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More resources

This talk follows the presentation in the following review paper available fr
Oxford website.

Taking the Human Out of the Loop:
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Some applications
Parametric Bayesian optimization
- Beta-Bernoulli bandit models
- Linear bandit models
- Neural network and other feature-based models
Non-Parametric Bayesian optimization
- Gaussian processes
- Random forests
Acquisition functions
A huge bag of problems
Hyper-parameters and robustness
- Optimizing acquisition functions
- Conditional spaces
- Non-stationarity
- Parallelization
- Constraints and cost sensitivity
- High-dimensions
- Multi-task / context
- Freeze-thaw / early stopping
- Unknown optimization regions
-  Empirical hardness models and variants



Black-box optimization / design

x* = arg max f(x)
xeX
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“ t=3 I: forn=1,2,... do
2:  select new x,,.1 by optimizing acquisition function «

2= Xn+1 = argmax a(x;D,,)

o X

3 query objective function to obtain 1/, 11
4: augment data D,, .1 = {D,, (Xni1,Yni1)}
5:  update statistical model

44/ 6: end for




Automatic machine learning
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[Hoffman, Shahriari & dF, 2013]



Information extraction / concept learning

| love silence of the lambs. It's a scary movie.
The confit de canard was delish!
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Expert tuning by Hector Garcia-Molina et al: Towards The Web Of Concepts: Extracting
Concepts from Large Datasets

[Ziyu Wang et al, 2014]



Automatic (Adaptive) Monte

Method

Rios Insua and Muller’s
reversible-jump MCMC

Mackay’s (1992) Gaussic
with highest evidence

Neal’s (1996) HMC

Neal’s (1996) HMC with

Reversible-jump MCMC(
model by Andrieu et al.
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Analytics, dynamic creative content and A/B testing

T

..others see
this version.

Some see
this version...

| | ||
%
Only the headlines :

- - are different. —_—

[ Steve Scott on Bayesian bandits at Google]



LA

animation session

[Brochu, Ghosh & dF, 2007. Brochu, Brochu, dF, 2010]
Winner of the SRC competition - SIGGRAPH



Tuning NP hard problem solvers

Ipsolve is a mixed integer programming solver,
downloaded over 40,000 times last year.
47 discrete parameters (choices)

Optimality gap
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Object class

(C) O O O O O Second hidden layer

State

First hidden layer

Gaze observation

Belief state

Reward
Policy TT

Action

[Denil et al
2012]

Tracking region



GP Policy for tracking

Digits Experiment:

N |




Hierarchical reinforcement learning

High-level model-based
learning for deciding when to
navigate, park, pickup and
dropoff passengers.

Mid-level active path learning
for navigating a topological
map.

Low-level active policy
optimizer to learn control of
continuous non-linear vehicle
dynamics.
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Active Path Finding in Middle Level

Navigate policy generates sequence of waypoints on a topological
map to navigate from a location to a destination.
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Low-Level: Trajectory following

TORCS: 3D game
engine that
implements complex
vehicle dynamics

= complete with
manual and automatic
transmission, engine,
clutch, tire, and
suspension models.

trajectory




Bayesian optimization was used to find the neural net
low-level policy and the value function for the upper levels

www.fraps.com




Many other applications

* Robotics, control, reinforcement learning, ...

* SAT solvers, scheduling, planning

* Configuration of ad-centers, compilers, hardware, software...
*  Programming by optimization
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Bayesian parametric optimization




Beta-Bernoulli Bayesian
Consider the fOREIMEAR O andit setting.

yi €10, 1} fwl(a ).— W




Beta-Bernoulli Bayesian
Specify a Beta pR@Uimization
K

p(w|a, 8) = [] Beta(w, | . 8)
a=1

p(w) = Beta(w|2, 2)
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Beta-BernouIIi Bayesian

p(w | a, 3

p(w|D) =

K
H Beta('wa_ ‘ o+ Na.1, /6) S B n'a,,[l)



Thompson sampling

* At each iteration, draw a sample from the poste
* Pick the action of highest expected re w

an+1 = arg max fw(a) where w ~ p(w | D,,)

a



Thompson sampling

Algorithm 2 Thompson sampling for Beta-Bernoulli bandit

Require: «, 3: hyperparameters of the beta prior
1: Initialize n, o = ng, 1 = ¢ =0 for all a

2: repeat

3: fora=1,....K do

4: W, ~ Beta(a 4+ nq.1, 8+ Na0)
5.  end for

6: a; = argmax, Wy

7:  Observe y; by pulling arm a;
8: if Y, = 0 then

9: Na;,0 = Na,;,0 + 1

10:  else

11: Ng, 1 = Ng, 1+ 1

12: end if

13: 1=1+1

14: until stopping criterion reached




Linear bandits

Introduce correlations among the arms

feature vector x, € R

g XXXXXXXXX e
— Pod %
a, i RS ¥ @ . §
§_

Wy,

Use standard conjugate Normal Inverse Gamma p

NIG(w,c? | wo, Vo, o, Bo) =

1

\QWUQVO\_% exp {—ﬁ(w — W[})Tvo_l(w — wo)}

0

0

" T(ag)(g2)oort P {_%} |




Linear bandits

The posterior mean and covariance are analytical
=V, (Vi'twy +X'y)
Vﬂ, = (Vy ' + X' X)~!

1 _ _
Bn — BO + 5 (ng[l 1W0 + yTy _ W?;Vn 1Wﬂ-)

Once again, it is straightforward to do Thompson

(nt1 = argmaxx. w where w ~ p(w|D,,)

a



Being linear in features

It Is trivial to extend the linear model using feature
J basis functions ¢; : X — R
f(x) = ®(x)'w
Features can be RBFs, sinusoids
¢;(x) = exp {—%(X — Zj)TA(X — zj)}
0j(x) = exp { —ix" w; }
Or even popular deep networks

b(x)= Lo 0L(x)



One reason for Bayes

The predictive distribution at a test point X is:

p(yix, D, 0?) — / N (Xt )N (Kibin, V n )}

N (yjXHn, 0% + XV nX")

plugin approximation (MLE) Posterior predictive (known variance)
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From linear models to Gaussian
processes

p(y | X.0%) = /p(y X, w, %) p(w]|0,Vy)dw

- /N(yXW:OQI)N(WO:VO)dW
= N(y|0,XVX" +0°1).

ply | X, 0%) =N(y[0,8V®" +0°I)

K?ﬁ,j — k(Xi: Xj) — (I)(X?i)VCl(I)(Xj)T
(P(x;), P(x;))

Vo



Gaussian processes

Py, y | X, X, 07)
p(y | X, 0?)
f| X~ N(m,K)

y|f, 0% ~ N(f,o°T)

p(y* ‘X*aXaYaO- ) o

fn(x) = po(x) + k(x)" (K +0%1)~!(y — m)
02 (x) = k(x,x) —k(x)" (K + 0%I)~k(x),



Gaussian processes

Kernel profile

Samples from prior

Samples from posterior

MATERN1
— MATERN3
—— MATERNS
SQ-Exp
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GP log marginal likelihood
And GP hyper-parameters

1 _
logp(y‘xl:nv 9) — _5()/ - mQ)T(KG -+ O-QI) 1(y o mf))

1 |
— 5 log |K? + 0°T| — glog(%’)



Trees for regression

Ly Training data

[Criminisi et al, 2011]
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Leaf 1

Regression trees

[Criminisi et al, 2011]



Regression forests

Training points Forest Fitted leaf models Learned trees

training
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Bayesian experimental design

Uses the principle of maximum expected utility:

a(X) =

:W ﬂy | X, w [U(X Y W)}

Example 1: active learning

O(i(X) — Ewa | X ,w

/ p(w' | X, y) log p(w' | X, y)dw’

Example 2: sequential decision making with discotl

a(X) =

<

T

\ \ 3,—1
IW 4*’y | X, w { E Y y?ﬁ}

1=1



Some acquisition functions

a(x;D,) = EgE, | x6U(x.v.0)]

1.0

0.5F

0 N




Thompson sampling with GPs
Posterior over location of the minimupP« (X \ Dn)

")

P(dx,|D) =P (arg min f(x) € dx,
xcX

Thompson: X, 11 ~ p.(x|D,,)

Mechanism: arts (X;Dn) L= f(ﬂ)(x)
where (") < GP(uo, k| D»)



Randomized Thompson sampling

Bochner’'s lemma tell us that:

—-'in(x—x’)}

k(x,x") = vE,[e

With sampling and this lemma, we can construct
a

feature bascw’) ~ s(w)/ration that is amenable to
computinn

i

¥4 . (3
]f(Xj X!) - a Z 6—@:...:( )
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T ol " il
Xe’l-f.d X

Then do “linear” Bayesian optimization with sinusc



Entropy search and variants

Posterior over location of the minimupP« (X \ Dn)

Utility: minimize uncertainty of location of minimur

Ux,y,0) = H(x" | Dn) — H(x™ | Dy U{(x,9) )

P

El
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The choice of utility Iin practice

Probability of error

0.16F

o
[
NN

0.12F

o
[
o

o
o
o

[Hoffman, Shahriari & dF, 2013]



Absolute error

Absolute error

The choice of utility in practice
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Hyper-parameters and robustness

Learning the hyper-parameters of the GP is important.
The tuning method must be automatic!
One of the best ways to manage the GP hyper-parameters is to

integrate them out, e.g. with slice sampling as in Spearmint.
But this is still dangerous!



Hyper-parameters and robustness

u u

g (x|Dy) = E[max{0, f(x) — 114 } D] = vo(x: 9)[ (=) + (=)

vV vV

Theorem 1. Let Cy := Hf . g'—; Suppose 07 < 0, < 8" forallt > 1 and f(-) € Hgu (X). If

(v ) =0 ( O+ logt/ 2 (26272 /36) 4 /A2, + log(t2ﬂ2/35)) for all t > 1. Then with probabil-
ity at least 1 — 0, the cumulative regret obeys the following rate:

Ry =0 (m/ﬁ‘LT) (17)

where 31 = 2log (%) ’}’%L_l + v/8log (%) 108’1/2(4T2W2/65) (\/ Cz”f”ng (x) T gl 1) +
CQHJc”g{BU(;()-



'Spearmint
.Slice sampling

Ziyu Wang & NdF 2014




'Spearmint Ziyu Wang & NdF 2014
.Slice samplin | Theory bounds
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AN | N A
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Analysis of Bayes Opt  [dF, Zoghi & Smola, 2012]

" |Discarded region

---GP mean p

—Objective function f

---Upper confidence bound i + Bo
---Lower confidence bound y — Bo
« Sampled points

————
- LT >

max(LCB)

Proposition 1 (Variance Bound) : supop < e
D

T1

Theorem 2 (Vanishing regret) : 7"(;1:15) & Ae (n t)yd/4

r(zy) = flea) — f(2¢)




The maximum depth function ¢t +— hAmax (%) 1s a parameter of the algorithm.
Initialization: 71 = {(0,0)} (root node). Set ¢t = 1.
while True do
Set Vmax = —00.
for h = 0 to min(depth(7:), Amax(t)) do
Among all leaves (h, j) € L of depth h, select (h,7) € argmax,_jec, f(Th,j)
if f(Zr,:i) > Umax then
Expand this node: add to 7; the K children (A + 1, z'k)l -
Sel v = flens), Seti =441 B
if ¢ = n then Return x(n) = argmaxp, ;)e7, Th,s
end if

end for Tree Built by SOO

end while. m

e® e Sampled Points.

E<K




Multi-scale optimistic optimization

Tree Built by BaMSOO

eee Sampled Points.

—— True Objective.

@ Discarded Region.

@@ Confidence Region.
ee¢ Sampled Points.

[Remi Munos - SOO, UCT]

[Ziyu Wang et al, 2014]
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Conditional parameters
* A big problem in deep learning (see Torch 7)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

layer | layer 2 layer 3
A | A :
[ \[ \ 1 output classifier
NI maps N2 maps N3 maps MLP

input Image

e — T3y | i B ) || P <

| to NI
output class

convolutions NI/MI to N2 N2/M2 to N3 map

convolutions convolutions
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Input warping

1 1
08 08
06 06

_—
04 04
02 02

Original Objective Function Warping Function Post-Warping

e — s

Wq(x) = Bla.B) wa(x) =1 — (1 —x3)”

[Jasper Snoek, Kevin Swersky, Rich Zemel, Ryan Adams,

YN A1 A7



==EI 11 True Func == GP Mean -
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(a) BO Iteration 8
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(d) HTBO Iteration 8
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(b) BO Iteration 15
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LEE T

== BI 112 True Func == GP Mean == Tree Split
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(e) HTBO Iteration 15
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0.0 0.2 0.4 0.6 0. 1.0
(c) BO Iteration 35
6
4
2
0
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(f) HTBO Iteration 16

[Assael, Wang and NdF — Rob Gramacy has may papers using trees and GPs ]






Treed BayesOpt

Leaf 1 Leaf 2 4 Leaf 1 Leaf 2 Leaf 1
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95% Confidence

/ Interval

GP Mean
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True Func.

(b) Proposed approach



Treed BayesOpt

* Aggregate to deal with paucity of data in
leaves to estimate the hyper-parameters

p(A1x1:6,y) o< p()p™ (y (5% (59, 6)
o7 |

w? o
XHP (Y(pgf\p-z_i)
g—1

X(pg\pg_i)ﬁ)
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- Optimizing acquisition functions
- Conditional spaces
- Non-stationarity
- Parallelization
- Constraints and cost sensitivity
- High-dimensions
- Multi-task / context
- Freeze-thaw / early stopping
- Unknown optimization regions
-  Empirical hardness models and variants



Parallelization

* Talk to David Ginsbourger. Essentially, augment
the observations for finished runs with
predicted observations for unfinished runs. E.qg.,

O{(CC;DR,.D}U) — /J OK(CEQ’DH Uﬁp)P(glzj;Dn)dyplzja
R

EZ ))n
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Constraints and cost sensitivity

* There are many approaches (Gramacy, Snoek,
...). Could use a GP with binary observations
h(.) that indicate the probability of the
constraint being satisfied:

wE]l (X) — (E] (X: D’n)h(x Dﬂ)

* Often trivial scaling is used to deal with time.

El(x.D,,)/c(x)
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Random Embedding Bayesian Optimization

@ Embed a low dimensional space into the high dimensional one

@ Optimize only on the low dimensional space.

Important

Unimportant X,

[Wang, Zoghi, Matheson, Hutter & dF,
IJCAI 2013 Distinguished paper award]



Algorithm 1 Bayesian Optimization
1: fort=1,2,... do
2:  Find x;11 € RY by optimizing the acquisition
function u: x441 = argmax, ¢y u(x|D;).
3:  Augment the data Dy 1 = {Ds, (x¢11, f(X¢r1))}
4: end for

Algorithm 2 REMBO: Bayesian Optimization with
Random Embedding

1: Generate a random matrix A € RPx4

2: Choose the bounded region set ) C R

3: fort=1,2,... do

4:  Find y;4o1 € R? by optimizing the acquisition
function u: yt+1 = argmaxy,cy u(y|Dt).
Augment the data D1 =
{Dt, (yts1, [(Ayts1)}

6:  Update the kernel hyper-parameters.

7. end for

Ut




Optimality Gap

Scaling to over a billion dimensions
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Multi-task

* Define a kernel over tasks (ouputs) and inputs. E

E((x,m), (x',m")) = kx(x,x")kr(m,m’)

* Can also do BayesOpt with many parametric
approaches to contextual / multi-task

regression. E.g. context could be features of
nroblem atr hand
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Freeze-thaw - learning curve

k(t,t') = / g Al AE b dX)
0

(1), Ke)
(3) - T

N(m,Kx)

N(f(x2),K¢)

N

f(x3)] Yyaz) ---
8. ©
: N (f(x3), Ke)

(a) Graphical Model (b) Training curve predictions

({yn}n 1 | {Xn}n 1 / |:H N yna fnl%aKtﬂ):| N(fa m, KX) df

[Kevin Swersky et al, See also work of David Ginsbourger and Frank Hutter]
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Unknown optimization boundary

Hinge quadratic Quadratic

"

— El-Q

x—R x+HR x—%w x—l—éw

[Bobak Shahriari et al, 201"



Unknown optimization boundary

f(x)
n <3d
. 3d <n <15d te
' 15d <n <30d -
1
a
l |
| .
[ |
P "

[Bobak Shahriari et al, 201"
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Empirical Hardness Models

* Formally, given a set of particular problem
instances, p € P, and an algorithm, a € A (with
free-parameters), the objective of performance
prediction is to build a model that predicts the
performance of a when run on an arbitrary p €
P. See work of Kevin Leyton-Brown and Holger
Hoos.
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