
Fitting Covariance and Multioutput Gaussian
Processes

Neil D. Lawrence

GPSS
16th September 2014

Outline

Parametric Models are a Bottleneck

Constructing Covariance

GP Limitations

Kalman Filter

Outline

Parametric Models are a Bottleneck

Constructing Covariance

GP Limitations

Kalman Filter

Nonparametric Gaussian Processes

I We’ve seen how we go from parametric to non-parametric.
I The limit implies infinite dimensional w.
I Gaussian processes are generally non-parametric: combine

data with covariance function to get model.
I This representation cannot be summarized by a parameter

vector of a fixed size.

The Parametric Bottleneck

I Parametric models have a representation that does not
respond to increasing training set size.

I Bayesian posterior distributions over parameters contain
the information about the training data.

I Use Bayes’ rule from training data, p
(
w|y,X

)
,

I Make predictions on test data

p
(
y∗|X∗,y,X

)
=

∫
p
(
y∗|w,X∗

)
p
(
w|y,X)dw

)
.

I w becomes a bottleneck for information about the training
set to pass to the test set.

I Solution: increase m so that the bottleneck is so large that it
no longer presents a problem.

I How big is big enough for m? Non-parametrics says
m→∞.

The Parametric Bottleneck

I Now no longer possible to manipulate the model through
the standard parametric form.

I However, it is possible to express parametric as GPs:

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
.

I These are known as degenerate covariance matrices.
I Their rank is at most m, non-parametric models have full

rank covariance matrices.
I Most well known is the “linear kernel”, k(xi, x j) = x>i x j.

The Parametric Bottleneck

I Now no longer possible to manipulate the model through
the standard parametric form.

I However, it is possible to express parametric as GPs:

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
.

I These are known as degenerate covariance matrices.
I Their rank is at most m, non-parametric models have full

rank covariance matrices.
I Most well known is the “linear kernel”, k(xi, x j) = x>i x j.

The Parametric Bottleneck

I Now no longer possible to manipulate the model through
the standard parametric form.

I However, it is possible to express parametric as GPs:

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
.

I These are known as degenerate covariance matrices.

I Their rank is at most m, non-parametric models have full
rank covariance matrices.

I Most well known is the “linear kernel”, k(xi, x j) = x>i x j.

The Parametric Bottleneck

I Now no longer possible to manipulate the model through
the standard parametric form.

I However, it is possible to express parametric as GPs:

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
.

I These are known as degenerate covariance matrices.
I Their rank is at most m, non-parametric models have full

rank covariance matrices.

I Most well known is the “linear kernel”, k(xi, x j) = x>i x j.

The Parametric Bottleneck

I Now no longer possible to manipulate the model through
the standard parametric form.

I However, it is possible to express parametric as GPs:

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
.

I These are known as degenerate covariance matrices.
I Their rank is at most m, non-parametric models have full

rank covariance matrices.
I Most well known is the “linear kernel”, k(xi, x j) = x>i x j.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction
can be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless
of the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction
can be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless
of the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction
can be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless
of the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction
can be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless
of the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction
can be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless
of the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.

I the kernel perspective does not make a probabilistic
interpretation of the covariance function.

I Algorithms can be simpler, but probabilistic interpretation
is crucial for kernel parameter optimization.

Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.
I the kernel perspective does not make a probabilistic

interpretation of the covariance function.

I Algorithms can be simpler, but probabilistic interpretation
is crucial for kernel parameter optimization.

Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.
I the kernel perspective does not make a probabilistic

interpretation of the covariance function.
I Algorithms can be simpler, but probabilistic interpretation

is crucial for kernel parameter optimization.

Outline

Parametric Models are a Bottleneck

Constructing Covariance

GP Limitations

Kalman Filter

Constructing Covariance Functions

I Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)

Constructing Covariance Functions

I Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)

Multiply by Deterministic Function

I If f (x) is a Gaussian process.
I g(x) is a deterministic function.
I h(x) = f (x)g(x)
I Then

kh(x, x′) = g(x)k f (x, x′)g(x′)

where kh is covariance for h(·) and k f is covariance for f (·).

Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4

Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4

Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1

Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Noise

I Gaussian noise model,

p
(
yi| fi

)
= N

(
yi| fi, σ2

)
where σ2 is the variance of the noise.

I Equivalent to a covariance function of the form

k(xi, x j) = δi, jσ
2

where δi, j is the Kronecker delta function.
I Additive nature of Gaussians means we can simply add

this term to existing covariance matrices.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure : Examples include WiFi localization, C14 callibration curve.

General Noise Models

Graph of a GP
I Relates input variables,

X, to vector, y, through f
given kernel parameters
θ.

I Plate notation indicates
independence of yi| fi.

I In general p
(
yi| fi

)
is

non-Gaussian.
I We approximate with

Gaussian
p
(
yi| fi

)
≈ N

(
mi| fi, β−1

i

)
.

yi

X

fi

θ

i = 1 . . . n

Figure : The Gaussian process
depicted graphically.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p
(

f∗|X, x∗,y
)

Figure : Inclusion of a data point with Gaussian noise.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0.6| f∗

)

Figure : Inclusion of a data point with Gaussian noise.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0.6| f∗

)
p
(

f∗|X, x∗,y, y∗
)

Figure : Inclusion of a data point with Gaussian noise.

Expectation Propagation

Local Moment Matching

I Easiest to consider a single previously unseen data point,
y∗, x∗.

I Before seeing data point, prediction of f∗ is a GP, q
(

f∗|y,X
)
.

I Update prediction using Bayes’ Rule,

p
(

f∗|y, y∗,X, x∗
)

=
p
(
y∗| f∗

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

) .

This posterior is not a Gaussian process if p
(
y∗| f∗

)
is

non-Gaussian.

Classification Noise Model

Probit Noise Model

0

0.5

1

-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1

Figure : The probit model (classification). The plot shows p
(
yi| fi

)
for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.

Expectation Propagation II

Match Moments

I Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

I This is equivalent to minimizing the following KL
divergence where q

(
f∗|y, y∗,X, x∗

)
is constrained to be a GP.

q
(

f∗|y, y∗X, x∗
)

= argminq(f∗ |y,y∗X,x∗)KL
(
p
(

f∗|y, y∗X, x∗
)
||q

(
f∗|y, y∗,X, x∗

))
I This is equivalent to setting〈

f∗
〉

q(f∗|y,y∗,X,x∗) =
〈

f∗
〉

p(f∗|y,y∗,X,x∗)〈
f 2
∗

〉
q(f∗|y,y∗,X,x∗)

=
〈

f 2
∗

〉
p(f∗|y,y∗,X,x∗)

Expectation Propagation III

Equivalent Gaussian

I This is achieved by replacing p
(
y∗| f∗

)
with a Gaussian

distribution

p
(

f∗|y, y∗,X, x∗
)

=
p
(
y∗| f∗

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

)
becomes

q
(

f∗|y, y∗,X, x∗
)

=
N

(
m∗| f∗, β−1

m

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

) .

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

Figure : An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 1| f∗

)

Figure : An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 1| f∗

)
p
(

f∗|X, x∗,y, y∗
)

Figure : An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 1| f∗

)
p
(

f∗|X, x∗,y, y∗
)

q
(

f∗|X, x∗,y
)

Figure : An EP style update with a classification noise model.

Ordinal Noise Model

Ordered Categories

0

0.5

1

-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1yi = 0

Figure : The ordered categorical noise model (ordinal regression).
The plot shows p

(
yi| fi

)
for different values of yi. Here we have

assumed three categories.

Laplace Approximation

I Equivalent Gaussian is found by making a local 2nd order
Taylor approximation at the mode.

I Laplace was the first to suggest this1, so it’s known as the
Laplace approximation.

Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

1
2
exp

(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

1
2
exp

(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN
(
y|0,K

)
=−

1
2

log |K|−
y>K−1y

2
−

n
2

log 2π

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Learning Covariance Parameters
Can we determine covariance parameters from the data?

E(θ) =
1
2

log |K| +
y>K−1y

2

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RΛ2R>

λ1
λ2

Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣∣Λ2

∣∣∣ = |Λ|2.

Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =

Capacity control: log |K|

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2 |Λ|
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0 0

0 λ2 0

0 0 λ3
λ1

λ2 |Λ|
Λ =

Capacity control: log |K|

|Λ| = λ1λ2λ3

λ1 0 0

0 λ2 0

0 0 λ3
λ1

λ2

λ3

|Λ|
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2 |Λ|
Λ =

Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1
λ2

|Λ|
RΛ =

Data Fit: y>K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1

λ2

Data Fit: y>K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1

λ2

Data Fit: y>K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1
λ2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Gene Expression Example

I Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

I Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).

RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression
Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and

* Correspondence: A.Kalaitzis@sheffield.ac.uk; N.Lawrence@dcs.shef.ac.uk
The Sheffield Institute for Translational Neuroscience, 385A Glossop Road,
Sheffield, S10 2HQ, UK

Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

© 2011 Kalaitzis and Lawrence; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2105/12/180

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

Contour plot of Gaussian process likelihood.

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

-1

-0.5

0

0.5

1

0 50100150200250300

y(
x)

x

Optima: length scale of 1.2221 and log10 SNR of 1.9654 log
likelihood is -0.22317.

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

-1

-0.5

0

0.5

1

0 50100150200250300

y(
x)

x

Optima: length scale of 1.5162 and log10 SNR of 0.21306 log
likelihood is -0.23604.

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 50100150200250300

y(
x)

x

Optima: length scale of 2.9886 and log10 SNR of -4.506 log
likelihood is -2.1056.

Outline

Parametric Models are a Bottleneck

Constructing Covariance

GP Limitations

Kalman Filter

Limitations of Gaussian Processes

I Inference is O(n3) due to matrix inverse (in practice use
Cholesky).

I Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in
images).

I Widely used exponentiated quadratic covariance (RBF) can
be too smooth in practice (but there are many
alternatives!!).

Outline

Parametric Models are a Bottleneck

Constructing Covariance

GP Limitations

Kalman Filter

Simple Markov Chain

I Assume 1-d latent state, a vector over time, x = [x1 . . . xT].
I Markov property,

xi =xi−1 + εi,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

I Initial state,
x0 ∼ N (0, α0)

I If x0 ∼ N (0, α) we have a Markov chain for the latent states.
I Markov chain it is specified by an initial distribution

(Gaussian) and a transition distribution (Gaussian).

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x0 = 0.000, ε1 = −2.24

x1 = 0.000 − 2.24 = −2.24

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x1 = −2.24, ε2 = 0.457

x2 = −2.24 + 0.457 = −1.78

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x2 = −1.78, ε3 = 0.178

x3 = −1.78 + 0.178 = −1.6

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x3 = −1.6, ε4 = −0.292

x4 = −1.6 − 0.292 = −1.89

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x4 = −1.89, ε5 = −0.501

x5 = −1.89 − 0.501 = −2.39

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x5 = −2.39, ε6 = 1.32

x6 = −2.39 + 1.32 = −1.08

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x6 = −1.08, ε7 = 0.989

x7 = −1.08 + 0.989 = −0.0881

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x7 = −0.0881, ε8 = −0.842

x8 = −0.0881 − 0.842 = −0.93

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x8 = −0.93, ε9 = −0.41

x9 = −0.93 − 0.410 = −1.34

Multivariate Gaussian Properties: Reminder

If
z ∼ N

(
µ,C

)
and

x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)

Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x1 = ε1

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x2 = ε1 + ε2

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x3 = ε1 + ε2 + ε3

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x4 = ε1 + ε2 + ε3 + ε4

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x5 = ε1 + ε2 + ε3 + ε4 + ε5

Matrix Representation of Latent Variables

x εL1 ×=

Multivariate Process

I Since x is linearly related to εwe know x is a Gaussian
process.

I Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.

Latent Process Mean

x = L1ε

Latent Process Mean

〈x〉 = 〈L1ε〉

Latent Process Mean

〈x〉 = L1 〈ε〉

Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)

Latent Process Mean

〈x〉 = L10

Latent Process Mean

〈x〉 = 0

Latent Process Covariance

xx> = L1εε>L>1
x> = ε>L>

Latent Process Covariance

〈
xx>

〉
=

〈
L1εε>L>1

〉

Latent Process Covariance

〈
xx>

〉
= L1

〈
εε>

〉
L>1

Latent Process Covariance

〈
xx>

〉
= L1

〈
εε>

〉
L>1

ε ∼ N (0, αI)

Latent Process Covariance

〈
xx>

〉
= αL1L>1

Latent Process

x = L1ε

Latent Process

x = L1ε

ε ∼ N (0, αI)

Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

x ∼ N
(
0, αL1L>1

)

Covariance for Latent Process II

I Make the variance dependent on time interval.
I Assume variance grows linearly with time.
I Justification: sum of two Gaussian distributed random

variables is distributed as Gaussian with sum of variances.
I If variable’s movement is additive over time (as described)

variance scales linearly with time.

Covariance for Latent Process II

I Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)

K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.

Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.

-3
-2
-1
0
1
2
3

0 0.5 1 1.5 2

Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

I Precision matrix is not
sparse.

I Each point is dependent
on all the others.

I In this case
non-Markovian.

Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.

Simple Kalman Filter I

I We have state vector X =
[
x1 . . . xq

]
∈ RT×q and if each state

evolves independently we have

p(X) =

q∏
i=1

p(x:,i)

p(x:,i) = N
(
x:,i|0,K

)
.

I We want to obtain outputs through:

yi,: = Wxi,:

Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =

x:,1
x:,2
...

x:,q

Kronecker Product

aK bK
cK dK

Ka b

c d
⊗ =

Kronecker Product

⊗ =

Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =

x:,1
x:,2
...

x:,q

Column Stacking

⊗ =

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

Two Ways of Stacking

Can also stack each row of X to form column vector:

x =

x1,:
x2,:
...

xT,:

p(x) = N (x|0,K ⊗ I)

Row Stacking

⊗ =

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

Observed Process

The observations are related to the latent points by a linear
mapping matrix,

yi,: = Wxi,: + εi,:

ε ∼ N
(
0, σ2I

)

Mapping from Latent Process to Observed

Wx1,:

Wx2,:

Wx3,:

x1,:

x2,:

x3,:

W 0 0

0 W 0

0 0 W

× =

Output Covariance

This leads to a covariance of the form

(I ⊗W)(K ⊗ I)(I ⊗W>) + Iσ2

Using (A ⊗ B)(C ⊗D) = AC ⊗ BD This leads to

K ⊗WW> + Iσ2

or
y ∼ N

(
0,WW>

⊗K + Iσ2
)

Kernels for Vector Valued Outputs: A Review

Foundations and TrendsR© in
Machine Learning
Vol. 4, No. 3 (2011) 195–266
c© 2012 M. A. Álvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561/2200000036

Kernels for Vector-Valued
Functions: A Review

By Mauricio A. Álvarez,

Lorenzo Rosasco and Neil D. Lawrence

Contents

1 Introduction 197

2 Learning Scalar Outputs

with Kernel Methods 200

2.1 A Regularization Perspective 200

2.2 A Bayesian Perspective 202

2.3 A Connection Between Bayesian

and Regularization Points of View 205

3 Learning Multiple Outputs with

Kernel Methods 207

3.1 Multi-output Learning 207

3.2 Reproducing Kernel for Vector-Valued Functions 209

3.3 Gaussian Processes for Vector-Valued Functions 211

4 Separable Kernels and Sum of Separable Kernels 213

4.1 Kernels and Regularizers 214

4.2 Coregionalization Models 217

4.3 Extensions 228

Kronecker Structure GPs

I This Kronecker structure leads to several published
models.

(K(x, x′))d,d′ = k(x, x′)kT(d, d′),

where k has x and kT has n as inputs.
I Can think of multiple output covariance functions as

covariances with augmented input.
I Alongside x we also input the d associated with the output

of interest.

Separable Covariance Functions

I Taking B = WW> we have a matrix expression across
outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite
matrix.

I B is called the coregionalization matrix.
I We call this class of covariance functions separable due to

their product structure.

Sum of Separable Covariance Functions

I In the same spirit a more general class of kernels is given by

K(x, x′) =

q∑
j=1

k j(x, x′)B j.

I This can also be written as

K(X,X) =

q∑
j=1

B j ⊗ k j(X,X),

I This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

I We call this class of kernels sum of separable kernels (SoS
kernels).

Geostatistics

I Use of GPs in Geostatistics is called kriging.
I These multi-output GPs pioneered in geostatistics:

prediction over vector-valued output data is known as
cokriging.

I The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

I Most machine learning multitask models can be placed in
the context of the LMC model.

Weighted sum of Latent Functions

I In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

I In the LMC, each component fd is expressed as a linear sum

fd(x) =

q∑
j=1

wd, ju j(x).

where the latent functions are independent and have
covariance functions k j(x, x′).

I The processes { f j(x)}qj=1 are independent for q , j′.

Kalman Filter Special Case

I The Kalman filter is an example of the LMC where
ui(x)→ xi(t).

I I.e. we’ve moved form time input to a more general input
space.

I In matrix notation:
1. Kalman filter

F = WX

2. LMC
F = WU

where the rows of these matrices F, X, U each contain q
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).

Intrinsic Coregionalization Model

I If one covariance used for latent functions (like in Kalman
filter).

I This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

I The kernel matrix corresponding to a dataset X takes the
form

K(X,X) = B ⊗ k(X,X).

Autokrigeability

I If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x′) (Helterbrand
and Cressie, 1994).

I In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

I In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC in Machine Learning and Statistics

I Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

I Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.

I Setting B = Ip assumes outputs are conditionally
independent given the parameters θ. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

I More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.

Semiparametric Latent Factor Model

I Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X,X) =

q∑
j=1

w:, jw>:, j ⊗ k j(X,X).

I Like the Kalman filter, but each latent function has a
different covariance.

I Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Gaussian processes for Multi-task, Multi-output and
Multi-class

I Bonilla et al. (2008) suggest ICM for multitask learning.
I Use a PPCA form for B: similar to our Kalman filter

example.
I Refer to the autokrigeability effect as the cancellation of

inter-task transfer.
I Also discuss the similarities between the multi-task GP and

the ICM, and its relationship to the SLFM and the LMC.

Multitask Classification

I Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters φ
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

I Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

I Posterior distribution is no longer analytically tractable:
approximate inference is required.

Computer Emulation

I A statistical model used as a surrogate for a
computationally expensive computer model.

I Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

I In Conti and O’Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).

References I

E. V. Bonilla, K. M. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In J. C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, Cambridge, MA,
2008. MIT Press.

S. Conti and A. O’Hagan. Bayesian emulation of complex multi-output and dynamic computer models. Journal of
Statistical Planning and Inference, 140(3):640–651, 2009. [DOI].

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the
trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.
Genome Research, 18(6):939–948, Jun 2008. [URL]. [DOI].

P. Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press, 1997. [Google Books] .

J. D. Helterbrand and N. A. C. Cressie. Universal cokriging under intrinsic coregionalization. Mathematical Geology,
26(2):205–226, 1994.

D. M. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high dimensional output.
Journal of the American Statistical Association, 103(482):570–583, 2008.

A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, London, 1978. [Google Books] .

A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time
courses through Gaussian process regression. BMC Bioinformatics, 12(180), 2011. [DOI].

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In R. Greiner and
D. Schuurmans, editors, Proceedings of the International Conference in Machine Learning, volume 21, pages 512–519.
Omnipress, 2004. [PDF].

T. P. Minka and R. W. Picard. Learning how to learn is learning with point sets. Available on-line., 1997. [URL].
Revised 1999, available at http://www.stat.cmu.edu/˜{}minka/.

J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer model outputs.
Biometrika, 89(4):769–784, 2002.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006.
[Google Books] .

M. Seeger and M. I. Jordan. Sparse Gaussian Process Classification With Multiple Classes. Technical Report 661,
Department of Statistics, University of California at Berkeley,

http://dx.doi.org/doi:10.1016/j.jspi.2009.08.006
http://dx.doi.org/10.1101/gr.073601.107
http://dx.doi.org/10.1101/gr.073601.107
http://books.google.com/books?as_isbn=0-19-511538-4
http://books.google.com/books?as_isbn=0-12391-050-1
http://dx.doi.org/10.1186/1471-2105-12-180
ftp://ftp.dcs.shef.ac.uk/home/neil/mtivm.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/point-sets.html
http://www.stat.cmu.edu/~{ }minka/
http://books.google.com/books?as_isbn=0-262-18253-X

References II

G. Skolidis and G. Sanguinetti. Bayesian multitask classification with Gaussian process priors. IEEE Transactions on
Neural Networks, 22(12):2011 – 2021, 2011.

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani,
editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333–340,
Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.

H. Wackernagel. Multivariate Geostatistics: An Introduction With Applications. Springer-Verlag, 3rd edition, 2003.
[Google Books] .

C. K. Williams and D. Barber. Bayesian Classification with Gaussian processes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(12):1342–1351, 1998.

I. Woodward, M. R. Lomas, and R. A. Betts. Vegetation-climate feedbacks in a greenhouse world. Philosophical
Transactions: Biological Sciences, 353(1365):29–39, 1998.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple tasks. In Proceedings of the 22nd
International Conference on Machine Learning (ICML 2005), pages 1012–1019, 2005.

http://books.google.com/books?as_isbn=3-540-44142-5

	Parametric Models are a Bottleneck
	Parametric Models are a Bottleneck

	Constructing Covariance
	GP Interpolation
	GP Regression
	GP Non-Gaussian
	Parameter Optimization

	GP Limitations
	Kalman Filter

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	anm2:

