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Taxonomy of Gaussian process approximations

DFT: Turner."Statistical models for natural sounds"

DTC: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

EP: Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.”

ET: Sudderth et al. "Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles"

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”

ISL: Gibbs et al. "Efficient implementation of Gaussian processes"

PITC: Snelson et al. “Local and global sparse Gaussian process approximations”

SDE: Sarkka et al. “Spatiotemporal Learning via Infinite Dimensional Bayesian Filtering and Smoothing’
SS: Lazaro-Gredilla et al. “Sparse spectrum Gaussian process regression”.

VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”
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Extensions:

e methods for optimising pseudo-inputs (indirect approximations tend to over-fit)

e partially independent training conditional...
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Deterministic training conditional (DTC)

e minimise variational KL between two posterior distributions

— direct posterior approximation
— likelihood approximation

al(;%yﬁ)in KL (%p(u)p(f\u)qw\uﬂ%p(u)p(f\u)p(vlf)) such that /dv q(ylu) =1

= q(y|u) = N(y; KK u, o7 1)

e probabilistic PCA to FITC’s factor analysis

DTC : p(y|0)
FITC: p(yl|6)

N(ya 0, Kquu_ulKuf + O'?I)
N(Y; 0, KyKiy Kue + D + o7 1)

e blurred division between direct/indirect and likelihood/prior approximation
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Variational free-energy method (VFE)
augment the model with pseudo-data:  p(y,f,u|f) = p(y|f)p(f, u)
lower bound the likelihood &
£(0) = log p(y|8) = log / df du p(y. f, u) y@\\ ’

/df du ¢(f, u) log (\(If’fl’;;) = F(q,0)

assume approximate posterior factorlsatlon with special form
q(f,u) = q(flu)g(u) = p(flu)q(u) (exact q(flu) = p(fly))

Fg,60) = / df du g(f, u) log (g?’df" / df du g, u) log <y|f>peﬂ;>up)<u>

make bound as tight as possible: ¢*(u) = argmax F(q, 0)
q(u)
¢* (u) o< p(U)N(Y; KKy u,o71) (DTC)

f(q*, (9) — logN(y§ 0, Kfu I'<u_u1 KUf’ U}%I)

log/ddep y,f,u)q

1 —1
—trace(Ky — Ki Ky, Kur)
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DTC like uncertainty based correction



Summary of DTC/VFE methods

optimisation pseudo point inputs much less prone to over-fitting in VFE
methods (direct posterior approximation)

variational methods known to underfit (and have othe biases)

like FITC, VFE added u to generative model — not merely parameters of the
approximation

— approximation will ‘waste’ some representational power capturing the
distribution over the pseudo-data

— coherrent way of adding pseudo-data in light of more data?

— perhaps a more pure approach uses pseudo-data exclusively to
parameterise the posterior: ¢(f) = 2p(f)p(y[f) (e.g. Qi et al.)

how do these methods perform for time-series data-sets?
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How well do current pseudo data-point approximation
methods perform on time-series?

effect of each pseudo-datapoint is local
but computations involving them are global

back of the envelope calculation:

— M = number pseudo-points, T' = data-range

— [ = range of the (shortest) dependencies in the posterior
- M > %

—e.g.audiol =10, T =10° = M > 104

require large numbers of pseudo-points, but methods are O(NM?)

many applications are out of reach
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Using the discrete Fourier transform (DFT) to accelerate GPs

stationary covariance functions K(¢,t") = k(t — t')

- eigen-functions are sines and cosines

N\

K(T) = /dv v(v) exp(27miTy) «<—— Fourier transform

Bochner's theorem/Wiener Khintchine Theorem

A power spectral density

for regularly sampled data, leads to approximations based on the FFT

T — O(TlogT)
Kt ~ Z FTgii%l,k FTye @ @
= (19
(1) ()
FT, , = e 2mi(k=1)(t=1)/T ) o

T

i | (1) (1)
1 1/2/ (__ 2 )

p(Yr.7 )O<k1;[17k (0) exp ( =3 98] /10 oYol0

alternative view: new model with ring topography + exact inference



Stochastic differential equations (SDE)

core idea: convert into a classical smoothing problem

linear, time-invariant stochastic differential equation:
dM dM—l

g/ (1) +en—1 g

f@)+...+cof(t) = w(t)

defines a (stationary) GP covariance function (filters the white noise)

procedure:

— convert GP covariance function to above form (spectrum matching
procedure), truncate derivative expansion (if necessary)

— implement inference using Rauch—Tung—Striebel smoothing (truncation sets
dimensionality of state space, M)

Linear complexity in time (cubic in size of state-space, finding LDS
parameters costly cf learning): O(TM?)
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Chain structured indirect approximation

1. augment model with M<T pseudo data
N O OO

MBS
ORORO

2. remove some of the dependencies
(results in simpler model) K — 3 blocks

—> @ @ between blocks
(o= (u)e(u) —> chain structured pseudo-data

3. calibrate model
(e.g. using KL divergence, many choices)

K
arg min KL(p(f,u)]| H q(Ug|Ur—1)q(fx|uz))
{Q(uk|uk—1)aquk|uk)}§:1 k=1
q(Ug|Ug—1) = p(Ug|Uk_1)

equal to exact conditionals
q(fr|ug) = p(fr|ug)



Chain structured indirect approximation

e cost of inference is linear in T (Rauch—Tung—Striebel smoothing)
e PITC, FITC and local versions are special cases (more edges deleted)

e sensible choices for the blocking and numbers of pseudo-points required



Comparisons: training time (T=50,000)
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Comparisons: training time (T=50,000)
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Summary

taxonomy of GP approximations (direct/indirect, w/ or w/o pseudo-data,
likelihood/prior)

standard pseudo datapoint based approximations do not work well for
long time-series

chain structured variant performs better (outperforming other time-series
GP approximations)

opportunity: direct approximations in which pseudo-points only appear in the
recognition model



