Gaussian processes approximations for time series

Dr. Richard E. Turner (ret26@cam. ac.uk)

Computational and Biological Learning Lab, Department of Engineering,
University of Cambridge

CO
UNIVERSITYOF Computational and
CAMBRIDGE Biological Learning

Using Gaussian processes for time-series modelling

audio Y(t)
time-series T=10>210"
data :

datapoints
3 4 5 6 7 8
time /s

reconstruction -
usinga GP]
model |

time /ms

Using Gaussian processes for time-series modelling

audio
time-series
data

reconstruction -
using a GP
model

0

y(t)

5

6
time /s

T=10>10"
datapoints

How can we use
GPs in this
setting?

\

time /ms

GP regression: introducing notation

Generative model (like non-linear regression) y Oy
y(t) = f(t) + eoy (independent Gaussian noise) (1)
p(e) = N(0,1)
place GP prior over the non-linear function
t

p(f(1)]6) = GP(0,K(t, 1))

) 5) 1 o typical time-series covariance
K(t,t') = 0“ cos(w(t — 1)) exp (——2(’[— 1)) sinusoids with SE envelopes

21 power in Gaussian subband

GP regression: introducing notation

Generative model (like non-linear regression) y Oy
y(t) = f(t) + eoy (independent Gaussian noise) (1)
p(e) = N(0,1)
place GP prior over the non-linear function
t

p(f(1)]6) = GP(0,K(t, 1))

) 5) 1 o typical time-series covariance
K(t,t') = 0“ cos(w(t — 1)) exp (——2(’[— 1)) sinusoids with SE envelopes

21 power in Gaussian subband

(" another popular class of GP h
time-series models

Xt = g(X¢—1) + oxny
Y, = f(Xt) + oye
f(x),9(x) ~ GP(0,K)

GP regression: introducing notation

Generative model (like non-linear regression) y Oy
y(t) = f(t) + eoy (independent Gaussian noise) ()
p(e) =N(0,1)
place GP prior over the non-linear function
t

p(f(1)|0) = GP(0,K(t,1))

1 typical time-series covariance
K(t,t") = 0% cos(w(t —t')) exp (_2_l2(t — ’[/)2) sinusoids with SE envelopes

power in Gaussian subband
sum of two Gaussians is a Gaussian, (" another popular class of GP)
—> induces GP over y(t) time-series models
p(y()[0) = GP(0,K(t. V) +102) A= B0) i
——— Yy = f(X¢) + oyer
/
=) 709 9(x) ~ GP(0,K)

Qon—Gaussian distribution on y(D

GP regression: introducing notation

Generative model (like non-linear regression) y Oy
y(t) = f(t) + eoy (independent Gaussian noise)
p(e) = N(0,1)

place GP prior over the non-linear function

p(f()10) = GP(0,K(t, 1))

1 typical time-series covariance
K(t,t") = 0% cos(w(t —t')) exp (——2(’[— ’[/)2) sinusoids with SE envelopes
21 power in Gaussian subband
sum of two Gaussians is a Gaussian, (" another popular class of GP)
—> induces GP over y(t) time-series models
p(y(D9) = GP(0,K(t,1) +1o7) =g ey
—— Yy = f(X¢) + oyer
(t,t
=0 £(%),9(3) ~ GP(0,K)
How do we make predictions?

How do we learn hyper-parameters? \non-Gaussian distribution on y(t)

GP regression: introducing notation

How do we make predictions?

p(vl,vz)sz y.] 5 [0 } ’ [S D
4

p(Y1:Y2)
P(Ys) €—u p(Y2) = N (¥;0,222)

/yl

p(Y1ly2) =

— p(Y1lY2) = N(y1521222_21y2> 21 — Z1222_212{2)

GP regression: introducing notation

How do we make predictions?

p(vl,vz)sz y.] 5 [0 } ’ [S D
4

p(Y1:Y2)
P(Ys) €—u p(Y2) = N (¥;0,222)

p(Y1ly2) =

— p(Y1lY2) = N(y1521222_21y2> 21 — Z1222_212{2)

How do we learn hyper-parameters?

B p(Y1.n510)p(0)
p(O]Y1.n) = p(Y1i.nv)

p(ylzN\H) — likelihood of the parameters

(Bayes' Rule)

= how well did 6 predict the data we observed

_ 1 _l T —1
p(le‘Q) - det(Qﬂ_Z(e))_l/Q exXp (2y1:]\7Z (g)le)

GP regression: introducing notation

How do we make predictions?

p(vl,VQ)sz y.] 5 [0 } ’ [S D
4

p(Y1:Y2)
P(Ys) €—u p(Y2) = N (¥;0,222)

p(Y1ly2) =

= p(Y1|Y,) = N(y1521222_21y27211 - Z1222_212{2) \

require matrix inversion
How do we learn hyper-parameters? (Cholesky)

p(OlY.n) = P(Y1:n|0)p(0) (Bayes' Rule) = O(1000) datapoints
. p(le)

p(ylzN\Q) — likelihood of the parameters

= how well did 6 predict the data we observed

_ 1 _l T —1
p(le’(g) - det(2ﬂ_z(9))_1/2 exXp (2y1:NE (g)le)

Taxonomy of Gaussian process approximations

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes"

PITC: Snelson et al. “Local and global sparse Gaussian process approximations”

SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing’
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”

4

Taxonomy of Gaussian process approximations

direct posterior
approximation

divp(fly)[lq(f)]

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes"

PITC: Snelson et al. “Local and global sparse Gaussian process approximations”

SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing’
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”

4

Taxonomy of Gaussian process approximations

direct posterior indirect posterior
approximation approximation
div[p(fly)||g(f)] div[p(f, y)[la(f,y)]

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes"

PITC: Snelson et al. “Local and global sparse Gaussian process approximations”

SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing’
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”

4

Taxonomy of Gaussian process approximations

direct posterior methods employing indirect posterior
approximation pseudo-data approximation
div(p(fly)|lq(f)] u div[p(t, y)lla(f, y)]

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes"

PITC: Snelson et al. “Local and global sparse Gaussian process approximations”

SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing’
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”

4

Taxonomy of Gaussian process approximations

direct posterior methods employing indirect posterior
approximation pseudo-data approximation
div[p(fly)||g(f)] u div[p(f, y)[la(f,y)]

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”
EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"
FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes" goN
PITC: Snelson et al. “Local and global sparse Gaussian process approximations” “ke“hooq
SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing” \@PProximation
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”

prior
approximation

Taxonomy of Gaussian process approximations

direct posterior methods employing indirect posterior
approximation pseudo-data approximation
div[p(fly)||g(f)] u div[p(f, y)[la(f,y)]

A Unifying View of Sparse
Approximate Gaussian
Process Regression
Quinonero-Candela &
Rasmussen, 2005

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”
EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"
FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes" likelihood
PITC: Snelson et al. “Local and global sparse Gaussian process approximations”) i
SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing” \@PProximation
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”

prior
approximation

Fully independent training conditional (FITC) approximation

DO

T

construct new generative model (with pseudo-data)
cheaper to perform exact learning and inference
calibrated to original

Fully independent training conditional (FITC) approximation

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

construct new generative model (with pseudo-data)
cheaper to perform exact learning and inference
calibrated to original

Fully independent training conditional (FITC) approximation

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ all factors

construct new generative model (with pseudo-data)
cheaper to perform exact learning and inference
calibrated to original

Fully independent training conditional (FITC) approximation

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ all factors

construct new generative model (with pseudo-data)
cheaper to perform exact learning and inference
calibrated to original

Fully independent training conditional (FITC) approximation

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ all factors

3. calibrate model
(e.g. using KL divergence, many choices)

U = pu
arg min p(f,u)||q(u Hq fiju)) a(u) = p(u)
a(u), {a(feu)}7, q(ft|u) = p(f:|u)
equal to exact conditionals

construct new generative model (with pseudo-data)
cheaper to perform exact learning and inference
calibrated to original

Fully independent training conditional (FITC) approximation

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ all factors

3. calibrate model
(e.g. using KL divergence, many choices)

u)=pu
arg min p(f,u)||q(u Hq fiju)) a(u) = p(u)
a(u) {a(fe W)}, q(feJu) = p(fe|u)
equal to exact conditionals
construct new generative model (with pseudo-data) indirect
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Fully independent training conditional (FITC) approximation

q(U) — p(“) — N(”? 0, Kuu)

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Fully independent training conditional (FITC) approximation

q(u) =p(u) = N (u;0,Kyy)
q(flu) = p(f:|u)
construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

q(U) — p(“) — N(”? 0, Kuu)
q(fi|u) = p(f¢|u)

How do we make predictions?

p(Y1]Ys) = N(y1;21222—21y2, 211 — Z31222_212;2)

y
construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

q(U) p(“) — N(”? 0, Kuu)

q(fe|u) = p(fe|u)
— N(ft; KftUKlJ_U1u7 Kftft o KftUKU_Ul KUft)

How do we make predictions?
p(Y11¥2) = N(Y1: 212855 Vo, D11 — 12355 X))

y

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Fully independent training conditional (FITC) approximation

(u)
u

p(“) :N(U;O, Kuu)
u) = p(

fe|u)
N(ft7 KftUKu_ulu7 Kftft T KftUKu_ul KUft)

q
q(f;

construct new generative model (with pseudo-data)

indirect
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

(u)
u

p(“) :N(U;O, Kuu)
u) = p(

fiju)
N(ft7 KftUKu_ulu7 Kftft T KftUKu_ul KUft)

q
q(f;

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Fully independent training conditional (FITC) approximation

I
3

(u)
u

U) — N(”? 0, Kuu)
u) |

(
p(fu)
N(ft7 KftUKu_ulu7 Kftft T KftUKu_ul KUft)

—_—
Dtt

q(Y¢lf) = p(y,lft) = N(Yﬁftv‘f?)

q
q(f;

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

I
3

(u)
u

U) — N(”? 0, Kuu)
u) |

(
p(fu)
N(ft7 KftUKu_ulu7 Kftft T KftUKu_ul KUft)

—_—
Dtt

q(Y¢lf) = p(y,lft) = N(Yﬁftaa;%)

q
q(f;

cost of computing likelihood is O(TM?)

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

I
3

(u)
u

U) — N(”? 0, Kuu)
u) |

(
p(fu)
N(ft7 KftUKu_ulu7 Kftft T KftUKu_ul KUft)

—_—
Dtt

q(Y¢lf) = p(y,lft) = N(Yﬁftaa;%)

q
q(f;

cost of computing likelihood is O(TM?)

p(ytye) — N(y, 0, Kquu_u1 KuuKu_u1 Kut + D + 03|) O

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

I
3

(u)
u

U) — N(”? 0, Kuu)
u) |

(
p(fu)
N(ft7 KftUKu_ulu7 Kftft T KftUKu_ul KUft)

—_—
Dtt

q(Y¢lf) = p(y,lft) = N(Yﬁftaa;%)

q
q(f;

cost of computing likelihood is O(TM?)

p(ytye) — N(y, 0, Kquu_u1 KuuKu_u1 Kut + D + 03|) O
= N(y; 0, KKy, Ky + D + 071) @ @ @

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior

calibrated to original approximation

Fully independent training conditional (FITC) approximation

u) = N(u; 0, Kuu) {Joaquin's talk: :|
|

(u)
u)

p(
p(f;|u) finite linear mode

N(ft 7 Kft u l‘<u_u1 u) Kftft T Kft u KU_Ul KUft)

q
q(f;

—_—
Dtt

q(Y¢lf) = p(y,lft) = N(Yﬁftv‘f?)
cost of computing likelihood is O(TM?)

p(ytye) = N(y, 0, Kquu_u1 KuuKu_u1 Kut + D + 03') O

= N(¥; 0, K Ko, Kt + D + o71) @ @ @

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Fully independent training conditional (FITC) approximation

u) = N(u; 0, Kuu) {Joaquin's talk: :|
|

(u)
u)

p(
p(f;|u) finite linear mode

N(ft 7 Kft u l‘<u_u1 u) Kftft T Kft u KU_Ul KUft)

q
q(f;

—_—
Dtt

q(Y¢lf) = p(y,lft) = N(Yﬁftv‘f?)
cost of computing likelihood is O(TM?)

p(yt"g) — N(y, 0, Kquu_u1 KuuKu_u1 Kut + D + 03') O

= N(y; 0, Ky K Ky + ? + o2l @ @ @

original variances along diagonal: stops variances collapsing

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Fully independent training conditional (FITC) approximation

e parametric (although cleverly so)

e if | see more data, should | add exira pseudo-data?

Fully independent training conditional (FITC) approximation

e parametric (although cleverly so)

e if | see more data, should | add exira pseudo-data?

— unnatural from a generative modelling perspective
— natural from a prediction perspective (need greater complexity/bandwidth)
—> lost elegant separation of model, inference and approximation

Fully independent training conditional (FITC) approximation

e parametric (although cleverly so)

e if | see more data, should | add exira pseudo-data?

— unnatural from a generative modelling perspective
— natural from a prediction perspective (need greater complexity/bandwidth)
—> lost elegant separation of model, inference and approximation

e example of prior approximation

Fully independent training conditional (FITC) approximation

e parametric (although cleverly so)

e if | see more data, should | add exira pseudo-data?

— unnatural from a generative modelling perspective
— natural from a prediction perspective (need greater complexity/bandwidth)
—> lost elegant separation of model, inference and approximation

e example of prior approximation

Extensions:

e methods for optimising pseudo-inputs (indirect approximations tend to over-fit)

e partially independent training conditional...

Partially independent training conditional (PITC) approx.

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Partially independent training conditional (PITC) approx.

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Partially independent training conditional (PITC) approx.

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ between blocks

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Partially independent training conditional (PITC) approx.

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ between blocks [[

construct new generative model (with pseudo-data) "
cheaper to perform exact learning and inference posterior
calibrated to original approximation

Partially independent training conditional (PITC) approx.

1. augment model with M<T pseudo data

o= ([L]:[5][fn 1)

2. remove some of the dependencies
(results in simpler model)

—> @ @ between blocks [[

3. calibrate model
(e.g. using KL divergence, many choices)

K
argmin KL(p(f, u)||q(u) | | ¢(filu)) =
q(u),{q(fi|u)}E_, k=1 q

(fx|u) = p(fr|u)

equal to exact conditionals
construct new generative model (with pseudo-data) e

cheaper to perform exact learning and inference posterior
calibrated to original approximation

Deterministic training conditional (DTC)

e Minimise variational KL between two posterior distributions

— direct posterior approximation
— likelihood approximation

az%yﬁ)in KL (%p(u)p(ﬂu)qw!uﬂ%p(u)p(ﬂu)p(vlf)) such that /dv q(ylu) =1

Deterministic training conditional (DTC)

e Minimise variational KL between two posterior distributions

— direct posterior approximation
— likelihood approximation

az%yﬁ)in KL (%p(u)p(ﬂu)qw!uﬂ%p(u)p(ﬂu)p(vlf)) such that /dv q(ylu) =1

= q(y|u) = N(y; K Ki u, o)1)

Deterministic training conditional (DTC)

e Minimise variational KL between two posterior distributions

— direct posterior approximation
— likelihood approximation

: 1 1
al;%yﬁ)m KL (Ep(u)p(ﬂu)qw!uﬂ|§p(u)p(ﬂu)p(vlf)> such that /dv q(ylu) =1

= q(y|u) = N(y; K Ki u, o)1)

can this approximation be categorised in another way?

Deterministic training conditional (DTC)

e Minimise variational KL between two posterior distributions

— direct posterior approximation
— likelihood approximation

az%yﬁ)in KL (%p(u)p(ﬂu)qw!uﬂ%p(u)p(ﬂu)p(vlf)) such that /dv q(ylu) =1

= q(ylu) = N(y; KKy u, o71)
e probabilistic PCA to FITC’s factor analysis

DTC : p(y|0)
FITC: p(y|0)

N(ya 07 KquJulKuf + O'?I)
N(Y; 0, KKiy Kue + D + o)

Deterministic training conditional (DTC)

e minimise variational KL between two posterior distributions

— direct posterior approximation
— likelihood approximation

al(;%yﬁ)in KL (%p(u)p(f\u)qw\uﬂ%p(u)p(f\u)p(vlf)) such that /dv q(ylu) =1

= q(y|u) = N(y; KK u, o7 1)

e probabilistic PCA to FITC’s factor analysis

DTC : p(y|0)
FITC: p(yl|6)

N(ya 0, Kquu_ulKuf + O'?I)
N(Y; 0, KyKiy Kue + D + o7 1)

e blurred division between direct/indirect and likelihood/prior approximation

Variational free-energy method (VFE)

augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)

lower bound the likelihood &
L(0) = logp(y|0) 0

Variational free-energy method (VFE)

augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)

lower bound the likelihood &
£(6) = logp(y]6) = log [df du p(y.f.u ;

Variational free-energy method (VFE)

augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)

lower bound the likelihood &
£(6) = logp(y]6) = log [df du p(y.f.u ;

f.u)
~ 1o /dfdu £l
g p(y)q(f, o)

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
L(0) = log p(y|6) = log / df du p(y, f,u) y/_\\ 6

/ df du ¢(f, u) log (‘(’f’fl’;)‘)

log/ddep y,f,u)q

Variational free-energy method (VFE)

augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(6) = log p(y|d) = log / df du p(y, f, u) =y

log/df du p y,f,u)

o /ddeq (f u)log (y’f’u) = F(q,0)

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(6) = logp(y]6) = log [df du p(y.f.u e

/df du ¢(f,u) log (\(If’fl’;;) = F(q,0)

assume approximate posterior factorlsatlon with special form

q(f,u) = q(flu)g(u) = p(flu)q(u) (exact ¢(flu) = p(fly))

log/ddep y,f,u)q

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(0) = logp(y|6) = log / df du p(y,f,u) e

/df du ¢(f, u) log (\(If’fl’;;) = F(q,0)

assume approximate posterlor factorlsatlon with special form
q(f,u) = q(flu)g(u) = p(flu)q(u) (exact q(flu) = p(fly))

F(q,0) = / df du ¢(f, u) log (E?’u’f W / df du ¢(f, u) log (V“(ihi‘;'”())()

log/df du p y,f,u)

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(0) = logp(y|6) = log / df du p(y,f,u) e

/df du ¢(f, u) log (\(If’fl’;;) = F(q,0)

assume approximate posterlor factorlsatlon with special form
q(f,u) = q(flu)g(u) = p(flu)q(u) (exact q(flu) = p(fly))

F(g,0) = / df du ¢(f, u) log (g?’df" / df du q(f, u) log (vlﬂpéﬂ;%up)(m

log/df du p y,f,u)

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(6) = log p(y|0) = log / df du p(y, f, u) y@\\ ’

/df du ¢(f, u) log (\(If’fl’;;) = F(q,0)

assume approximate posterior factorlsatlon with special form
q(f,u) = q(flu)g(u) = p(flu)q(u) (exact q(flu) = p(fly))

F(g,0) = / df du ¢(f, u) log (g?’df" / df du q(f, u) log (vlﬂpéﬂ;%up)(m

make bound as tight as possible: ¢*(u) = argmax F(q, 0)
q(u)

log/ddep y,f,u)q

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(6) = log p(y|0) = log / df du p(y, f, u) y@\\ ’

/df du ¢(f, u) log (\(If’fl’;;) = F(q,0)

assume approximate posterlor factorlsatlon with special form
q(f,u) = q(flu)g(u) = p(flu)q(u) (exact q(flu) = p(fly))

F(g,0) = / df du ¢(f, u) log (g?’df" / df du q(f, u) log (vlﬂpéﬂ;%up)(m

make bound as tight as possible: ¢*(u) = argmax F(q, 0)
q(u)
¢* (u) o< p(U)N(Y; KKy u,o71) (DTC)

log/df du p y,f,u)

Variational free-energy method (VFE)
augment the model with pseudo-data: p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(0) = log p(y|8) = log / df du p(y. f, u) y@\\ ’

/df du ¢(f, u) log (\(If’fl’;;) = F(q,0)

assume approximate posterior factorlsatlon with special form
q(f,u) = q(flu)g(u) = p(flu)q(u) (exact q(flu) = p(fly))

Fg,60) = / df du g(f, u) log (g?’df" / df du g, u) log <y|f>peﬂ;>up)<u>

make bound as tight as possible: ¢*(u) = argmax F(q, 0)
q(u)
¢* (u) o< p(U)N(Y; KKy u,o71) (DTC)

f(q*, (9) — logN(y§ 0, Kfu I'<u_u1 KUf’ U}%I)

log/ddep y,f,u)q

1 —1
—trace(Ky — Ki Ky, Kur)
207

DTC like uncertainty based correction

Summary of DTC/VFE methods

optimisation pseudo point inputs much less prone to over-fitting in VFE
methods (direct posterior approximation)

variational methods known to underfit (and have othe biases)

like FITC, VFE added u to generative model — not merely parameters of the
approximation

— approximation will ‘waste’ some representational power capturing the
distribution over the pseudo-data

— coherrent way of adding pseudo-data in light of more data?

— perhaps a more pure approach uses pseudo-data exclusively to
parameterise the posterior: ¢(f) = 2p(f)p(y[f) (e.g. Qi et al.)

how do these methods perform for time-series data-sets?

How well do current pseudo data-point approximation
methods perform on time-series?

Exact

-20 -15 -10 -5 0 5 10 15 20

How well do current pseudo data-point approximation
methods perform on time-series?

O O O O 0000 O O

How well do current pseudo data-point approximation
methods perform on time-series?

How well do current pseudo data-point approximation
methods perform on time-series?

How well do current pseudo data-point approximation
methods perform on time-series?

How well do current pseudo data-point approximation
methods perform on time-series?

-300 -200 -100 0 100 200 300

How well do current pseudo data-point approximation
methods perform on time-series?

effect of each pseudo-datapoint is local
but computations involving them are global

back of the envelope calculation:

— M = number pseudo-points, T' = data-range

— [= range of the (shortest) dependencies in the posterior
- M > %

—e.g.audiol =10, T =10° = M > 104

require large numbers of pseudo-points, but methods are O(NM?)

many applications are out of reach

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — ') ‘

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

N\

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

N\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

power spectral density

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

A power spectral density

for regularly sampled data, leads to approximations based on the FFT
—> O(T'logT)

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

A power spectral density
for regularly sampled data, leads to approximations based on the FFT
T —> O(T'logT)
Kt,t’ ~ Z FT;;i%l,k FTk;,t/
k=1

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

A power spectral density

for regularly sampled data, leads to approximations based on the FFT
T —> O(T'logT)
Kt,t’ ~ Z FT;;i%l,k FTk;,t/
k=1

FT, , = ¢ 2mi(k=1)(t-1)/T

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

A power spectral density

for regularly sampled data, leads to approximations based on the FFT
T —> O(T'logT)
Kt,t’ ~ Z FT;;i%l,k FTk;,t/
k=1

FT, , = ¢ 2mi(k=1)(t-1)/T

T
_ 1
p,2l6) o< TL o @ exp (517 /)
k=1

Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

N\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

A power spectral density

for regularly sampled data, leads to approximations based on the FFT

T — O(TlogT)
Kt ~ Z FTgii%l,k FTye @ @
= (19
(1) ()
FT, , = e 2mi(k=1)(t=1)/T) o

T

i | (1) (1)
1 1/2/ (__ 2)

p(Yr.7)O<k1;[17k (0) exp (=3 98] /10 oYol0

alternative view: new model with ring topography + exact inference

Stochastic differential equations (SDE)

core idea: convert into a classical smoothing problem

linear, time-invariant stochastic differential equation:
dM dM—l

g/ (1) +en—1 g

f@)+...+cof(t) = w(t)

defines a (stationary) GP covariance function (filters the white noise)

procedure:

— convert GP covariance function to above form (spectrum matching
procedure), truncate derivative expansion (if necessary)

— implement inference using Rauch—Tung—Striebel smoothing (truncation sets
dimensionality of state space, M)

Linear complexity in time (cubic in size of state-space, finding LDS
parameters costly cf learning): O(TM?)

Chain structured indirect approximation

VuOu®

Chain structured indirect approximation

1. augment model with M<T pseudo data

o= ([L][5] [k)

Chain structured indirect approximation

1. augment model with M<T pseudo data

o= ([L][5] [k)

2. remove some of the dependencies
(results in simpler model)

—> @ @ between blocks
(o= (u)e(u) —> chain structured pseudo-data

Chain structured indirect approximation

1. augment model with M<T pseudo data

o= ([L][5] [k)

2. remove some of the dependencies
(results in simpler model) K — 3 blocks

—> @ @ between blocks
(o= (u)e(u) —> chain structured pseudo-data

Chain structured indirect approximation

1. augment model with M<T pseudo data
N O OO

MBS
ORORO

2. remove some of the dependencies
(results in simpler model) K — 3 blocks

—> @ @ between blocks
(o= (u)e(u) —> chain structured pseudo-data

Chain structured indirect approximation

1. augment model with M<T pseudo data
N O OO

MBS
ORORO

2. remove some of the dependencies
(results in simpler model) K — 3 blocks

—> @ @ between blocks
(o= (u)e(u) —> chain structured pseudo-data

3. calibrate model
(e.g. using KL divergence, many choices)

K
arg min KL(p(f,u)]| H q(Ug|Ur—1)q(fx|uz))
{Q(uk|uk—1)aquk|uk)}§:1 k=1
q(Ug|Ug—1) = p(Ug|Uk_1)

equal to exact conditionals
q(fr|ug) = p(fr|ug)

Chain structured indirect approximation

e cost of inference is linear in T (Rauch—Tung—Striebel smoothing)
e PITC, FITC and local versions are special cases (more edges deleted)

e sensible choices for the blocking and numbers of pseudo-points required

Comparisons: training time (T=50,000)

Yt

-2

4

-2

2240

T
2260

T
2280

2300

2320

T T
2340

2360

2380

2400

T
2420

2440

2335

T
2340

T
2345

T
2350

T
2355

T
2360

2365

2370

2375

T
2380

1
2385

True
Chain
Local

T
2340

T
2345

T
2350

T
2355

T
2360

Time/ms

2365

2370

2375

T
2380

1
2385

Comparisons: training time (T=50,000)

1 4 ¢ X *
0* X o X X
4 & *
05] _*_ *X <> *
* X
o
O O «
0.2 -
+h u
+
01] + + +
O + Chain
Local
LLl
U) + O x FITC
¢
§ + VFE
o) O * SSGP
+ O L SDE
O
0.01 O
+ DD
(20,000)
+ F
4t
+ +
T T T T
10 100 1000 10000

Training time/s

0.5

0.2

0.1

SMSE

0.01

Comparisons: testing time (T=50,000)

%y y + Chain
*o Local
X o *
* Ox « X FITC
o 3 VFE
- x * SSGP
O SDE
+ F 0
+
+ o+ -
+ 0
+ 0
+ 0
0
O
+ =
+ o+t
F o0 000
+ +
| | |
0.1 1 10

Test time/s

Summary

taxonomy of GP approximations (direct/indirect, w/ or w/o pseudo-data,
likelihood/prior)

standard pseudo datapoint based approximations do not work well for
long time-series

chain structured variant performs better (outperforming other time-series
GP approximations)

opportunity: direct approximations in which pseudo-points only appear in the
recognition model

