[str(l)]*num_samples for l in which])

You can try to plot some sample using pb.matshow . In order to apply PCA in an easy
way, we have included a PCA module in your Lab3/pca.py. You can import the module
by import <path.to.pca> (without the ending .py!). To run PCA on the digits we

have to reshape (Hint: np.reshape ) digits . ⋆ What is the right shape N ×D to use?

We will call the reshaped observed outputs Y in the following.

So now let’s run PCA on the reshaped dataset Y :
p = pca.PCA(Y) # create PCA class with digits dataset
p.plot_fracs(20) # plot first 20 eigenvalue fractions
p.plot_2d(Y,labels=labels.flatten(), colors=colors)
pb.legend()

The resulting plot will show the lower dimensional representation of the digits in 2
dimensions and it should look alike the result shown in 1(a).

2 Gaussian Process Latent Variable Model

The Gaussian Process Latent Variable Model (GPLVM) introduced by Lawrence [2004]
is the embedding of PCA into a GP framework, where the latent inputs X are learnt
as hyperparameters and the mapping variables V are integrated out. This allows us
to apply non linear PCA using a non-linear kernel. But first, let’s see how GPLVM is
equivalent to PCA using an automatic relevance determination (ARD, see e.g. Bishop
et al. [2006]) linear kernel (Figure 1(b)):
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import GPy # import GPy package
Yn = Y-Y.mean()
input_dim = 4 # How many latent dimensions to use
kernel = GPy.kern.linear(input_dim, ARD=True) # ARD kernel
kernel += GPy.kern.white(input_dim) + GPy.kern.bias(input_dim)
m = GPy.models.GPLVM(Yn, input_dim=input_dim, kernel=kernel)
m.ensure_default_constraints()
m['noise'] = m.likelihood.Y.var()/20. # start noise is 5% of datanoise
m.optimize(messages=1, max_f_eval=1000) # optimize for 1000 iterations
m.kern.plot_ARD()
plot_model(m, m['linear_variance'].argsort()[-2:], labels.flatten())
pb.legend()

As you can see the solution with a linear kernel is the same as the PCA solution with
the exception of rotational changes. The solution you see was only running for 1000
iterations, thus it might not be converged fully yet.

The next step is to use a non-linear mapping between inputs X and ouputs Y, as
e.g. the GPy.kern.rbf kernel . You can try using different kernels and see the dif-
ferent characteristics the kernels pick up. You can also try combinations of kernels if
there is enough time. In case you run into stability problems try initializing the kernel
parameters differently.

Question 1

⋆ How do your linear solutions differ between PCA and GPLVM with a linear ker-
nel?

⋆ Which characteristics can GPLVM with an RBF kernel differentiate, which PCA is
not able to?

⋆⋆ How do linear ARD parameters compare to PC variances?

⋆⋆ How do they differ in non-linear mappings?

⋆ ⋆ ⋆ How does ARD work? Bishop et al. [2006]

3 Bayesian GPLVM

In GPLVM we use a point estimate of the distribution of the input X, through the
maximum a posteriori (MAP) approach. In Bayesian GPLVM we approximate the true
distribution p(X∣Y) by a variational approximation q(X) and integrate X out. This
allows the algorithm to fully switch off latent dimensions, as noise dimensions can be
explained inside the distribution q(X) and do not have to be accounted for in the ARD
parameters. If you have got enough time try running a GPy.models.BayesianGPLVM

with a GPy.kern.rbf kernel (figure 2):
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Figure 1: Two dimensional representations of the digits dataset. (a) PCA solution to
the digits.npy dataset. (b) GPLVM solution to the digits.npy dataset using linear
kernel. (c) GPLVM solution to the digits.npy dataset using rbf kernel
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Figure 2: Two dimensional representations of the digits dataset. (a) Bayesian GPLVM
solution to the digits dataset. (b) ARD parameters learnt by Bayesian GPLVM.

import GPy # import GPy package
Yn = Y-Y.mean(0)
input_dim = 6 # How many latent dimensions to use
kernel = GPy.kern.rbf(input_dim,ARD=True) # ARD kernel
kernel += GPy.kern.white(input_dim) + GPy.kern.bias(input_dim)
m = GPy.models.BayesianGPLVM(Yn, input_dim=input_dim, kernel=kernel, num_inducing=15)
# start noise is 1% of datanoise
m.ensure_default_constraints()
m['noise'] = m.likelihood.Y.var()/100.
m.optimize('bfgs',messages=1, max_f_eval=10000, max_iters=10000)
plot_model(m, m['rbf_len'].argsort()[:2], labels.flatten())
pb.legend()
m.kern.plot_ARD()

Depending on computing power this optimization can take a long time. You are free
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to interrupt the optimization at any point in time by hitting Ctrl+c. This will leave
you with the model m in the current state and you can plot and look into the models
parameters. If you run GPy locally on a laptop, you can just skip to the next paragraph
which loads a pre-optimized model.

Interactive demo
From your Lab3/ folder run the module:

python load_bgplvm_dimension_select.py
(replace “python” with “run” in the ipython environment). This module loads a pre-
optimized Bayesian GPLVM model (like the one you just trained) and allows you to
interact with the latent space. Three interactive figures pop up: the latent space, the
ARD scales and a sample in the output space (corresponding to the current selected
latent point of the other figure). You can sample with the mouse from the latent space
and obtain samples in the output space. You can select different latent dimensions to
vary by clicking on the corresponding scales with the left and right mouse buttons.
This will also cause the latent space to be projected on the selected latent dimensions
in the other figure.

Observations
Confirm the following observations by interacting with the demo:

• We tend to obtain more “strange” outputs when sampling from latent space areas
away from the training inputs.

• When sampling from the two dominant latent dimensions (the ones correspond-
ing to large scales) we differentiate between all digits. Also note that projecting
the latent space into the two dominant dimensions better separates the classes.

• When sampling from less dominant latent dimensions the outputs vary in a more
subtle way.

You can also run the dimensionality reduction example
GPy.examples.dimensionality_reduction.bgplvm_simulation()

which requires less computing power. The simulation is a sinusoid and a double
frequency sinusoid function as input signals, which are retrieved completely by the
Bayesian GPLVM. All dimensions of the initial latent space that are irrelevant get
switched off.

Question 2

⋆ Can you see a difference in the ARD parameters to the non Bayesian GPLVM?

⋆ ⋆ ⋆ How does the Bayesian GPLVM allow the ARD parameters of the RBF kernel
magnify the two first dimensions?
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⋆ Is Bayesian GPLVM better in differentiating between different kinds of digits?

⋆⋆ Why does the starting noise variance have to be lower then the variance of the
observed values?

⋆⋆ How come we use the lowest variance when using a linear kernel, but the highest
lengtscale when using an RBF kernel?

4 Manifold Relevance Determination

In Manifold Relevance Determination we try to find one latent space, common for K
observed output sets (modalities) {Yk}K

k=1. Each modality is associated with a separate
set of ARD parameters so that it switches off different parts of the whole latent space
and, therefore, X is softly segmented into parts that are private to some, or shared for
all modalities. Can you explain what happens in the following example?
m = GPy.examples.dimensionality_reduction.mrd_simulation(optimize = False)
m.optimize(messages = True, max_f_eval=5000, optimizer = 'SCG')

Again, you can stop the optimizer at any point and explore the result obtained with the
so far training:
m.plot_scales()
m.plot_X_1d()

Which signal is shared across the three datasets? Which are private? Are there signals
shared only between two of the three datasets?
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