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Motivating application 2: non-linear regression
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A Brief History of Gaussian Process Approximations

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”
PITC: Snelson et al. “Local and global sparse Gaussian process approximations”
EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.” 
VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”
DTC / PP: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”
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FITC: Demo (Snelson)
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Fully independent training conditional (FITC) approximation

parametric (although cleverly so)
if I see more data, should I add extra pseudo-data?

I unnatural from a generative modelling perspective
I natural from a prediction perspective (posterior gets more complex)

=⇒ lost elegant separation of model, inference and approximation
example of prior approximation

Extensions:
inter-domain GP (pseudo-data in a different space)
partially independent training conditional and tree-structured
approximations
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Summary of VFE method

optimisation of pseudo point inputs: VFE has better guarantees
than FITC
variational methods known to underfit (and have other biases)
no augmentation required: target is posterior over functions,
which includes inducing variables

I pseudo-input locations are pure variational parameters (do not
parameterise the generative model like they do in FITC)

I coherent way of adding pseudo-data: more complex posteriors require
more computational resources (more pseudo-points)

Rule of thumb:
VFE returns better mean estimates
FITC returns better error-bar estimates
how should we select M = number of pseudo-points?
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Power Expectation Propagation
and Gaussian Processes
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A Brief History of Gaussian Process Approximations

approximate generative model
exact inference

exact generative model
approximate inference

methods employing
pseudo-data

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”
PITC: Snelson et al. “Local and global sparse Gaussian process approximations”
EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.” 
VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”
DTC / PP: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

VFE
EP
PP

FITC
PITC
DTC

A Unifying View of Sparse 
Approximate Gaussian 
Process Regression
Quinonero-Candela & 
Rasmussen, 2005
(FITC, PITC, DTC)

A Unifying Framework for 
Sparse Gaussian Process 
Approximation using 
Power Expectation 
Propagation
Bui, Yan and Turner, 2016
(VFE, EP, FITC, PITC ...)
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EP pseudo-point approximation

input locations of

 'pseudo' data

outputs and covariance

 'pseudo' data

true posterior approximate posterior

marginal

likelihood

posterior

exact joint 

of new GP 

regression

model
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Fixed points of EP = FITC approximation
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VFE
EP
PP

FITC
PITC
DTC

interpretation resolves issues with FITC: 
why does it work so well?

are we allowed to increase M with N

A Unifying View of Sparse 
Approximate Gaussian 
Process Regression
Quinonero-Candela & 
Rasmussen, 2005
(FITC, PITC, DTC)

A Unifying Framework for 
Sparse Gaussian Process 
Approximation using 
Power Expectation 
Propagation
Bui, Yan and Turner, 2016
(VFE, EP, FITC, PITC ...)

77 / 90



EP algorithm
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Power EP algorithm (as tractable as EP)

1. remove

2. include

3. project

4. update

take out fraction of
pseudo-observation

likelihood

add in fraction of
true observation

likelihood

project onto
approximating

family

update
pseudo-observation

likelihood

cavity

tilted

1. minimum: moments matched at pseudo-inputs
2. Gaussian regression: matches moments everywhere

 KL between unnormalised
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 rank 1
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Power EP: a unifying framework

FITC
Csato and Opper, 2002

Snelson and Ghahramani, 2005

VFE
Titsias, 2009
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Power EP: a unifying framework

GP Regression GP Classification

PEP
VFE

EP

inter-dom
ain

[4] Quiñonero-Candela et al. 2005
[5] Snelson et al., 2005
[6] Snelson, 2006
[7] Schwaighofer, 2002 

[10,5,6*]

[14*]

[12*,15*]

[13][17,13]

[9,11,8*]

[16*] inter-dom
ain

 structured
approx.

 structured
approx.

(FITC)

[7,4*,6*]
(PITC)

[8] Titsias, 2009
[9] Csató, 2002
[10] Csató et al., 2002
[11] Seeger et al., 2003

[12] Naish-Guzman et al, 2007
[13] Qi et al., 2010
[14] Hensman et al., 2015
[15] Hernández-Lobato et al., 2016
[16] Matthews et al., 2016
[17] Figueiras-Vidal et al., 2009
 

PEP
VFE

EP

* = optimised pseudo-inputs              
** = structured versions of VFE recover VFE

** **
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How should I set the power parameter α?

6 UCI classification datasets
20 random splits
M = 10, 50, 100

hypers and inducing 
inputs optimised

8 UCI regression datasets
20 random splits

M = 0 - 200
hypers and inducing 

inputs optimised
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References (hyperlinked)

Approximate inference in GPs:

A Unifying Framework for Sparse Gaussian Process Approximation
using Power Expectation Propagation, arXiv preprint 2016

Scalable Approximate inference:
Stochastic Expectation Propagation, NIPS 2015
Black-box α-divergence Minimization, ICML 2016

Deep Gaussian Processes (incl. comparisons to Bayesian Neural
Networks and GPs):

Deep Gaussian Processes for Regression using Approximate
Expectation Propagation, ICML 2016

83 / 90

http://arxiv.org/abs/1605.07066
http://arxiv.org/abs/1605.07066
http://arxiv.org/abs/1511.03249
http://arxiv.org/abs/1511.03243
http://arxiv.org/abs/1602.04133
http://arxiv.org/abs/1602.04133


GP regression: introducing notation

Q1. What's the formal justification for how we were using GPs for regression?

84 / 90



GP regression: introducing notation

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression)

85 / 90



GP regression: introducing notation

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression)

place GP prior over the non-linear function

(smoothly wiggling functions expected)

86 / 90



GP regression: introducing notation

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression)

place GP prior over the non-linear function

sum of Gaussian variables = Gaussian: induces a GP over 

(smoothly wiggling functions expected)
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GP regression: introducing notation

Q3. How do we make predictions?

prior 
uncertainty

predictive 
uncertainty

reduction in
uncertainty

linear in the data

predictive mean predictive covariance

predictions more confident than prior
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A brief introduction to the Kullback-Leibler divergence

KL(p1(z)||p2(z)) =
∑

z
p1(z) log p1(z)

p2(z)
Important properties:

Gibb’s inequality: KL(p1(z)||p2(z)) ≥ 0, equality at p1(z) = p2(z)
I proof via Jensen’s inequality or differentiation (see MacKay pg. 35 )

Non-symmetric: KL(p1(z)||p2(z)) 6= KL(p2(z)||p1(z))
I hence named divergence and not distance

Example:
binary variables z ∈ {0, 1}
p(z = 1) = 0.8 and q(z = 1) = ρ
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