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Gaussian Processes

So far in the summer school...

GPs are scalable and flexible probabilistic models useful for
regression, classification, etc.

In this tutorial...

How can we use GPs to solve global optimization problems?




Global optimization

Consider a ‘well behaved’ function f : X — R where X C RP is a
compact set.

Xm = arg)rpei)r} f(x).




Global optimization

Consider a ‘well behaved’ function f : X — R where X C RP is a
compact set.

Xm = arg)rpei)r} f(x).

» f is explicitly unknown and multimodal.
» Evaluations of f may be perturbed.

» Evaluations of f are expensive.



What to do?

» Gradient and Hessian are not computable.

Grid search?

If f is L-Lipschitz continuous and we are in a noise-free domain to
guarantee that we propose some xy , such that

f(XM) — f(XM’n) <e
we need to evaluate f on a D-dimensional unit hypercube:

(L/€)Pevaluations!

Example: (10/0.01)° = 10el4...
... but function evaluations are very expensive!



Expensive functions, who doesn’'t have one?

Parameter tuning in ML algorithms.

Diagonal

AR Cat
s Node

» Number of layers/units per layer
> Weight penalties
» Learning rates, etc.

Figure source: http://theanalyticsstore.com/deep-learning



Expensive functions, who doesn’'t have one?

Tuning websites with A/B testing

O Find the Best Deals

790,000 HOTELS , APARTMENTS , vitas and more.

Destination/Hotel Name:
LaPaima

Gheckin Date ChiccoutDate
- I T,

Be sure to check out:

London Eye, Tower of Landon, Big Ben

© FREE cancellation on most rooms!
V' instant confirmation when you reserve

Just Booked

Optimize the web design to maximize sign-ups, downloads,
purchases, etc.



Expensive functions, who doesn’'t have one?

Synthetic gene design: Use mammalian cells to make protein
products.

Optimize genes (ATTGGTUGA...) to best enable the cell-factory
to operate most efficiently.



Typical situation

We have a few function evaluations
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Where is the minimum of f?
Where should the take the next evaluation?



Intuitive solution

One curve
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Intuitive solution

Three curves
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Intuitive solution
Ten curves
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Intuitive solution

Hundred curves
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Intuitive solution

Many curves
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Histogram over the minimum




Intuitive solution

Infinite curves




What just happened?

» We made some prior assumptions about our function.

» Information about the minimum is now encoded in a new
function (the probability distribution pmin in this case).

» We can use pmin (or a functional of it: entropy search) to
decide where to sample next.

» Other functions to encode relevant information about the
minimum are possible, e. g. the ‘marginal expected gain' at
each location.



Bayesian Optimization

Methodology to perform global optimization of multimodal
black-box functions [Mockus, 1978].

1. Choose some prior measure over the space of possible
objectives f.

2. Combine prior and the likelihood to get a posterior over the
objective given some observations.

3. Use the posterior to decide where to take the next evaluation
according to some acquisition function.

4. Augment the data.
Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions: Gaussian Processes

Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

Prior . Posterior
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» Model f(x) ~ GP(u(x), k(x,x")) is determined by the mean
function m(x) and covariance function k(x, x’; 9).

» Posterior mean u(x; 60, D) and variance o(x; 0, D) can be
computed explicitly given a dataset D.



Acquisition functions

Making use of the model uncertainty

GPs has marginal closed-form for the posterior mean p(x) and
variance o2(x).

» Exploration: Evaluate in places where the variance is large.

» Exploitation: Evaluate in places where the mean is low.

Acquisition functions balance these two factors to determine
where to evaluate next.



Exploration vs. exploitation
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Bayesian optimization explains human active search
[Borji and ltti, 2013]




GP Upper (lower) Confidence Band

[Srinivas et al., 2010]

Direct balance between exploration and exploitation:

arce(x;0,D) = —u(x; 0,D) + ko(x; 0, D)
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Expected Improvement
[Jones et al., 1998]

ai(x:0,D) = / max(0, Voest — y)p(y|x; 6, D)dy
y

f(x)
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Maximum Probability of Improvement
[Hushner, 1964]

(%) = o (x;0, D)7 (1e(x; 6, D) — Ybest)
aMP/(X; ‘972)) = p(f(x) < Ybest) = (D(’Y(x))

f(x)
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Information-theoretic approaches

[Hennig and Schuler, 2013; Hernandez-Lobato et al., 2014]

ags(x; 0, D) = H[p(xmin|D)] = Ep(y|px) [H[P(Xmin| D U {x, y })]]

15




Thomson sampling

Probability matching

aTHomson(x; 0, D) = g(x)
g(x) is sampled form GP(u(x), k(x,x"))




Bayesian Optimization

As a 'mapping’ between two problems

BO is an strategy to transform the problem

Xm = arggweig f(x)

unsolvable!

into a series of problems:

Xp1 = arg max a(x; Dy, M)
xXeEX
solvable!
where now:
» a(x) is inexpensive to evaluate.

» The gradients of a(x) are typically available.
» Still need to find x,11: DIRECT, cma, gradient methods.



[[lustration of BO

f(x)

R S

0.2 0.4 0.6 0.8 1.0

<
o

El(x)




[[lustration of BO
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[[lustration of BO

f(x)

=

El(x)




Why these ideas have been ignored for years?

» BO depends on its own parameters.

» Miss specification of the model has terrible consequences for
the optimization.

» Lack of software to apply these methods as a black
optimzation boxes.

» Reduced scalability (in dimensions and number of
evaluations).
Practical Bayesian Optimization of Machine Learning Algorithms.

Snoek, Larochelle and Adams. NIPS 2012 (Spearmint)

_l’_

Other works of M. Osborne, P. Hennig, N. de Freitas, etc.



Bayesian optimization now
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Bayesian optimization - Wikipedia, the free encyclopedia
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They all trade-off exploration and exploitation so as to minimize the number of function
queries. As such, Bayesian optimization is well suited for functions that
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oA Practical Bayesian Optimization of Machine Learning ...
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» Hot topic in Machine Learning.

» The BO workshop at NIPS is well stablished and it is a
mini-conference itself.



Extensions of Bayesian Optimization

» Multi-task Bayesian optimization [Wersky et all., 2013].
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» Bayesian optimization for high dimensional problems [Wang et
al., 2013].
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Extensions of Bayesian Optimization

» Multi-task Bayesian optimization [Wersky et all., 2013].

» Bayesian optimization for high dimensional problems [Wang et
al., 2013].

» Non-myopic methods [Osborne, 2010].

» Discrete domains (armed bandits) [Srinivas et al., 2010].
» Parallel approaches [Chevalier and Ginsbourger 2012].

» Conditional parameter spaces [Swersky et al. 2013].

» Applications to robotics, molecule design, etc.



BO at SheffieldML

Open software
+
Scalable BO methods

+

Applications



Open Software: GPyOpt

http://sheffieldml.github.io/GPyOpt/

Why?
With GPyOptyou can

* Solve global optimization problems with Sayesian optimization.

We will use it in the lab session



v

Python module for BO.

v

Based on GPy. All functionalities available.

v

Sparse GPs, Multi-output GPs, several likelihoods, etc.

v

Parallel optimization.



GPyOpt: methods of use

Modular BO

k = GPy.kern.RBF(1)
BO = BayesianOptimization(f=f, bounds=b, acquisition="El’, kernel=k)
BO.run_optimization(max_iter)

Automatic ML
param = GPyOpt.methods.autoTune(objective, bounds)

Use GPyOpt using the same interface as Spearmint

config.json + problem.py



Scalable Methods: Parallel/batch BO

Avoiding the bottleneck of evaluating f

» Cost of f(x,) = cost of {f(Xp1),...,f(Xnnb)}-

» Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch

» Available pairs {(x;, y;)}"_; are augmented it with the
evaluations of f on By® = {X¢1,. .., Xt nb}-

» Goal: design Bi*,...,Bgt.

Notation:

» T, represents the available data set D, and the GP structure
when n data points are available.

» «a(x;Z,): generic acquisition function given Z,,.



Selecting Xx; x, the k-th element of the t-th batch

Sequential policy

Maximize:

a(x; Zy k—1)



Selecting Xx; x, the k-th element of the t-th batch

Sequential policy

Maximize:
a(x; Zy k—1)

Greedy batch policy: it is not tractable

Maximize:

k—1

/a(x;It,k—l) H Py,

Jj=1

Xt j, Lt j—1)P(Xej|Tej—1)dXt jdys j

where
> p(yejlxj, Z¢ j—1): predictive distribution of the GP.

> p(xj|Ztj—1) = 0(x¢j — arg maxxex o(x; Ze j—1)).



Available approaches

» Exploratory approaches, reduction in system uncertainty.
» Generate ‘fake’ observations of f using p(yej|xj, Z¢,j—1).

» Simultaneously optimize elements on the batch using the joint
distribution of y;,,... ¥t nb-

[Azimi et al., 2010; Azimi et al., 2011; Azimi et al., 2012;
Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

Bottleneck

All these methods require to iteratively update p(y: j|x;,Z¢ j—1) to
model the iteration between the elements in the batch: O(n?)

How to design batches reducing this cost? BBO-LP



Goal: eliminate the marginalization step

“To develop an heuristic approximating the ‘optimal batch design
strategy’ at lower computational cost, while incorporating
information about global properties of f from the GP model into
the batch design”

Lipschitz continuity:

[F(x1) = F(x2)| < Lijx1 = xa[.



Interpretation of the Lipschitz continuity of f

M = maxxex f(x) and B,Xj(xj) ={x € X :|x — x;|| < ry} where

M —f(x;)
.

f(x)

“r| — True function
e @« Samples
- Exclusion cones
Active regions

04 06 08 10 12

xm ¢ B,Xj (xj) otherwise, the Lipschitz condition is violated.



Probabilistic version of B, (x)

We can do this because f(x) ~ GP(u(x), k(x,x"))

_ . 2(x.
> ry. is Gaussian with p(r.) = M=) and o2 rg) =2 (;J)-
J] j L j L




Probabilistic version of B, (x)

We can do this because f(x) ~ GP(u(x), k(x,x"))

— . 2(x.
> ry; is Gaussian with ji(ry) = M+(XJ) and 02(r) = #

Local penalizers: ¢(x; x;) = p(x ¢ B,Xj(xj))

p(xix) = plr; <lx—=xjl)
= 0.5erfc(—z)

where z = \/ﬁ(Lij —x|| = M+ ua(x;)).

> Reflects the size of the 'Lipschitz’ exclusion areas.

» Approaches to 1 when x is far form x; and decreases
otherwise.



Idea to collect the batches

Without using explicitly the model.

Optimal batch: maximization-marginalization

k—1

/Oé(X;It,kl) 1T pOeixess Ze j-1)p(xe | Te 1) dxe jdye j
j=1

Proposal: maximization-penalization.

Use the p(x; x;) to penalize the acquisition and predict the
expected change in o(x; Zs k—1).



Local penalization strategy

1st batch element 2nd batch element 3th batch element
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Local penalization strategy

1st batch element 2nd batch element 3th batch element
== a@) == a@)e @)
8 8 L 8 i
nl— a@)e() — (@), (@)py()
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The maximization-penalization strategy selects x; , as

k—1
Xk = argmax q g(a(xi Zeo)) [ [ w(xixe)) ¢
j=1

where g is a transformation of a(x;Z; o) to make it always positive
[Gonzélez, Dai, Hennig, Lawrence, 2015]



Example for L = 50

Penalized surrogate

Adaptive
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L controls the exploration-exploitation balance within the batch.



Example for L = 100

Penalized surrogate

Adaptive

L controls the exploration-exploitation balance within the batch.



Example for L = 150

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Example for L = 250

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Finding an unique Lipschitz constant

Let f : X — IR be a L-Lipschitz continuous function defined on a
compact subset X C IRP. Then

L, = Vf
p = max [ V().
is a valid Lipschitz constant.

The gradient of f at x* is distributed as a multivariate Gaussian

V)X, y,x" ~ N(pw (x), T5(x"))

We choose:

ZGP—LCA = mﬁx [l e () |



Sobol function

Best (average) result for some given time budget.
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2D experiment with ‘large domain’

Comparison in terms of the wall clock time
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Maximizing gene translation

» Maximization of a 70 dimensional surface representing the
efficiency of hamster cells producing proteins.
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Support Vector Regression

» Minimization of the RMSE on a test set over 3 parameters.
» 'Physiochemical’ properties of protein tertiary structure?.

» 45730 instances and 9 continuous attributes.
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Synthetic gene design

> Use mammalian cells to make protein products.

» Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the cell-factory
to operate most efficiently [Gonzélez et al. 2014].



Surrogate model for the cell

Transcription Translation
rate rate

Gene = MRNA = Protein

ATGCTGCAGATGTGGGGGTTTGTTCT
GCTGCAGGACAGGGTGTGGAGCAGC
CTGCCAAATTGATGTCTGTGGAGGGA
ACCTTTGCTCGG




How to design a synthetic gene?

A good model is crucial

Gene sequence features — protein production efficiency.

Bayesian Optimization principles for gene design
do:

1. Build a GP model as an emulator of the cell behavior.

2. Obtain a set of gene design rules (features optimization).
3. Design one/many new gene/s coherent with the design rules.
4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).



Model as an emulator of the cell behavior

Model inputs
Features (x;) extracted gene se- @
quences (s;): codon frequency, cai,
gene length, folding energy, etc.

0.0 il ()

Model outputs ‘.Y »‘4 7

Transcription and translation rates @
f:= (1, f3).

5

. ®—E)

Model type

Multi-output Gaussian process f ~
GP(m,K) where K is a corregion-
alization covariance for the two-
output model (+ SE with ARD).

The correlation in the outputs help!



Obtaining optimal gene design rules

Maximize the averaged El [Swersky et al. 2013]
x) = 0 (x)(-ud(-uv) + ¢(v))
A(x

where u = (Ymax — m(x))/a(x) and

o

A(x) :% S (%), 53(x) =2—12 S (Ke(x )i

I=a,B LI'=a,p

A batch method is used when several experiments can be run in
parallel



Designing new genes coherent with the optimal design rules

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target (same amino-acids).

2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal’ design rules.

Ranking criterion: eval(s|x*) = % | w;|x; — x|

J J

> x*: optimal gene design rules.
> s, x; generated ‘synonyms sequence’ and its features.

> w;: weights of the p features (inverse length-scales of the
model covariance).



Results for 10 low-expressed genes

Average of the log ratios

Predicted performance of recombinant gene profiles
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Wrapping up

» BO is fantastic tool for parameter optimization in ML and
experimental design.

» The model and acquisition function are the two most
important bits.

» Many useful extensions for BO.
» To scale BO is a current challenge.

» Software available!



Many thanks to!

Working on BO:
» Neil Lawrence
» Philipp Hennig
» Zhenwen Dai
» Mike Osborne

Collaborators at CBE:

» David James
> Joseph Longworth
» Mark Dickman
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Use Bayesian optimization!



