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This talk will develop Bayesian quadrature
approaches to building ensembles of models
for big and complex data.
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For big and complex
data, it is difficult to
pick the right model
parameters.




Modelling data requires fitting parameters,

suchastheagand bofy=ax+Db.
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The performance of ‘non-parametric’ models

IS sensitive to the selection of

hyperparameters.
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Evaluating the quality of model fit (or the
likelihood) is expensive for big data.
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Assuming correlated errors, computation cost
will be supralinear in the number of data.
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Complex models and real data often lead to

multi-modal likelihood functions.
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Optimisation (as in
gives a reasonable heuristic for

exploring the likelihood.
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The naive fitting of models to data performed

by maximum likelihood can lead to overfitting.
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Bayesian averaging over ensembles of
models reduces overfitting, and provides more

honest estimates of uncertainty.
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over the many

possible states of the world consistent with
data: this is often non-analytic.
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There are many different approaches to
quadrature (hnumerical integration); integrand

estimation is undervalued by most.
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Maximum likelihood is an
a multi-modal or broad likelihood

integrand.
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Monte Carlo schemes give powerful methods
of exploration that have

revolutionised Bayesian inference.
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Monte Carlo schemes give a reasonable
method of exploration, but an
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Monte Carlo schemes have some other
potential issues:

some parameters
must be hand-tuned;

convergence
. diagnostics are
often unreliable.
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provides optimal

ensembles of
models for big data.




Bayesian quadrature gives a powerful method

for estimating the integrand: a Gaussian
Process.
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Gaussian distributed variables are joint
Gaussian with any affine transform of them.
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A function over which we have a Gaussian
process is joint Gaussian with any integral or
derivative of it, as integration and
differentiation are linear.
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We can use observations of an integrand £ in
order to perform inference for its
this is known as

x samples
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Bayesian quadrature makes best use of our
evaluations of model fit, important for big data,

where such evaluations are expensive.
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Consider the
integral

P = f5exp(—x7)d
Bayesian
quadrature

achieves more
accurate results

than Monte Carlo,

and provides an
estimate of our
uncertainty.
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Bayesian quadrature promises solutions to
some of the issues of Monte Carlo:

hyper-parameters
can be automatically
set by maximum
likelihood,;

= the variance in the
- integral is a natural
convergence
diagnostic.
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We use a Laplace approximation to
marginalise the hyperparameters of the

Gaussian process model.
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We really want to use a Gaussian process to

model the log-likelihood, rather than the

likelihood.
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Doing so better captures the dynamic range of
likelihoods, and
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Using a Gaussian process for the log-likelihood

means that the distribution for the integral of
the likelihood is no longer analytic.
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likelihood

likelihood
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We could
linearise the
likelihood as a
function of the
log-likelihood.
This renders the
likelihood and
log-likelihood
jointly part of
one Gaussian
process (along
with integrals).
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However, this linearisation is typically poor for

the extreme log transform.
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Rather than the log, we model the square-root
(WSABI), which is more amenable to

linearisation.
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Doubly-Bayesian quadrature (BBQ) additionally
explores the integrand so as to minimise the
uncertainty about the integral.

expected variance

Sample
number
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Doubly-Bayesian Quadrature (BBQ)
selects efficient samples, but the computation

of the expected reduction in integral variance
IS extremely costly.
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Our linearisation implies we are more
uncertain about large likelihoods than small
likelihoods.
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Hence selecting samples with large variance
promotes both exploration and exploitation.




Our method (Warped Sequential Active
Bayesian Integration) converges quickly in

wall-clock time for a synthetic integrand.
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WSABI-L converges more quickly than
Annealed Importance Sampling in integrating

out eight hyperparameters in a Gaussian
process regression problem (yacht).
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WSABI-L converges quickly in integrating out

hyperparameters in a Gaussian process
cIaSS|f|cat|on oroblem ClteSeer data).
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Active Bayesian
quadrature gives optimal

averaging over models for
big and complex data.




Bayesian quadrature is an example of
probabilistic numerics: the study of numeric

methods as learning algorithms.
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PROBABILISTIC-NUMERICS.ORG

Numerical algorithms, such as methods for the num
differential equations, as well as optimization algorif
They estimate the value of a latent, intractable quar
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With Bayesian quadrature, we can also
estimate integrals to compute
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Complex data with
anomalies,
changepoints and faults

demands model
averaging.




In considering data with
we must entertain multiple hypotheses

using Bayesian quadrature.
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Changepoint covariances feature
hyperparameters, for which we can produce

posterior distributions using quadrature.

input scale pre-changepoint
Chm
1.2 ‘ . :

*—— changepoint location

K(460.x)

input scale post-changepoint

requires the posterior
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We can perform both prediction and
changepoint detection using Bayesian

quadrature.
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We can build covariances to accommodate

faults, a common challenge in sensor
networks.
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We use algorithms capable of spotting

in on-line data.
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We identify the OPEC embargo in Oct 1973

and the resignation of Nixon in Aug 1974.
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We use algorithms capable of spotting

in on-line data.

Nile flood
levels
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Our algorithm detects a possible change in

measurement noise in AD/15.
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We detect the built in AD 715.
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Saccades (sudden eye movements) introduce

spurious peaks into EEG data.
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We can perform honest prediction for this

complex signal
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Wannengrat hosts a remote weather sensor
network used for climate change science, for
which observations are costly.
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Our algorithm acquires more data during

interesting volatile periods.
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Bayesian quadrature has
enabled changepoint

detection through efficient
model averaging.




Global optimisation considers objective
functions that are multi-modal and expensive

to evaluate.

LGO Solution Space (MATLAB)
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By defining the costs of observation and
uncertainty, we can select evaluations
optimally by minimising the expected loss with
respect to a probability distribution.
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We choose a as the
probability distribution for the objective

function, giving a tractable expected loss.
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Our Gaussian process is specified by hyper-
parameters A and o, giving of
the function in output and input spaces respectively.




Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important
for optimisation: we start with no data!
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Management of hyperparameters is important

for optimisation: we start with no data!
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Management of hyperparameters is important

for optimisation: we start with no data!
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