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This talk will develop Bayesian quadrature 
approaches to building ensembles of models 
for big and complex data. 



For big and complex 
data, it is difficult to 
pick the right model 
parameters. 



Modelling data requires fitting parameters, 
such as the a and b of y = a x + b. 



The performance of ‘non-parametric’ models 
is sensitive to the selection of 
hyperparameters. 



Evaluating the quality of model fit (or the 
likelihood) is expensive for big data. 

error 



Assuming correlated errors, computation cost 
will be supralinear in the number of data.  
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Complex models and real data often lead to 
multi-modal likelihood functions.  
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Optimisation (as in maximum likelihood or 
least squares), gives a reasonable heuristic for 
exploring the likelihood. 



The naïve fitting of models to data performed 
by maximum likelihood can lead to overfitting. 



Bayesian averaging over ensembles of 
models reduces overfitting, and provides more 
honest estimates of uncertainty. 



Averaging requires integrating over the many 
possible states of the world consistent with 
data: this is often non-analytic.  
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There are many different approaches to 
quadrature (numerical integration); integrand 
estimation is undervalued by most.  
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Maximum likelihood is an unreasonable way of 
estimating a multi-modal or broad likelihood 
integrand. 
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Monte Carlo schemes give powerful methods 
of exploration that have  
revolutionised Bayesian inference. 
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Monte Carlo schemes give a reasonable 
method of exploration, but an unsound  
means of integrand estimation. 



Monte Carlo schemes have some other 
potential issues: 

some parameters 
must be hand-tuned; 

convergence 
diagnostics are 
often unreliable. 



Bayesian quadrature 
provides optimal 
ensembles of 
models for big data.  



Bayesian quadrature gives a powerful method 
for estimating the integrand: a Gaussian 
process. 
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Gaussian distributed variables are joint 
Gaussian with any affine transform of them.  



A function over which we have a Gaussian 
process is joint Gaussian with any integral or 
derivative of it, as integration and 
differentiation are linear. 



We can use observations of an integrand ℓ in 
order to perform inference for its integral, Z: 
this is known as Bayesian Quadrature. 
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Bayesian quadrature makes best use of our 
evaluations of model fit, important for big data, 
where such evaluations are expensive.  



Consider the 
integral 
                   
                                   . 
Bayesian 
quadrature 
achieves more 
accurate results 
than Monte Carlo, 
and provides an 
estimate of our 
uncertainty. 



Bayesian quadrature promises solutions to 
some of the issues of Monte Carlo: 

hyper-parameters 
can be automatically 
set by maximum 
likelihood; 

the variance in the 
integral is a natural 
convergence 
diagnostic. 



We use a Laplace approximation to 
marginalise the hyperparameters of the 
Gaussian process model. 



We really want to use a Gaussian process to 
model the log-likelihood, rather than the 
likelihood. 

Doing so better captures the dynamic range of 
likelihoods, and extends the correlation range. 



Using a Gaussian process for the log-likelihood 
means that the distribution for the integral of 
the likelihood is no longer analytic. 

log-likelihood at x1 

lo
g-

lik
el

ih
oo

d 
at

 x
2 p( log-likelihood ) 

∑ exp( log-likelihood ) 



We could 
linearise the 
likelihood as a 
function of the 
log-likelihood. 
This renders the 
likelihood and 
log-likelihood 
jointly part of 
one Gaussian 
process (along 
with integrals). 



However, this linearisation is typically poor for 
the extreme log transform.  
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Figure 2: The �2 process, alongside moment matched (WSABI-M) and linearised approxi-
mations (WSABI-L). Notice that the WSABI-L mean is nearly identical to the ground truth.

tainty about either the total integrand surface or the integral. Let us define this next sample location
to be x⇤, and the associated likelihood to be `⇤ :

= `(x⇤). Two utility functions immediately present
themselves as natural choices, which we consider below. Both options are appropriate for either of
the approximations to p(`) described above.

4.1 Minimizing expected entropy

One possibility would be to follow [12] in minimising the expected entropy of the integral, by
selecting x⇤ = argmin

x⇤
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4.2 Uncertainty sampling

Alternatively, we can target the reduction in entropy of the total integrand `(x)⇡(x) instead, by
targeting x⇤ = argmax
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V
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in the case of our moment matched approximation, and, under the linearisation approximation,
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Note that the uncertainty sampling option reduces the entropy of our GP approximation to p(`) rather
than the true (intractable) distribution. The computation of either (14) or (15) is considerably cheaper
and more numerically stable than that of (13). Notice that as our model builds in greater uncertainty
in the likelihood where it is high, it will naturally balance sampling in entirely unexplored regions
against sampling in regions where the likelihood is expected to be high. Our model (the square-
root transform) is more suited to the use of uncertainty sampling than the model taken in [12].
This is because the approximation to the posterior variance is typically poorer for the extreme log-
transform than for the milder square-root transform. This means that, although the log-transform
would achieve greater reduction in dynamic range than any power transform, it would also introduce
the most error in approximating the posterior predictive variance of `(x). Hence, on balance, we
consider the square root transform superior for our sampling scheme.

Figures 3–4 illustrate the result of square-root Bayesian quadrature, conditioned on 15 samples
selected sequentially under utility functions (14) and (15) respectively. Note that in both cases the
posterior mean has not been scaled by the prior ⇡(x) (but the variance has). This is intended to
exaggerate the contributions to the mean made by WSABI-M.

5

Rather than the log, we model the square-root 
(WSABI), which is more amenable to 
linearisation. 



Doubly-Bayesian quadrature (BBQ) additionally 
explores the integrand so as to minimise the 
uncertainty about the integral. 

Integrand 
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Doubly-Bayesian Quadrature (BBQ)  
selects efficient samples, but the computation 
of the expected reduction in integral variance 
is extremely costly. 



Our linearisation implies we are more 
uncertain about large likelihoods than small 
likelihoods. 
 
 
 
 
 
 
 
 
Hence selecting samples with large variance 
promotes both exploration and exploitation.  



Our method (Warped Sequential Active 
Bayesian Integration) converges quickly in 
wall-clock time for a synthetic integrand. 
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Figure 5: Time in seconds versus average
fractional error compared to the ground truth
integral, as well as empirical 1 standard error
bounds, derived from the variance over the
16 runs. WSABI-M performed slightly better.
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Figure 6: Time in seconds versus average
likelihood of the ground truth integral over
16 runs. WSABI-M has a significantly larger
variance estimate for the integral as com-
pared to WSABI-L.

others (and does not begin at 0). The ‘hottest’ proposal distribution for AIS was a Gaussian centered
on the prior mean, with variance tuned down from a maximum of the prior variance.
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Figure 7: Log-marginal likelihood of GP regression on the yacht hydrodynamics dataset.

Figure 7 shows the speed with which WSABI converges to a value very near ground truth compared
to the rest. AIS performs rather disappointingly on this problem, despite our best attempts to tune
the proposal distribution to achieve higher acceptance rates.

Although the first datapoint (after 10 000 samples) is the second best performer after WSABI, further
compute budget does very little to improve the final AIS estimate. BMC is by far the worst performer.
This is because it has relatively few samples compared to SMC, and those samples were selected
completely at random over the domain. It also uses a GP prior directly on the likelihood, which due
to the large dynamic range will have a poor predictive performance.

5.3 Marginal Likelihood of GP Classification

We fit a Gaussian process classification model to both a one dimensional synthetic dataset, as well as
real-world binary classification problem defined on the nodes of a citation network [16]. The latter
has a 4-dimensional input space and 500 examples. We use a probit likelihood model, inferring the
function values using a Laplace approximation. Once again we marginalise out the hyperparameters.
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WSABI-L converges more quickly than 
Annealed Importance Sampling in integrating 
out eight hyperparameters in a Gaussian 
process regression problem (yacht). 
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Figure 5: Time in seconds versus average
fractional error compared to the ground truth
integral, as well as empirical 1 standard error
bounds, derived from the variance over the
16 runs. WSABI-M performed slightly better.
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Figure 6: Time in seconds versus average
likelihood of the ground truth integral over
16 runs. WSABI-M has a significantly larger
variance estimate for the integral as com-
pared to WSABI-L.

others (and does not begin at 0). The ‘hottest’ proposal distribution for AIS was a Gaussian centered
on the prior mean, with variance tuned down from a maximum of the prior variance.
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Figure 7: Log-marginal likelihood of GP regression on the yacht hydrodynamics dataset.

Figure 7 shows the speed with which WSABI converges to a value very near ground truth compared
to the rest. AIS performs rather disappointingly on this problem, despite our best attempts to tune
the proposal distribution to achieve higher acceptance rates.

Although the first datapoint (after 10 000 samples) is the second best performer after WSABI, further
compute budget does very little to improve the final AIS estimate. BMC is by far the worst performer.
This is because it has relatively few samples compared to SMC, and those samples were selected
completely at random over the domain. It also uses a GP prior directly on the likelihood, which due
to the large dynamic range will have a poor predictive performance.

5.3 Marginal Likelihood of GP Classification

We fit a Gaussian process classification model to both a one dimensional synthetic dataset, as well as
real-world binary classification problem defined on the nodes of a citation network [16]. The latter
has a 4-dimensional input space and 500 examples. We use a probit likelihood model, inferring the
function values using a Laplace approximation. Once again we marginalise out the hyperparameters.
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5.4 Synthetic Binary Classification Problem

We generate 500 binary class samples using a 1D input space. The GP classification scheme imple-
mented in Gaussian Processes for Machine Learning Matlab Toolbox (GPML) [17] is employed using
the inference and likelihood framework described above. We marginalise over the three-dimensional
hyperparameter space of: an output length-scale, an input length-scale and a ‘jitter’ parameter. We
again test against BMC, AIS and SMC. Ground truth was found through 100 000 SMC samples.

This time the acceptance rate for AIS was significantly higher, and it is visibly converging to the
ground truth in Figure 8, albeit in a more noisy fashion than the rest. WSABI-L performs particularly
well, almost immediately converging to the ground truth, and reaching a tighter bound than SMC
in the long run. BMC performs well on this particular example, suggesting that the active sampling
approach did not buy many gains on this occasion. Despite this, the square-root approaches both
converge to a more accurate solution with lower variance than BMC. This suggests that the square-
root transform model generates significant added value, even without an active sampling scheme.

5.5 Real Binary Classification Problem

For our next experiment, we again used our method to calculate the model evidence of a GP model
with a probit likelihood, this time on a real dataset.

The dataset, first described in [16], was a graph from a subset of the CiteSeerx citation network.
Papers in the database were grouped based on their venue of publication, and papers from the 48
venues with the most associated publications were retained. The graph was defined by having these
papers as its nodes and undirected citation relations as its edges. We designated all papers appearing
in NIPS proceedings as positive observations. To generate Euclidean input vectors, the authors per-
formed “graph principal component analysis” on this network [18]; here, we used the first 4 graph
principal components as inputs to a GP classifier. The dataset was subsampled down to a set of 500
examples in order to generate a cheap likelihood, half of which were positive.
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Figure 8: Log-marginal likelihood for GP
classification—synthetic dataset.
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Figure 9: Log-marginal likelihood for GP
classification—graph dataset.

Across all our results, it is noticeable that WSABI-M typically performs worse relative to WSABI-L as
the dimensionality of the problem increases. This is due to an increased propensity for exploration
as compared to WSABI-L. WSABI-L is the fastest method to converge on all test cases, apart from the
synthetic mixture model surfaces where WSABI-M performed slightly better (although this was not
shown in Fig 5). These results suggest that an active-sampling policy which aggressively exploits
areas of probability mass before exploring further afield may be the most appropriate approach to
Bayesian Quadrature for real likelihoods.

6 Conclusions

We introduced the first fast Bayesian quadrature scheme, using a novel warped likelihood model
and a novel active sampling scheme. Our method, WSABI, demonstrates faster convergence (in
wall-clock time) for regression and classification benchmarks than the Monte Carlo state-of-the-art.
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WSABI-L converges quickly in integrating out 
hyperparameters in a Gaussian process 
classification problem (CiteSeerx data). 



Active Bayesian 
quadrature gives optimal 
averaging over models for 
big and complex data.  



Bayesian quadrature is an example of 
probabilistic numerics: the study of numeric 
methods as learning algorithms. 



With Bayesian quadrature, we can also 
estimate integrals to compute posterior 
distributions for any hyperparameters.  



Complex data with 
anomalies, 
changepoints and faults 
demands model 
averaging.  



In considering data with changepoints and 
faults, we must entertain multiple hypotheses 
using Bayesian quadrature. 



Changepoint covariances feature 
hyperparameters, for which we can produce 
posterior distributions using quadrature. 

Changepoint detection requires the posterior 
for the changepoint location hyperparameter. 
 

input scale pre-changepoint 

input scale post-changepoint 

changepoint location 



We can perform both prediction and 
changepoint detection using Bayesian 
quadrature. 



We can build covariances to accommodate 
faults, a common challenge in sensor 
networks.  



We use algorithms capable of spotting hidden 
patterns and anomalies in on-line data.  



We identify the OPEC embargo in Oct 1973 
and the resignation of Nixon in Aug 1974.  

time 
since 
last 
change 



We use algorithms capable of spotting hidden 
patterns and anomalies in on-line data.  

Nile flood 
levels 



Our algorithm detects a possible change in 
measurement noise in AD715. 



We detect the Nilometer built in AD 715. 



Saccades (sudden eye movements) introduce 
spurious peaks into EEG data. 
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Fig. 14. Original EEG signal (dots) and difference (line) between original
signal and the mean EEG* obtained using the GP mixture model approach.
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We can perform honest prediction for this 
complex signal during saccade anomalies.  



Wannengrat hosts a remote weather sensor 
network used for climate change science, for 
which observations are costly. 



Our algorithm acquires more data during 
interesting volatile periods.  



Bayesian quadrature has 
enabled changepoint 

detection through efficient 
model averaging. 



Global optimisation considers objective 
functions that are multi-modal and expensive 
to evaluate.  



By defining the costs of observation and 
uncertainty, we can select evaluations 
optimally by minimising the expected loss with 
respect to a probability distribution.  

input 
x 

 
objective  

function y(x) 

output 
y 

 
 



We choose a Gaussian process as the 
probability distribution for the objective 
function, giving a tractable expected loss. 



Our Gaussian process is specified by hyper-
parameters λ and σ, giving expected length scales of 
the function in output and input spaces respectively. 

λ2 

σ 

λ 

σ 



Management of hyperparameters is important 
for optimisation: we start with no data! 
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Management of hyperparameters is important 
for optimisation: we start with no data! 


