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The Gaussian Distribution

The Gaussian distribution is given by
pxI L) = N(w, Z) = 2m) P2 2exp (— x—w) T2 ' (x—p))
where  is the mean vector and X the covariance matrix.
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Conditionals and Marginals of a Gaussian

—joint Gaussian

> —joint Gaussian
—conditional

—marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Rasmussen (Engineering, Cambridge) Gaussian Process Regression September 15-17th, 2014 4137



Conditionals and Marginals of a Gaussian

In algebra, if x and y are jointly Gaussian

s = N([3] [ ]

the marginal distribution of x is

pxy) = N([p] [4r &) = p0 = Na, 4),

and the conditional distribution of x given y is
A B —1 —1pT
pxy) = N([p] [ 57 ¢]) = p(xly) = N@+BC ' (y-b), A~BC'B"),

where x and y can be scalars or vectors.
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What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to

infinitely many variables.

Informally: infinitely long vector ~ function

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. O

A Gaussian distribution is fully specified by a mean vector, u, and covariance
matrix X:
f = (fi,....f)" ~N(wZX), indexesi=1,...,n

A Gaussian process is fully specified by a mean function m(x) and covariance
function k(x, x'):

f(x) ~ §P(m(x), k(x,x)), indexes: x
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The marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical. ..

... luckily we are saved by the marginalization property:

Recall:

For Gaussians:

pxy) = N([p | [ &) = px) = NG@ 4
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

p(f(x)) ~ GP(m(x) =0, k(x,x") = exp(—3(x —x)?)).

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f(x1),f(x2),...,f(x4)) T, for which

f ~ N(0,%),
where Z; = k(x;, x;).

Then plot the coordinates of f as a function of the corresponding x values.
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Some values of the random function
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Joint Generation

To generate a random sample from a D dimensional joint Gaussian with
covariance matrix K and mean vector m: (in octave or matlab)

= randn(D,1);
chol(K) ’*z + m;

< N
o

where chol is the Cholesky factor R such that RTR = K.

Thus, the covariance of y is:

El(y—y)(y—¥%)"] = E[R"2z'R] = R"E[zz"]R = R"IR = K.

Rasmussen (Engineering, Cambridge) Gaussian Process Regression September 15-17th, 2014 10/37



Sequential Generation

Factorize the joint distribution

n

plfi, - filxisoxa) = TGl i ox),

i=1
and generate function values sequentially.

What do the individual terms look like? For Gaussians:

a},{A B

pixy) = N([ o] [ 57 c]) = pixly) = Na+BC'(y-b), A-BC'BT)

Do try this at home!
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Function drawn at random from a Gaussian Process with Gaussian covariance

= W
OGO

ﬁllt.‘

yil
A

/]
ﬂ!'l )

Rasmussen (Engineering, Cambridge) Gaussian Process Regression September 15-17th, 2014 12/37



Maximum likelihood, parametric model

Supervised parametric learning:

e data: x,y
* model: y = fy(x) + ¢

Gaussian likelihood:

p(y\x, w, M,‘) X HCXP % fw xc /O_rzlmse)

Maximize the likelihood:

wymr = argmax p(ylx, w, M;).
w

Make predictions, by plugging in the ML estimate:
" Ix", war, M;)
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Bayesian Inference, parametric model

Supervised parametric learning:

e data: x,y
° model: y = fy(x) + ¢

Gaussian likelihood:

plylx,w, M;) x HeXp(*% — fwlxc)) /0%0156)

Parameter prior:
p(wiM;)

Posterior parameter distribution by Bayes rule p(alb) = p(bla)p(a)/p(b):

p(WIMi)p(ylx, w, M;)

p(wix,y, M;) = plylx, M;)
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Bayesian Inference, parametric model, cont.

Making predictions:

Pyl x 7, M,) = Jp(y*|w,x*,M,-)p<w|x,y, M,)dw

Marginal likelihood:

plylx, M,) = Jp(w\Mi)p(wx,w,Mi)dw.

Model probability:
p(Mi)p(ylx, M;)

p(Mix,y) = p(yI%)

Problem: integrals are intractable for most interesting models!
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Non-parametric Gaussian process models
In our non-parametric model, the “parameters” are the function itself!

Gaussian likelihood:

ylx, f (), Mj ~ N(f, 0505.1)

nOlS(,

(Zero mean) Gaussian process prior:

f(x)IM; ~ §P(m(x) =0, k(x,x"))

Leads to a Gaussian process posterior

F(x)x,y, M; ~ GP(mpox(x) = k(x,X)[K(x,X) + 0ngie]] "y,
Rpost (%, x7) = k(x, x") — k(x, x) [K(x, X) + Opoieel] ' k(x, x7)).

And a Gaussian predictive distribution:
Yo, x,y, M ~ N(k(x*,x) T[K + 05 ]

noise

R(x*,x*) + 02 — k(x* ,x) K + 0Zie] 'k(x*, %))
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Prior and Posterior
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Predictive distribution:

PO x,y) ~ N(k(x", x) T [K+ opgi 171y,
R(x*, x*) + 0foise — k(x*, %) T [K + 071 Tk(x*, %))
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Factor Graph for Gaussian Process

training set
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A Factor Graph is a graphical representation
of a multivariate distribution.

Nodes are random variables, black boxes are
factors. The factors induce dependencies be-
tween the variables to which they have edges.
Open nodes are stochastic (free) and shaded
nodes are observed (clamped).Plates indicate
repetitions.

The predictive distribution for test case y(x}) depends only on the corresponding
latent variable f (x;‘).

Adding other variables (without observations) doesn’t change the distributions.
This explains why we can make inference using a finite amount of computation!
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Some interpretation

Recall our main result:

£X., X,y ~ N(K(X.., X)[K(X, X) + 020y,
K(X., X.) — K(X., X)[K(X, X) + 051 'K(X, X,)).

The mean is linear in two ways:
n(x,) = k(x,, X)K(X,X)+ 02] Z By = > ack(x., x
=1

The last form is most commonly encountered in the kernel literature.

The variance is the difference between two terms:

V(x.) = k(x,,x,) —k(x,, X)[K(X, X) 4+ o2 'k(X, x,),

the first term is the prior variance, from which we subtract a (positive) term,

telling how much the data X has explained. Note, that the variance is
independent of the observed outputs y.
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The marginal likelihood
Log marginal likelihood:

1 1
logplyhe, M) = 3y K 'y = 5 log|K| — 3 log(2m)

is the combination of a data fit term and complexity penalty. Occam’s Razor is

automatic.

Learning in Gaussian process models involves finding

e the form of the covariance function, and

* any unknown (hyper-) parameters 6.

This can be done by optimizing the marginal likelihood:

dlogp(ylx,0,M;)

1 oK
26; 2

26;

1 K
Kly— = trace(Kfla—)

T —1
K
Y 2 20,
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Example: Fitting the length scale parameter

A2
Parameterized covariance function: k(x, x’) = v exp ( - %) + 028

Characteristic Lengthscales

O too long
@ about right
O too short

function value, y

T T T T T
-10 -5 0 5 10

input, x

The posterior predictive density is plotted for 3 different length scales (the blue
curve corresponds to optimizing the marginal likelihood). Notice, that an almost
exact fit to the data can be achieved by reducing the length scale — but the
marginal likelihood does not favour this!
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Why, in principle, does Bayesian Inference work?
Occam’s Razor

A

P(YIM)

"just right"

All possible data sets
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An illustrative analogous example

Imagine the simple task of fitting the variance, o, of a zero-mean Gaussian to a
set of # scalar observations.

X HKRKHHKXK X

XXX R IOORK X

X XXXEIORK X X

The log likelihood is log p(ylu, 02) = —3y " Iy/o*—7 log |Io*| — % log(2m)
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From random functions to covariance functions

Consider the class of linear functions:
f(x) = ax+b, where a~N(0,«), and b~N(0,p).
We can compute the mean function:
x) = Elftx)] = [[fptap(b)dads = [axplarda-+ | bp(brdb =0,
and covariance function:
ko ') = EI(f(x) ~ 0)(£(x') 01 = [|(@x+ b)(ax + b)p(ap(b)dadb

=E
- Jazxx/p(a)da + J bp(b)db + (x + %) Jabp(a)p(b)dadb E——
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From random functions to covariance functions II

Consider the class of functions (sums of squared exponentials):

n—00

f(x) = lim %Zyiexp(—(x—i/n)z), where v; ~N(0,1), Vi

= JDO v(u) exp(—(x — u)*)du, where y(u) ~N(0,1), Vau.

The mean function is:
uix) = Elf(x)] = J exp(—(x—u)z)J vp(y)dydu = 0,

and the covariance function:

Elf(x)f(x")] = Jexp (= (x —u)* — (x" —u)*)du

(x —x")
7 )

Thus, the squared exponential covariance function is equivalent to regression

using infinitely many Gaussian shaped basis functions placed everywhere, not just

at your training points!
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Using finitely many basis functions may be dangerous!

-2 0 2 4 6 8 10
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Model Selection in Practise; Hyperparameters

There are two types of task: form and parameters of the covariance function.

Typically, our prior is too weak to quantify aspects of the covariance function.
We use a hierarchical model using hyperparameters. Eg, in ARD:

D 2
X4—X
k(X, XI) = U% exp (— E %), hyperparameters 0= (1/0, U1, ..., V4, O'ﬁ).
d=1 d

vi=v2=1 v1=v2=0.32 v1=0.32 and v2=1

i
;':Ift‘\\\\ !
0 ey;’i,‘jf:.o \\““\‘ \\\‘ b
f ‘o‘.t‘“\ \ b "//,‘\‘ il 'll"l' M‘l\ ‘\ \\
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Rational quadratic covariance function

The rational quadratic (RQ) covariance function:

2

bralr) = (14 5.5)

with «, £ > 0 can be seen as a scale mixture (an infinite sum) of squared
exponential (SE) covariance functions with different characteristic length-scales.

Using T = €2 and p(t|et, B) oc T ' exp(—ot/B):

krglr) = jpmoc, B ke (rir)dr
2

x J‘To‘fl exp (7 %T) exp (— T%)d’t x (1 + ﬁ)ﬂx,
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Rational quadratic covariance function II

PEEN

1 3
2,
0.8
§06 g
a9 =
g°
go4 31}
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0
0 3 -5

1
input distance

The limit o« — oo of the RQ covariance function is the SE.
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Matérn covariance functions

Stationary covariance functions can be based on the Matérn form:

k(x,x') = 1 [mlx—xll}vK\,(mlx—x/l),

N(v)2v-1L ¢ ¢
where K, is the modified Bessel function of second kind of order v, and { is the

characteristic length scale.

Sample functions from Matérn forms are |v — 1] times differentiable. Thus, the
hyperparameter v can control the degree of smoothness

Special cases:

* ky—1,2(r) = exp(—%): Laplacian covariance function, Browninan motion

(Ornstein- Uhlenbeck)
* ky_3,(r) = (1 + ‘[’) exp (— @) (once differentiable)
 ky_sp(r) = (14 ¥ + 35) exp (— ) (twice differentiable)

® ky oo = exp(—ﬁ): smooth (infinitely differentiable)
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Matérn covariance functions II

Univariate Matérn covariance function with unit characteristic length scale and
unit variance:

covariance function sample functions
1 V=1
— v=l

q) ~~~
2 — v=2 a2
g 0.5 5_
3 3

0

0 1 2 3 -5 0 5

input distance input, X
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Periodic, smooth functions

To create a distribution over periodic functions of x, we can first map the inputs
to u = (sin(x), cos(x)) ", and then measure distances in the # space. Combined
with the SE covariance function, which characteristic length scale £, we get:

kperiodic(xvx/) = CXP(—Z Sinl(n(x_xl))/el)

3 : 3
2 12
1 1o
ol
_l
ol
3 -1 0 1 > 3 -1 0 1 2

Three functions drawn at random; left £ > 1, and right £ < 1.
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The Prediction Problem
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Covariance Function

The covariance function consists of several terms, parameterized by a total of 11
hyperparameters:

* long-term smooth trend (squared exponential)

k(% x") = 8% exp(—(x —x')2/62),
e seasonal trend (quasi-periodic smooth)

ka(x,x') = 03exp (— 2 sin’(m(x —x’))/eg) X exp (— 3 (x —x')l/eﬁ),
e short- and medium-term anomaly (rational quadratic)

x—x' 2 _68
k3(x,x") = 9%(1—!— (2036%) )

* noise (independent Gaussian, and dependent)

x—x')2
ka(x,x') = 05exp (— (29%0) ) + 0% 8xxr-

k(x,x") = ki(x,x") + ka(x, x") + k3(x,x") + ka(x, x")

Let’s try this with the gpml software (http://www.gaussianprocess.org/gpml).
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http://www.gaussianprocess.org/gpml

Mauna Loa, CO2. GP model fit on data until Dec 2003. 95% predicted confidence
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Mauna Loa, CO2. GP model fit on data until Dec 2003. 95% predicted confidence
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Long- and medium-term mean predictions
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Mean Seasonal Component

2020 [ 7] ! 1

2010} : 4@ .
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1980+ 33 [ o4 J
2.8

1970} /
1960 C 1 | | I 1 | o I | | | |

J F M A M J J A S (@] N D
Month

Year

1

Seasonal component: magnitude 0; = 2.4 ppm, decay-time 04 = 90 years.

Dependent noise, magnitude 89 = 0.18 ppm, decay 619 = 1.6 months.
Independent noise, magnitude 617 = 0.19 ppm.

Optimize or integrate out? See MacKay [? ].
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Conclusions

Gaussian processes are intuitive, powerful and practical approach to inference,
learning and prediction.

Bayesian inference is tractable, neatly addressing model complexity issues.
Predictions contain sensible error-bars, reflecting their confidence.

Many other models are (crippled versions) of GPs: Relevance Vector Machines
(RVMs), Radial Basis Function (RBF) networks, splines, neural networks.
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