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We have seen during the introduction lectures that the distribution
of a GP Z depends on two functions :

the mean m(x) = E (Z (x))

the covariance k(x , x ′) = cov (Z (x),Z (x ′))

In this talk, we will focus on the covariance function, which is
often call the kernel.
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We assume we have observed a function f for a limited number of
time points x1, . . . , xn :
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The observations are denoted by fi = f (xi ) (or F = f (X )).
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Since f in unknown, we make the general assumption that it is a
sample path of a Gaussian process Z :
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Combining these two informations means keeping the samples
interpolating the data points :
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The conditional distribution is still Gaussian with moments :

m(x) = E (Z (x)|Z (X )=F ) = k(x ,X )k(X ,X )−1F

c(x , x ′) = cov (Z (x),Z (x ′)|Z (X )=F ) = k(x , x ′)− k(x ,X )k(X ,X )−1k(X , x ′)

It can be represented as a mean function with confidence intervals.
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Let Z be a random process with kernel k . Some properties of
kernels can be obtained directly from their definition.

Example
k(x , x) = cov (Z (x),Z (x)) = var (Z (x)) ≥ 0

⇒ k(x , x) is positive.

k(x , y) = cov (Z (x),Z (y)) = cov (Z (y),Z (x)) = k(y , x)

⇒ k(x , y) is symmetric.

We can obtain a thinner result...
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We introduce the random variable T =
∑n

i=1 aiZ (xi ) where n, ai
and xi are arbitrary. Computing the variance of T gives :

var (T ) = cov

∑
i

aiZ (xi ),
∑
j

ajZ (xj)

 =
∑
i

∑
j

aiajcov (Z (xi ),Z (xj))

=
∑∑

aiajk(xi , xj)

Since a variance is positive, we have∑
i

∑
j

aiajk(xi , xj) ≥ 0

for any arbitrary n, ai and xi .

Definition
The functions satisfying the above inequality for all n ∈ N, for all
xi ∈ D, for all ai ∈ R are called positive semi-definite functions.
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We have just seen :

k is a covariance ⇒ k is a positive semi-definite function

The reverse is also true :

Theorem (Loeve)

k corresponds to the covariance of a GP
m

k is a symmetric positive semi-definite function
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Proving that a function is psd is often difficult. However there are a
lot of functions that have already been proven to be psd :

squared exp. k(x , y) = σ2 exp
(
−
(x − y)2

2θ2

)
Matern 5/2 k(x , y) = σ2

(
1+

√
5|x − y |
θ

+
5|x − y |2

3θ2

)
exp

(
−
√
5|x − y |
θ

)

Matern 3/2 k(x , y) = σ2

(
1+

√
3|x − y |
θ

)
exp

(
−
√
3|x − y |
θ

)
exponential k(x , y) = σ2 exp

(
−
|x − y |
θ

)
Brownian k(x , y) = σ2 min(x , y)

white noise k(x , y) = σ2δx,y

constant k(x , y) = σ2

linear k(x , y) = σ2xy

When k is a function of x − y , the kernel is called stationary.
σ2 is called the variance and θ the lengthscale.
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For a few kernels, it is possible to prove they are psd directly from
the definition.

k(x , y) = δx ,y

k(x , y) = 1

For most of them a direct proof from the definition is not possible.
The following theorem is helpful for stationary kernels :

Theorem (Bochner)
A continuous stationary function k(x , y) = k̃(|x − y |) is positive
definite if and only if k̃ is the Fourier transform of a finite positive
measure :

k̃(t) =

∫
R

e−iωtdµ(ω)
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Example

We consider the following measure :

Its Fourier transform gives k̃(t) =
sin(t)
t

:

0.0

0.0

As a consequence, k(x , y) =
sin(x − y)

x − y
is a valid covariance

function.
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Usual kernels

Bochner theorem can be used to prove the positive definiteness of
many usual stationary kernels

The Gaussian is the Fourier transform of itself
⇒ it is psd.

Matérn kernels are the Fourier transforms of 1
(1+ω2)p

⇒ they are psd.
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Unusual kernels

Inverse Fourier transform of a (symmetrised) sum of Gaussian gives
(A. Wilson, ICML 2013) :

µ(ω)

0.0

−→
F

k̃(t)

0.0

The obtained kernel is parametrised by its spectrum.
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Unusual kernels

The sample paths have the following shape :
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Changing the kernel has a huge impact on the model :

Gaussian kernel: Exponential kernel:
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This is because changing the kernel implies changing the prior

Gaussian kernel: Exponential kernel:
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In order to choose a kernel, one should gather all possible
informations about the function to approximate...

Is it stationary ?
Is it differentiable, what’s its regularity ?
Do we expect particular trends ?
Do we expect particular patterns (periodicity, cycles,
additivity) ?

Kernels often include rescaling parameters : θ for the x axis
(length-scale) and σ for the y (σ2 often corresponds to the GP
variance). They can be tuned by

maximizing the likelihood
minimizing the prediction error
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It is common to try various kernels and to asses the model
accuracy. The idea is to compare some model predictions against
actual values :

On a test set
Using leave-one-out

Two (ideally three) things should be checked :
Is the mean accurate (MSE, Q2) ?
Do the confidence intervals make sense ?
Are the predicted covariances right ?

Furthermore, it is often interesting to try some input remapping
such as x → log(x), x → exp(x), ...
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Making new from old :

Kernels can be :
Summed together

I On the same space k(x , y) = k1(x , y) + k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1) + k2(x2, y2)

Multiplied together
I On the same space k(x , y) = k1(x , y)× k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1)× k2(x2, y2)

Composed with a function
I k(x , y) = k1(f (x), f (y))

All these operations will preserve the positive definiteness.

How can this be useful ?
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Sum of kernels over the same space

Example (The Mauna Loa observatory dataset)
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.
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Let’s try to predict the concentration for the next 20 years.
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Sum of kernels over the same space
We first consider a squared-exponential kernel :

k(x , y) = σ2 exp
(
−(x − y)2

θ2

)
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The results are terrible !
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Sum of kernels over the same space
What happen if we sum both kernels ?

k(x , y) = krbf 1(x , y) + krbf 2(x , y)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300

320

340

360

380

400

420

440

460

480

The model is drastically improved !
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Sum of kernels over the same space
We can try the following kernel :

k(x , y) = σ20x
2y2 + krbf 1(x , y) + krbf 2(x , y) + kper (x , y)
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Once again, the model is significantly improved.
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Sum of kernels over tensor space

Property

k(x, y) = k1(x1, y1) + k2(x2, y2)

is a valid covariance structure.
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Remark :
From a GP point of view, k is the kernel of
Z (x) = Z1(x1) + Z2(x2)
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Sum of kernels over tensor space

We can have a look at a few sample paths from Z :
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⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for
Approximating additive functions
Building models over high dimensional input space
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Sum of kernels over tensor space

We consider the test function f (x) = sin(4πx1) + cos(4πx2) + 2x2
and a set of 20 observation in [0, 1]2
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Sum of kernels over tensor space

We obtain the following models :

Gaussian kernel

Mean predictor
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Sum of kernels over tensor space

Remarks
It is straightforward to show that the mean predictor is additive

m(x) = (k1(x ,X ) + k2(x ,X ))(k(X ,X ))−1F

= k1(x1,X1)(k(X ,X ))−1F︸ ︷︷ ︸
m1(x1)

+ k2(x2,X2)(k(X ,X ))−1F︸ ︷︷ ︸
m2(x2)

⇒ The model shares the prior behaviour.

The sub-models can be interpreted as GP regression models
with observation noise :

m1(x1) = E ( Z1(x1) | Z1(X1) + Z2(X2)=F )
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Sum of kernels over tensor space

Remark

The prediction variance has interesting features

pred. var. with kernel product
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Sum of kernels over tensor space

This property can be used to construct a design of experiment that
covers the space with only cst × d points.
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Product over the same space

Property

k(x , y) = k1(x , y)× k2(x , y)

is valid covariance structure.

Example
We consider the product of a squared exponential with a cosine :

× =
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Product over the tensor space
Property

k(x, y) = k1(x1, y1)× k2(x2, y2)

is valid covariance structure.

Example
We multiply two squared exponential kernels
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Calculation shows we obtain the usual 2D squared exponential
kernels.
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Composition with a function

Property
Let k1 be a kernel over D1 × D1 and f be an arbitrary function
D → D1, then

k(x , y) = k1(f (x), f (y))

is a kernel over D × D.
proof ∑∑

aiajk(xi , xj) =
∑∑

aiajk1(f (xi )︸︷︷︸
yi

, f (xj)︸ ︷︷ ︸
yj

) ≥ 0

Remarks :
k corresponds to the covariance of Z (x) = Z1(f (x))

This can be seen as a (nonlinear) rescaling of the input space
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Example
We consider f (x) = 1

x and a Matérn 3/2 kernel
k1(x , y) = (1+ |x − y |)e−|x−y |.

We obtain :
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All these transformations can be combined !

Example
k(x , y) = f (x)f (y)k1(x , y) is a valid kernel.

This can be illustrated with f (x) = 1
x and

k1(x , y) = (1+ |x − y |)e−|x−y | :
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Effect of a linear operator

Property (Ginsbourger 2013)
Let L be a linear operator that commutes with the covariance, then
k(x , y) = Lx(Ly (k1(x , y))) is a kernel.

Example
We want to approximate a function [0, 1]→ R that is symmetric
with respect to 0.5. We will consider 2 linear operators :

L1 : f (x)→
{

f (x) x < 0.5
f (1− x) x ≥ 0.5

L2 : f (x)→
f (x) + f (1− x)

2
.

44 / 59



Effect of a linear operator

Example
Associated sample paths are

k1 = L1(L1(k))
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The differentiability is not always respected !
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Effect of a linear operator

These linear operator are projections onto a space of symmetric
functions :

H

Hsym

f

L1f
L2f

What about the optimal projection ?

⇒ This can be difficult... but it raises interesting questions !
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Periodicity detection
We will now discuss the detection of periodicity

Given a few observations can we extract the periodic part of a
signal ?
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As previously we will build a decomposition of the process in two
independent GPs :

Z = Zp + Za

where Zp is a GP in the span of the Fourier basis
B(t) = (sin(t), cos(t), . . . , sin(nt), cos(nt))t .

Property
It can be proved that the kernel of Zp and Za are

kp(x , y) = B(x)tG−1B(y)

ka(x , y) = k(x , y)− kp(x , y)

where G is the Gram matrix associated to B in the RKHS.
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As previously, a decomposition of the model comes with a
decomposition of the kernel

m(t) = (kp(x ,X ) + ka(x ,X ))k(X ,X )−1F

= kp(x ,X )k(X ,X )−1F︸ ︷︷ ︸
periodic sub-model mp

+ ka(x ,X )k(X ,X )−1F︸ ︷︷ ︸
aperiodic sub-model ma

and we can associate a prediction variance to the sub-models :

vp(t) = kp(x , x)− kp(x ,X )tk(X ,X )−1kp(t)

va(t) = ka(x , x)− ka(x ,X )tk(X ,X )−1ka(t)
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Example
For the observations shown previously we obtain :
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Can we can do any better ?
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Initially, the kernels are parametrised by 2 variables :

k(x , y , σ2, θ)

but writing k as a sum allows to tune independently the parameters
of the sub-kernels.
Let k∗ be defined as

k∗(x , y , σ2p, σ
2
a , θp, θa) = kp(x , y , σ

2
p, θp) + ka(x , y , σ

2
a , θa)

Furthermore, we include a 5th parameter in k∗ accounting for the
period by changing the Fourier basis :

Bω(t) = (sin(ωt), cos(ωt), . . . , sin(nωt), cos(nωt))t
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MLE of the 5 parameters of k∗ gives :
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We will now illustrate the use of these kernels for gene expression
analysis.
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We can apply this method to study the circadian rythm in
organisms. We used arabidopsis data from Edward 2006.

The dimension of the data is :
22810 genes
13 time points

Edward 2006 gives a list of the 3504 most periodically expressed
genes. The comparison with our approach gives :

21767 genes with the same label (2461 per. and 19306
non-per.)
1043 genes with different labels
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Let’s look at genes with different labels :
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Small recap
We have seen that

Kernels have a huge impact on the model
They have to reflect the prior belief on the function to
approximate.
Kernels can (and should) be tailored to the problem at hand.

Although a direct proof of the positive definiteness of a function is
often intractable, Bochner theorem allows to build kernels from
their power spectrum.
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Various operations can be applied to kernels while keeping
p.s.d.ness :

Making new from old
sum
product

composition with a function
these can be combined

Linear operator
If we have a linear application that transforms any function into a
function satisfying the desired property, it is possible to build a GP
fulfilling the requirements.
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