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Introduction
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We have seen during the introduction lectures that the distribution
of a GP Z depends on two functions :

m the mean m(x) = E(Z(x))

m the covariance k(x, x) = cov (Z(x), Z(x"))

In this talk, we will focus on the covariance function, which is
often call the kernel.
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We assume we have observed a function f for a limited number of
time points x1,...,X, :

f(x)
0.0

-0.5

-1.0

0.0 0.2 0.4 0.6 0.8 1.0
T

The observations are denoted by f; = f(x;) (or F = f(X)).
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Since f in unknown, we make the general assumption that it is a
sample path of a Gaussian process Z :
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Combining these two informations means keeping the samples
interpolating the data points :
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The conditional distribution is still Gaussian with moments :

m(x) = E(Z(x)|Z(X)=F) = k(x, X)k(X,X)"'F
c(x,x") = cov (Z(x), Z(x")|Z(X)=F) = k(x,x") — k(x, X)k(X, X) " k(X, x")

It can be represented as a mean function with confidence intervals.

0.0 0.2 0.4 0.6 0.8 1.0
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What is a kernel ?
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Let Z be a random process with kernel k. Some properties of
kernels can be obtained directly from their definition.

Example
k(x,x) = cov(Z(x),Z(x)) = var(Z(x)) >0
= k(x, x) is positive.

k(x,y) = cov(Z(x), Z(y)) = cov (Z(y), Z(x)) = k(y,x)
= k(x,y) is symmetric.

We can obtain a thinner result...
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We introduce the random variable T =37 ; a;Z(x;) where n, a;
and x; are arbitrary. Computing the variance of T gives :

var (T) = cov Z aiZ(x), Z aiZ(x) | = Z Z ajajcov (Z(x), Z(x;)
=D aiak(x,x)

Since a variance is positive, we have
Z Z a,-ajk(x,-, XJ) Z 0
i

for any arbitrary n, a; and x;.

Definition
The functions satisfying the above inequality for all n € IN, for all
x; € D, for all a; € R are called positive semi-definite functions.
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We have just seen :

k is a covariance = k is a positive semi-definite function
The reverse is also true :
Theorem (Loeve)

k corresponds to the covariance of a GP

0

k is a symmetric positive semi-definite function
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Proving that a function is psd is often difficult. However there are a
lot of functions that have already been proven to be psd :

squared exp.

Matern 5/2

Matern 3/2
exponential
Brownian
white noise
constant

linear

k(X»y) = 02 exp (7

_ 2 VBlx—y| | 5lx—yl? VBx —y|
k(x,y)=0“ |1+ 2 + 30 exp | ——
Ky =02 (14 2 o <—‘/§X_y

0 0
k(x,y) = 0% exp <7 Ix ; yl)

k(x,y) = 0?6y,
k(x,y) = o?

When k is a function of x — y, the kernel is called stationary.

2

o< is called the variance and 6 the lengthscale.
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k(x,7.5)

GPy.kern.rbf

GPy.kern.exponential

GPy.kern.Matern32

GPy.kern.Matern52
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For a few kernels, it is possible to prove they are psd directly from
the definition.

B k(x,y) =0dxy
m k(x,y)=1

For most of them a direct proof from the definition is not possible.
The following theorem is helpful for stationary kernels :

Theorem (Bochner)

A continuous stationary function k(x,y) = k(|x — y|) is positive
definite if and only if k is the Fourier transform of a finite positive
measure :

k() = /R et dp(w)
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Example

We consider the following measure :

. L sin(t
Its Fourier transform gives k(t) = t( ) :
sin(x —y) . _ _
As a consequence, k(x,y) = ——== is a valid covariance
X—Yy

function.
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Usual kernels

Bochner theorem can be used to prove the positive definiteness of
many usual stationary kernels

m The Gaussian is the Fourier transform of itself
= it is psd.

m Matérn kernels are the Fourier transforms of m

= they are psd.
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Unusual kernels

Inverse Fourier transform of a (symmetrised) sum of Gaussian gives
(A. Wilson, ICML 2013) :

p(w) k(t)

Ll

0.0 0.0

The obtained kernel is parametrised by its spectrum.
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Unusual kernels

The sample paths have the following shape :
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Choosing the appropriate kernel
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Changing the kernel has a huge impact on the model :

Gaussian kernel: Exponential kernel:
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This is because changing the kernel implies changing the prior

Gaussian kernel: Exponential kernel:
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In order to choose a kernel, one should gather all possible
informations about the function to approximate...

m |s it stationary ?

m s it differentiable, what's its regularity 7
m Do we expect particular trends?
|

Do we expect particular patterns (periodicity, cycles,
additivity) ?

Kernels often include rescaling parameters : 0 for the x axis
(length-scale) and o for the y (02 often corresponds to the GP
variance). They can be tuned by

m maximizing the likelihood

m minimizing the prediction error
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It is common to try various kernels and to asses the model
accuracy. The idea is to compare some model predictions against
actual values :

m On a test set

m Using leave-one-out

Two (ideally three) things should be checked :
m Is the mean accurate (MSE, Q?)?
m Do the confidence intervals make sense ?

m Are the predicted covariances right 7

Furthermore, it is often interesting to try some input remapping
such as x — log(x), x — exp(x), ...

24 / 59



Making new from old
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Making new from old :

Kernels can be :
m Summed together

» On the same space k(x,y) = ki(x,y) + ka(x,y)
> On the tensor space k(x,y) = ki(x1, y1) + ka(x2, y2)

m Multiplied together

» On the same space k(x,y) = ki(x, y) x ka(x, y)
> On the tensor space k(x,y) = ki(x1,y1) X ka2(x2, y2)

m Composed with a function

> k(x,y) = ka(f(x), f(¥))

All these operations will preserve the positive definiteness.

How can this be useful 7
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Sum of kernels over the same space

Example (The Mauna Loa observatory dataset)

This famous dataset compiles the monthly CO> concentration in
Hawaii since 1958.

440

420
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380 M
360
340

320

1960 1970 1980 1990 2000 2010 2020 2030

Let's try to predict the concentration for the next 20 years.
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Sum of kernels over the same space
We first consider a squared-exponential kernel :

k(x,y) = 0% exp <_(X;—2y)2>

460|
400|
440|
200 420
400|
0
380
~200| 360
340)
~400|
320
V1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 34950 1960 1970 1980 1990 2000 2010 2020 2030 2040

The results are terrible !
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Sum of kernels over the same space

What happen if we sum both kernels?

k(x,y) = kr1(X,y) + kra(x,y)
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Sum of kernels over the same space

What happen if we sum both kernels?

k(x,y) = kr1(X,y) + kra(x,y)

380
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340

320

3%‘950 1960 1970 1980 1990 2000 2010 2020 2030 2040

The model is drastically improved !
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Sum of kernels over the same space

We can try the following kernel :

k(x,y) = 08x2y% + kbr1(X, ¥) + kb2 (%, ) + Kper(X, ¥)
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Sum of kernels over the same space

We can try the following kernel :

k(x,y) = 08x2y% + kbr1(X, ¥) + kb2 (%, ) + Kper(X, ¥)
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3%‘950 1960 1970 1980 1990 2000 2010 2020 2030 2040

Once again, the model is significantly improved.
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Sum of kernels over tensor space

Property

k(x,y) = ki(x1, y1) + ka(x2, y2)

is a valid covariance structure.

Remark :

m From a GP point of view, k is the kernel of
Z(x) = Zi(x1) + Z2(x2)
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Sum of kernels over tensor space

We can have a look at a few sample paths from Z :
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= They are additive (up to a modification)

Tensor Additive kernels are very useful for
m Approximating additive functions

m Building models over high dimensional input space
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Sum of kernels over tensor space

We consider the test function f(x) = sin(4mx1) + cos(4mx2) + 2x2
and a set of 20 observation in [0, 1]?

Test function Observations
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Sum of kernels over tensor space

We obtain the following models :

Gaussian kernel Additive Gaussian kernel

Mean predictor

Mean predictor

3 " 5
2 AR
i ”' \ u a1 2
\\~ \\\\\ . M‘ i 3W .
.- -1 \
: - . 2
0.8 1.00.0 0.8 1.0.0
RMSE is 1.06 RMSE is 0.12
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Sum of kernels over tensor space

Remarks
m |t is straightforward to show that the mean predictor is additive

m(x) = (ki (x, X) + ka(x, X)) (k(X, X)) "1F
= ka(x1, X1)(k(X, X)) ' F + ka(x2, X2)(k(X, X)) ' F

my(x1) mz(x2)

= The model shares the prior behaviour.

m The sub-models can be interpreted as GP regression models
with observation noise :

mi(x1) = E( Zi(x1) | Z1(X1) + 22(X2)=F )
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Sum of kernels over tensor space

Remark

m The prediction variance has interesting features

pred. var. wi

1.

th kernel product

0.8

pred. var. with kernel sum

1.0
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Sum of kernels over tensor space

This property can be used to construct a design of experiment that

covers the space with

1.0

only cst x d points.
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Prediction variance
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Product over the same space
Property

k(va) - kl(xa)/) X k2(xay)

is valid covariance structure.

Example

We consider the product of a squared exponential with a cosine :
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Product over the tensor space

Property

k(x,y) = ki(x1, y1) X ka(x2, y2)

is valid covariance structure.

Example

We multiply two squared exponential kernels

TR
HIAN
i

N
/ '“\ \
e

Calculation shows we obtain the usual 2D squared exponential
kernels.
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Composition with a function

Property
Let ki be a kernel over Dy x Dy and f be an arbitrary function
D — D1, then

k(x,y) = ki(f(x), f(y))

is a kernel over D x D.

proof
ZZa,aJk(x,,xJ) = ZZ aiajki(f(x:), f(x)) > 0
Yi Yi
Remarks :

m k corresponds to the covariance of Z(x) = Z1(f(x))

m This can be seen as a (nonlinear) rescaling of the input space
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Example
We consider f(x) = 1 and a Matérn 3/2 kernel

ki(x,y) = (1+ |x = yl)e .

We obtain :

Sample paths

Kernel
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All these transformations can be combined !

Example
k(x,y) = f(x)f(y)ki(x,y) is a valid kernel.

This can be illustrated with f(x) = 1 and
ka(xy) = 1+ [x —ype "1

Kernel Sample paths
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Effect of linear operators
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Effect of a linear operator

Property (Ginsbourger 2013)
Let L be a linear operator that commutes with the covariance, then
k(x,y) = Lx(Ly(ki(x,y))) is a kernel.

Example
We want to approximate a function [0, 1] — R that is symmetric
with respect to 0.5. We will consider 2 linear operators :

_ f(x) x <05
Ll'f(x)_){f(l—x) x>05

ORI ED)

Ly : f(x)
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Effect of a linear operator

Example
Associated sample paths are

ki = Li(L1(k)) ko = La(La(k))

I
|S=L | T

0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10

The differentiability is not always respected !
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Effect of a linear operator

These linear operator are projections onto a space of symmetric
functions :

Hsym

What about the optimal projection ?

= This can be difficult... but it raises interesting questions!
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Application : Periodicity detection
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Periodicity detection

We will now discuss the detection of periodicity

Given a few observations can we extract the periodic part of a
signal ?

2.0

15 x

x x

1.0 x

0.5 x x

0.0 x x

x

-0.5 x
-1.0
- 0 5 10 15
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As previously we will build a decomposition of the process in two
independent GPs :

Z=2,+2,
where Z, is a GP in the span of the Fourier basis

B(t) = (sin(t),cos(t), ..., sin(nt), cos(nt))*.

Property
It can be proved that the kernel of Z, and Z, are

ko(x,y) = B(x)tG_lB(y)
ka(x,y) = k(va) - kP(va)

where G is the Gram matrix associated to B in the RKHS.
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As previously, a decomposition of the model comes with a
decomposition of the kernel

m(t) = (kp(x, X) + ka(x, X)) k(X, X)"'F
= kp(x, X)k(X, X) " F + ka(x, X)k(X, X)"*F

periodic sub-model mj, aperiodic sub-model m,
and we can associate a prediction variance to the sub-models :

up(t) = koo X) — kolix, XOK(X, X) (1)
Va(t) = ka(x, x) — ka(x, X)Tk(X, X) " ka(t)

50 / 59



Example
For the observations shown previously we obtain :

Can we can do any better?
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Initially, the kernels are parametrised by 2 variables :
k(x,y,o2,6)

but writing k as a sum allows to tune independently the parameters
of the sub-kernels.

Let k* be defined as
* 2 2 _ 2 2
k (X7_y7 O-p7o-aa epa ea) - kp(Xaya Upv ep) + ka(X7y7 Uaa ‘93)

Furthermore, we include a 5t parameter in k* accounting for the
period by changing the Fourier basis :

B.,(t) = (sin(wt), cos(wt), .. .,sin(nwt), cos(nwt))*
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MLE of the 5 parameters of k* gives :

We will now illustrate the use of these kernels for gene expression
analysis.
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We can apply this method to study the circadian rythm in
organisms. We used arabidopsis data from Edward 2006.

The dimension of the data is :
m 22810 genes

m 13 time points

Edward 2006 gives a list of the 3504 most periodically expressed
genes. The comparison with our approach gives :

m 21767 genes with the same label (2461 per. and 19306
non-per.)

m 1043 genes with different labels
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Let's look at genes with different labels :
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ZM 2 3 3
1 2| 2
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0 1 1
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S 15 )
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’ x| x 0 4
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x
o ~0.5| 0
S -1.0]
-2 -15 -
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periodic for Edward periodic for our approach
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Conclusion
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Small recap
We have seen that

m Kernels have a huge impact on the model

m They have to reflect the prior belief on the function to
approximate.

m Kernels can (and should) be tailored to the problem at hand.

Although a direct proof of the positive definiteness of a function is
often intractable, Bochner theorem allows to build kernels from
their power spectrum.
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Various operations can be applied to kernels while keeping
p.s.d.ness :

Making new from old
® sum m composition with a function

m product m these can be combined

Linear operator

If we have a linear application that transforms any function into a
function satisfying the desired property, it is possible to build a GP
fulfilling the requirements.
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