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We will first recall some definitions

Gaussian process
A random process Z indexed by D is said to be Gaussian iif
(Z (x1), . . . ,Z (xn)) is multivariate normal ∀xi ∈ D, ∀n ∈ N.

Multivariate normal
A d-dimensional random vector Y is multivariate normal of atY is
Gaussian distributed ∀a ∈ Rd
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Examples of a Gaussian process sample paths :
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We have seen during the introduction lectures that the distribution
of a GP Z depends on two functions :

the mean m(x) = E (Z (x))
the covariance k(x , x ′) = cov (Z (x),Z (x ′))

In this talk, we will focus on the covariance function, which is
often call the kernel.
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We assume we have observed a function f for a limited number of
time points x1, . . . , xn :
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The observations are denoted by fi = f (xi) (or F = f (X )).
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Since f in unknown, we make the general assumption that it is a
sample path of a Gaussian process Z :
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We can look at the sample paths of Z that interpolate the data
points :
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The conditional distribution is still Gaussian with moments :

m(x) = E (Z (x)|Z (X )=F ) = k(x ,X )k(X ,X )−1F
c(x , x ′) = cov (Z (x),Z (x ′)|Z (X )=F ) = k(x , x ′)− k(x ,X )k(X ,X )−1k(X , x ′)

It can be represented as a mean function with confidence intervals.
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Let Z be a random process with kernel k. Some properties of
kernels can be obtained directly from their definition.

Example
k(x , x) = cov (Z (x),Z (x)) = var (Z (x)) ≥ 0

⇒ k(x , x) is positive.

k(x , y) = cov (Z (x),Z (y)) = cov (Z (y),Z (x)) = k(y , x)

⇒ k(x , y) is symmetric.

We can obtain a thinner result...
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We introduce the random variable T =
∑n

i=1 aiZ (xi) where n, ai
and xi are arbitrary.

Computing the variance of T gives :

var (T ) =
∑∑

aiajcov (Z (xi),Z (xj)) =
∑∑

aiajk(xi , xj)

We thus have : ∑∑
aiajk(xi , xj) ≥ 0

Definition
The functions satisfying the above inequality for all n ∈ N, for all
xi ∈ D, for all ai ∈ R are called positive semi-definite functions.

We have not assumed here that Z is Gaussian !
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If k is stationary (ie k(x , y) = k̃(|x − y |)) psd implies further
results :

Properties

If k̃ is n times differentiable in 0, then it is n times
differentiable everywhere.
The maximum value of k̃(t) is reached in t = 0.

Example
The following functions are not valid covariance structures

t

K(t)

t

K(t)

t

K(t)
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We have seen :

k is a covariance ⇒ k is a positive semi-definite function

The reverse is also true :

Theorem (Loeve)

k corresponds to the covariance of a GP
m

k is a symmetric positive semi-definite function
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Positive semi definiteness is also a key concept in functional
analysis leading to the theory of Reproducing Kernel Hilbert
Spaces (RKHS).

Definition
The RKHS associated to a kernel k is the completion of{ n∑

i=1
aik(xi , .); n ∈ N, ai ∈ R, xi ∈ D

}

for the inner product〈 n∑
i=1

aik(xi , .),
m∑

i=1
bik(xi , .)

〉
=

n∑
i=1

m∑
j=1

aibjk(xi , xj)
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Given some observations, the best predictor is defined as the
interpolator with minimal norm :

m = argmin
h∈H

{||h||H, h(xi)=f (xi)} = · · · = k(x ,X )k(X ,X )−1F

The expression is the same as the conditional expectation of the
GP !

k m

H

Z
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In order to build m we can consider any off the shelf kernel :

white noise : k(x , y) = δx ,y

bias : k(x , y) = 1

linear : k(x , y) = xy

exponential : k(x , y) = exp (−|x − y |)

Brownian : k(x , y) = min(x , y)

Gaussian : k(x , y) = exp
(
−(x − y)2

)
Matérn 3/2 : k(x , y) = (1+ |x − y |)× exp (−|x − y |)

sinc : k(x , y) = sin(|x − y |)
|x − y |

...

Most of the above kernels are stationary.
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Changing the kernel has a huge impact on the model :

exponentiated quadratic kernel
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This is because changing the kernel implies changing the prior

exponentiated quadratic kernel
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exponential kernel
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Theorem (Bochner)
A continuous stationary function k(x , y) = k̃(|x − y |) is positive
definite if and only if k̃ is the Fourier transform of a finite positive
measure :

k̃(t) =
∫
R
e−iωtdµ(ω)

This result is very useful to prove the positive definiteness of
stationary functions.
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Example

We consider the following measure :

Its Fourier transform gives k̃(t) = sin(t)
t :

0.0

0.0

As a consequence, k(x , y) = sin(x − y)
x − y is a valid covariance

function.
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Usual kernels

Bochner theorem can be used to prove the positive definiteness of
many usual stationary kernels

The Gaussian is the Fourier transform of itself
⇒ it is psd.

Matérn kernels are the Fourier transforms of 1
(1+ω2)p

⇒ they are psd.

It can also be generalised to distributions :

δx ,y is the Fourier transform of the constant function
⇒ it is psd.

the constant function is the Fourier transform of δx ,y
⇒ it is psd.
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Unusual kernels

Inverse Fourier transform of a (symmetrised) sum of Gaussian gives

µ(ω)

0.0

−→
F

k̃(t)

0.0

The obtained kernel is parametrised by its spectrum [A. Wilson,
ICML 2013].
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Unusual kernels

The sample paths have the following shape :
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Making new from old :

Kernels can be :
Summed together

I On the same space k(x , y) = k1(x , y) + k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1) + k2(x2, y2)

Multiplied together
I On the same space k(x , y) = k1(x , y)× k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1)× k2(x2, y2)

Composed with a function
I k(x , y) = k1(f (x), f (y))

All these operations will preserve the positive definiteness.

How can this be useful ?
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Sum of kernels over the same space

Example (The Mauna Loa observatory dataset)
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.
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Let’s try to predict the concentration for the next 20 years.
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Sum of kernels over the same space
We first consider a squared-exponential kernel :

k(x , y) = σ2 exp
(
−(x − y)2

θ2

)
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The results are terrible !
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Sum of kernels over the same space
What happen if we sum both kernels ?

k(x , y) = krbf 1(x , y) + krbf 2(x , y)
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The model is drastically improved !
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Sum of kernels over the same space
We can try the following kernel :

k(x , y) = σ20x2y2 + krbf 1(x , y) + krbf 2(x , y) + kper (x , y)
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Once again, the model is significantly improved.

GP Summer School Kernel Design 33 / 70



Introduction What is a kernel ? Kernels and positive measures Making new from old Effect of a linear operator Conclusion

Sum of kernels over the same space
We can try the following kernel :

k(x , y) = σ20x2y2 + krbf 1(x , y) + krbf 2(x , y) + kper (x , y)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300

320

340

360

380

400

420

440

460

Once again, the model is significantly improved.
GP Summer School Kernel Design 33 / 70



Introduction What is a kernel ? Kernels and positive measures Making new from old Effect of a linear operator Conclusion

Sum of kernels over tensor space [Durrande 2012]
Property

k(x, y) = k1(x1, y1) + k2(x2, y2)

is a valid covariance structure.
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Remark :
From a GP point of view, k is the kernel of
Z (x) = Z1(x1) + Z2(x2)

GP Summer School Kernel Design 34 / 70



Introduction What is a kernel ? Kernels and positive measures Making new from old Effect of a linear operator Conclusion

Sum of kernels over tensor space
We can have a look at a few sample paths from Z :

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

2
1

0
1
2
3
4

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

3
2
1

0
1
2

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

1.5
1.0
0.5

0.0
0.5
1.0
1.5

⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for
Approximating additive functions
Building models over high dimensional inputs spaces
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Sum of kernels over tensor space

We consider the test function f (x) = sin(4πx1) + cos(4πx2) + 2x2
and a set of 20 observation in [0, 1]2
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Sum of kernels over tensor space

We obtain the following models :

Gaussian kernel

Mean predictor
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Additive Gaussian kernel

Mean predictor

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

1

0

1

2

3

RMSE is 0.12
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Sum of kernels over tensor space

Remarks
It is straightforward to show that the mean predictor is
additive

m(x) = (k1(x ,X ) + k2(x ,X ))(k(X ,X ))−1F
= k1(x1,X1)(k(X ,X ))−1F︸ ︷︷ ︸

m1(x1)

+ k2(x2,X2)(k(X ,X ))−1F︸ ︷︷ ︸
m2(x2)

⇒ The model shares the prior behaviour.

The sub-models can be interpreted as GP regression models
with observation noise :

m1(x1) = E ( Z1(x1) | Z1(X1) + Z2(X2)=F )
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Sum of kernels over tensor space

Remark
The prediction variance has interesting features

pred. var. with kernel product
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Sum of kernels over tensor space
This property can be used to construct a design of experiment that
covers the space with only cst × d points.
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Product over the same space

Property

k(x , y) = k1(x , y)× k2(x , y)

is valid covariance structure.

Example
We consider the product of a squared exponential with a cosine :

× =
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Product over the tensor space
Property

k(x, y) = k1(x1, y1)× k2(x2, y2)

is valid covariance structure.

Example
We multiply 2 squared exponential kernel
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Calculation shows we obtain the usual 2D squared exponential
kernel.
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Composition with a function

Property
Let k1 be a kernel over D1 × D1 and f be an arbitrary function
D → D1, then

k(x , y) = k1(f (x), f (y))

is a kernel over D × D.
proof ∑∑

aiajk(xi , xj) =
∑∑

aiajk1(f (xi)︸︷︷︸
yi

, f (xj)︸︷︷︸
yj

) ≥ 0

Remarks :
k corresponds to the covariance of Z (x) = Z1(f (x))
This can be seen as a (nonlinear) rescaling of the input space
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Example
We consider f (x) = 1

x and a Matérn 3/2 kernel
k1(x , y) = (1+ |x − y |)e−|x−y |.

We obtain :
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All these transformations can be combined !

Example
k(x , y) = f (x)f (y)k1(x , y) is a valid kernel.

This can be illustrated with f (x) = 1
x and

k1(x , y) = (1+ |x − y |)e−|x−y | :
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Effect of a linear operator

Property
Let L be a linear operator that commutes with the covariance, then
k(x , y) = Lx (Ly (k1(x , y))) is a kernel.

Example
We want to approximate a function [0, 1]→ R that is symmetric
with respect to 0.5. We will consider 2 linear operators :

L1 : f (x)→
{

f (x) x < 0.5
f (1− x) x ≥ 0.5

L2 : f (x)→
f (x) + f (1− x)

2 .
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Effect of a linear operator : example [Ginsbourger 2013]
Examples of associated sample paths are

k1 = L1(L1(k))
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k2 = L2(L2(k))
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The differentiability is not always respected !
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Effect of a linear operator

These linear operator are projections onto a space of symmetric
functions :

H

Hsym

f

L1f
L2f

What about the optimal projection ?

⇒ This can be difficult... but it raises interesting questions !
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samples with zero integrals
We are interested in building a GP such that the integral of the
samples are exactly zero.

idea : project a GP onto a
space of functions with zero
integrals :

Z

Z0

It can be proved [Durrande 2013] that the orthogonal projection is
given by

Z0(x) = Z (x)−

∫
k(x , s)ds

∫
Z (s)ds∫∫

k(s, t)dsdt
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The associated kernel is :

k0(x , y) = k(x , y)−

∫
k(x , s)ds

∫
k(y , s)ds∫∫

k(s, t)dsdt

Such 1-dimensional kernels are of great importance for sensitivity
analysis when combined with ANOVA kernels :

k(x, y) =
d∏

i=1
(1+ k0(xi , yi))

= 1+
d∑

i=1
k(xi , yi)︸ ︷︷ ︸

additive part

+
∑
i<j

k(xi , yi)k(xj , yj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+
d∏

i=1
k(xi , yi)︸ ︷︷ ︸

full interaction
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2d example

k(x, y) =
2∏

i=1
(1+ k0(xi , yi))

= 1+ k0(x1, y1) + k0(x2, y2) + k0(x1, y1)k0(x2, y2)

The best predictor can be written as

m(x) = (1+ k0(x1,X1) + k0(x2,X2) + k0(x1,X1)k0(x2,X2))
tk(X ,X )−1F

= m0 +m1(x1) +m2(x2) +m12(x)

These terms correspond to the FANOVA representation of m.
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10d example
Let us consider the random test function f : [0, 1]10 → R :

x 7→ 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0, 1)

The steps for approximating f with GPR are :

1 Learn f on a DoE (here LHS maximin with 180 points)
2 get the optimal values for the kernel parameters using MLE,
3 build a model based on kernel

∏
(1+ k0)

As m is a function of 10 variables, the model can not easily be
represented : it is usually considered as a “blackbox”. However, the
structure of the kernel allows to split m in sub-models.
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The univariate sub-models are :

(
we had f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0, 1)

)
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Periodicity detection
We will now discuss the detection of periodicity

Given a few observations can we extract the periodic part of a
signal ?
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As previously we will build a decomposition of the process in two
independent GPs :

Z = Zp + Za

where Zp is a GP in the span of the Fourier basis
B(t) = (sin(t), cos(t), . . . , sin(nt), cos(nt))t .

Property
It can be proved that the kernel of Zp and Za are

kp(x , y) = B(x)tG−1B(y)
ka(x , y) = k(x , y)− kp(x , y)

where G is the Gram matrix associated to B in the RKHS
[Durrande 2013].
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As previously, a decomposition of the model comes with a
decomposition of the kernel

m(t) = (kp(x ,X ) + ka(x ,X ))k(X ,X )−1F
= kp(x ,X )k(X ,X )−1F︸ ︷︷ ︸

periodic sub-model mp

+ ka(x ,X )k(X ,X )−1F︸ ︷︷ ︸
aperiodic sub-model ma

and we can associate a prediction variance to the sub-models :

vp(t) = kp(x , x)− kp(x ,X )tk(X ,X )−1kp(t)
va(t) = ka(x , x)− ka(x ,X )tk(X ,X )−1ka(t)

GP Summer School Kernel Design 57 / 70



Introduction What is a kernel ? Kernels and positive measures Making new from old Effect of a linear operator Conclusion

Example
For the observations shown previously we obtain :
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Can we can do any better ?
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Initially, the kernels are parametrised by 2 variables :

k(x , y , σ2, θ)

but writing k as a sum allows to tune independently the
parameters of the sub-kernels.
Let k∗ be defined as

k∗(x , y , σ2p, σ2a , θp, θa) = kp(x , y , σ2p, θp) + ka(x , y , σ2a , θa)

Furthermore, we include a 5th parameter in k∗ accounting for the
period by changing the Fourier basis :

Bω(t) = (sin(ωt), cos(ωt), . . . , sin(nωt), cos(nωt))t
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MLE of the 5 parameters of k∗ gives :
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We will now illustrate the use of these kernels for gene expression
analysis.
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The 24 hour cycle of days can be observed in the oscillations of
many physiological processes of living beings.

Examples
Body temperature, jet lag, sleep, ... but also observed for plants,
micro-organisms, etc.

This phenomenon is called the circadian rhythm and the
mechanism driving this cycle is the circadian clock.

To understand how the circadian clock operates at the gene level,
biologist look at the temporal evolution of gene expression.
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The aim of gene expression is to measure the activity of genes :
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The mRNA concentration is measured with microarray experiments

The chip is then scanned to determine the occupation of each cell
and reveal the concentration of mRNA.
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Experiments to study the circadian clock are typically :
1. Expose the organism to a 12h light / 12h dark cycle
2. at t=0, transfer to constant light
3. perform a microarray experiment every 4 hours to measure

gene expression

Regulators of the circadian clock are often rhythmically regulated.
⇒ identifying periodically expressed genes gives an insight on

the overall mechanism.
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We used data from Edward 2006, based on arabidopsis.

The dimension of the data is :
22810 genes
13 time points

Edward 2006 gives a list of the 3504 most periodically expressed
genes. The comparison with our approach gives :

21767 genes with the same label (2461 per. and 19306
non-per.)
1043 genes with different labels
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Let’s look at genes with different labels :
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Small recap
We have seen that

Kernels have a huge impact on the model
They have to reflect the prior belief on the function to
approximate.
Kernels can (and should) be tailored to the problem at hand.

Although a direct proof of the positive definiteness of a function is
often intractable, Bochner theorem allows to build kernels from
their power spectrum.
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Various operations can be applied to kernels while keeping the psd :

Making new from old
sum
product

composition with a function

Linear operator
If we have a linear application that transforms any function into a
function satisfying the desired property, it is possible to build a GP
fulfilling the requirements.
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