
Gaussian processes approximations for time series

Dr. Richard E. Turner (ret26@cam.ac.uk)

Computational and Biological Learning Lab, Department of Engineering,
University of Cambridge



Using Gaussian processes for time-series modelling

3 4 5 6 7 8

0

time /s

time /ms
5 10 15 20 25

T = 10 -10   
  datapoints

5 7

audio 
time-series

data

reconstruction
using a GP

model



Using Gaussian processes for time-series modelling

3 4 5 6 7 8

0

time /s

time /ms
5 10 15 20 25

T = 10 -10   
  datapoints

5 7

audio 
time-series

data

reconstruction
using a GP

model

How can we use
GPs in this 
setting?



GP regression: introducing notation

Generative model (like non-linear regression)

place GP prior over the non-linear function

(independent Gaussian noise)

typical time-series covariance
sinusoids with SE envelopes
power in Gaussian subband



GP regression: introducing notation

Generative model (like non-linear regression)

place GP prior over the non-linear function

(independent Gaussian noise)

typical time-series covariance
sinusoids with SE envelopes
power in Gaussian subband

another popular class of GP
time-series models 



GP regression: introducing notation

Generative model (like non-linear regression)

place GP prior over the non-linear function

sum of two Gaussians is a Gaussian, 
        induces GP over 

(independent Gaussian noise)

typical time-series covariance
sinusoids with SE envelopes
power in Gaussian subband

another popular class of GP
time-series models 

non-Gaussian distribution on



GP regression: introducing notation

Generative model (like non-linear regression)

place GP prior over the non-linear function

sum of two Gaussians is a Gaussian, 
        induces GP over 

(independent Gaussian noise)

How do we make predictions?
How do we learn hyper-parameters?

typical time-series covariance
sinusoids with SE envelopes
power in Gaussian subband

another popular class of GP
time-series models 

non-Gaussian distribution on



GP regression: introducing notation

How do we make predictions?



GP regression: introducing notation

How do we make predictions?

How do we learn hyper-parameters?

how well did    predict the data we observed

(Bayes' Rule)

likelihood of the parameters



GP regression: introducing notation

How do we make predictions?

How do we learn hyper-parameters?

how well did    predict the data we observed

(Bayes' Rule)

likelihood of the parameters

require matrix inversion 
(Cholesky)

O(1000) datapoints
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Variational free-energy method (VFE)

augment the model with pseudo-data:

lower bound the likelihood

assume approximate posterior factorisation with special form

(exact                        )

make bound as tight as possible:

(DTC)

DTC like uncertainty based correction



Summary of DTC/VFE methods

• optimisation pseudo point inputs much less prone to over-fitting in VFE
methods (direct posterior approximation)

• variational methods known to underfit (and have othe biases)

• like FITC, VFE added u to generative model – not merely parameters of the
approximation

– approximation will ‘waste’ some representational power capturing the
distribution over the pseudo-data

– coherrent way of adding pseudo-data in light of more data?
– perhaps a more pure approach uses pseudo-data exclusively to

parameterise the posterior: q(f) = 1
Zp(f)p(ỹ|f) (e.g. Qi et al.)

• how do these methods perform for time-series data-sets?
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How well do current pseudo data-point approximation
methods perform on time-series?

• effect of each pseudo-datapoint is local

• but computations involving them are global

• back of the envelope calculation:

– M = number pseudo-points, T = data-range
– l = range of the (shortest) dependencies in the posterior
– M ≥ T

l
– e.g. audio l = 10, T = 105 =⇒ M ≥ 104

=⇒ require large numbers of pseudo-points, but methods are O(NM2)

=⇒ many applications are out of reach
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Using the discrete Fourier transform (DFT) to accelerate GPs

Bochner's theorem/Wiener Khintchine Theorem

stationary covariance functions

- eigen-functions are sines and cosines

for regularly sampled data, leads to approximations based on the FFT

alternative view: new model with ring topography + exact inference

power spectral density

Fourier transform



Stochastic differential equations (SDE)

• core idea: convert into a classical smoothing problem

• linear, time-invariant stochastic differential equation:

dM

dtM
f(t) + cM−1

dM−1

dtM−1
f(t) + . . .+ c0f(t) = w(t)

• defines a (stationary) GP covariance function (filters the white noise)

• procedure:

– convert GP covariance function to above form (spectrum matching
procedure), truncate derivative expansion (if necessary)

– implement inference using Rauch–Tung–Striebel smoothing (truncation sets
dimensionality of state space, M̃ )

• Linear complexity in time (cubic in size of state-space, finding LDS
parameters costly cf learning): O(TM̃3)
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Chain structured indirect approximation

• cost of inference is linear in T (Rauch–Tung–Striebel smoothing)

• PITC, FITC and local versions are special cases (more edges deleted)

• sensible choices for the blocking and numbers of pseudo-points required



Comparisons: training time (T=50,000)
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Comparisons: training time (T=50,000)
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Comparisons: testing time (T=50,000)
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Summary

• taxonomy of GP approximations (direct/indirect, w/ or w/o pseudo-data,
likelihood/prior)

• standard pseudo datapoint based approximations do not work well for
long time-series

• chain structured variant performs better (outperforming other time-series
GP approximations)

• opportunity: direct approximations in which pseudo-points only appear in the
recognition model


