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Single-output Gaussian process

f(x) ~ GP(0, k(x,x"))

D= {(x;, f(x)]i=1,...,N}
f(X1) 0 k(X1,X1) k(X17XN)

A A N 2 I
f(xn) 0] [k(xn,X1) -+ K(Xn,Xn)

f 0 K

For prediction: p(f(x.)|f)
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Single-output Gaussian process

0

NN(;

0

k(X1,X1) -+ k(Xy,Xp) 1 ...0
J + 02
|:k(XN,X1) k(XN,XN)] L 1])

{y (x1)
y ()-(N)
y 0 K + o2l
For prediction: p(f(x.)|y)
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Kernels for multiple outputs

fi(x) ~ GP(0, ki (x,x'))

f(x) ~ GP(0, ka(x, X))
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Kernels for multiple outputs

fi(x) ~ GP(0, ki (x, X)) fa(x) ~ GP(0, kz(x,X'))
D1 = {(X,',1,f1 (X,’71))|I. =1,..., N1} Dg = {(X,’yg, f2(X,‘72))‘I’ =1,..., NQ}

Ky ?
Kf’f - |: ?1 KJ
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Kernels for multiple outputs

fi(x) ~ GP(0, ki (x,x')) f(x) ~ GP(0, k2(x, "))
D1 = {(X,‘J s f1 (X,’71))|I. =1 yeeey N1} Dg = {(X,’yg, f2(X,‘72))‘I’ = 1, ceey NQ}
K, Build a cross-covariance

Kis = { 2 KJ function cov([f; (x), f2(x’)] such
that Ky ¢ is positive semi-definite.
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. Inputs for f;(x)
|:| Inputs for f(x)
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Different input configurations of the data

Isotopic data

Sample sites are shared

Dy = {(x;, fi (X))}
Do = {(x;, b(x;))N,}

. Inputs for fi(x)
|:| Inputs for f>(x)
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Different input configurations of the data

Isotopic data Heterotopic data
U g O]
O O L .
[ )
® ¢ [ 1| @ Inputs for £ (x)
[] - . |:| Inputs for f(x)
u °
© Do U 4
Sample sites are shared Sample sites may be
different

= {(xi. fr(xi)IL}
{(xi, (%)L}



Different input configurations of the data

Isotopic data Heterotopic data
U g O]
O O L .
[ )
® ¢ [ 1| @ Inputs for £ (x)
] - = [ ] Inputs for £(x)
u °
© Do U 4
Sample sites are shared Sample sites may be
different

= {(xi, fi(xi))iLq } Dy = {(Xi,1, (%i1))0 s}
{(xi, (%)L} Dz = {(Xi2, B(Xi2))}% }
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Intrinsic coregionalization model (ICM): two outputs

0 Consider two outputs f1(x) and f2(x) with x € RP.

o We assume the following generative model for the outputs
1. Sample from a GP u(x) ~ GP(0, k(x, X)) to obtain u'(x)
2. Obtain fi(x) and f(x) by linearly transforming u' (x)

f(x) = aiu' (x)

h(x) = asu' ()

10/76
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ICM: samples
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0.2 0.4 0.6 0.8

fo(x) = adul(x)
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o
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=
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ICM: samples
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ICM: samples
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ICM: samples

0.9
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0.5
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0.2

0.4

0.6

0.8

45

35

25

15
14
13
12
11

0.9
0.8
0.7

fi(x) = aju!(x)

o 02 04 06 08 1
fa(x) = azu! (x)
02 04 06 08 1
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|ICM: covariance ()

0 For a fixed value of x, we can group f;(x) and f>(x) in a vector f(x)
fi (x)
f =
0= |00
0 We refer to this vector as a vector-valued function.

a The covariance for f(x) is computed as

cov (f(x), f(x')) = E {f(x)[f(x)] "} — E {f(x)} [E {f(x')}] .
0 We compute first the term E {f(x)[f(x")] " }

AT 1o oot [E(BOAK)) E{ARX))
E { {fz(x)} ) Rx ”} = {E{fz(x)ﬁ X)) E{6M)6X)}



ICM: covariance (ll)
0 We compute the expected values as

E{f(x)A(x)} = E{alu' (0)aju' (x)} = (a] E {u' (x)

E{f(x)h(X)} =E{aju'(x)a3(x')} = ajalE {u'(x
E{hL(X)h(X)} =E{au'(x)aju'(x')} = (a})°E {u'(x

0 The term E {f(x)[f(x)] " } follows as

u'(x')}
x)u'(x)}
1(x/)}

(al2E {u'()u'(x)}  alalE {u' (x)u'(x)
E{f)lf(x)]"} = {a%a%@ {{u1(x)u‘(x’)}} (a;)2E{{u1(x)u‘(x’)}}]

_ |:(61 )2 a:II a%:l E {u1 (X)U1 (xl)}

aia (a)

0 Theterm E {f(x)} is computed as

= atol} = i = 212060 - 2



|ICM: covariance (lll)
o Putting the terms together, the covariance for f(x’) follows as

[(al ) iif)%} E {u' (x)u'(X)} - [31] (&l @] E{u' (0} E {u'(x)}

aa )

0 Defininga=[a] aj],
cov (f(x),f(x')) =aa'E {u'(x)u'(x')} —aa'E{u'(x)} E {u"(X)}
=aa' [E{v'(x)u'(x)} -E{uv'(x)}E{uv'(x)}]

k(x,x")

=aa' k(x,x))

0 Wedefine B=aa', leading to

cov (f(x), f(x)) = Bk(x,x') = [2; 2:] k(x,X)

0 Notice that B has rank one.



|ICM: two outputs and two latent samples

0 We can introduce a bit more of complexity in the model before as
follows.

o Consider again two outputs f;(x) and £(x) with x € RP.

o We assume the following generative model for the outputs
1. Sample twice from a GP u(x) ~ GP(0, k(x,x')) to obtain u'(x) and u?(x)
2. Obtain f;(x) and £(x) by adding a scaled transformation of u'(x) and
u?(x)
(x) = alu'(x) + & ()

h(x) = abu' (x) + a5uP(x)

0 Notice that u'(x) and u?(x) are independent, although they share the
same covariance k(x, x’).



ICM: samples

ul(x)

15 . . . . ,
0 0.2 0.4 0.6 0.8 1
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ICM: samples

ul(x) fi(x) = aju! (x) + afu?(x)
3r 10
5
0
5
-10
0 02 04 06 08 1

15 . . . . .
0

16/76



ICM: samples

ul(x)

15 . .
0 .

10

fi(x) = aju! (x) + afu?(x)

-10

o

i

02 04 06 08
Ja(x) = agu! (x) + a3u?(x)

o

o
N
o
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o
o
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©
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ICM: samples

ul(x)
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ICM: samples

ul(x) Ji(x) = aju! (x) + afu?(x)
1 10
5
0
5
-10
0 02 04 06 08 1
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ICM: samples

ul(x)

10

Ji(x) = aju! (x) + afu?(x)

-10

o

i

02 04 06 08
Ja(x) = agu! (x) + a3u?(x)

o
N
o
I
o
=
o
©
-
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ICM: covariance

o The vector-valued function can be written as f(x)
f(x) = a'u’(x) + a®v?(x)
where a' = [al a}]" anda? = [ &3].

0 The covariance for f(x) is computed as

(
cov (f(x),f(x')) = a'(
(
)

T

a
a1

x') +a%(a®) "k(x,x')

a')
a‘)Tk(
YT +a%(@®) "] k(x,x')

@'’

2 WedefineB=a'(a')" +a?(a?)", leading to

cov (f(x), f(x')) = Bk(x, X') = [2; Z;z] K(x, X)

0 Notice that B has rank two.

cov(u'(x), u'(x')) + a%(@®) " cov(u?(x), u

*(x))



ICM: observed data

fi(x)

10 24
1l
5 o
_l L
0 2}
30
5 4l
_5 L

1% 02 04 06 08 1 A 02 04 06 08 1
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ICM: observed data

10 £ 2
1l
5 o
Al
0 2}
30
5 4l
5l

% 02 04 06 08 1 0 02 04 06 08 1

Dy = {(X,‘, f1 (X,))|I = 1,. . N} Do = {(X,’, fg(X,))‘I = 1,. . N}
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ICM: observed data

10 £i(x) 24
1l
5 o
_l L
0 2}
30
5 4l
_5 L

1% 02 04 06 08 1 A 02 04 06 08 1

} B fz(?ﬁ)

Dy ={(x;, i (x;))]i=1,...,N} Do = {(x;, L(x;)))li=1,...,N}

()]

f1().(N)

[ (xn).

(]

0| [bi1K bi2K
0|’ [b1K bxK
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ICM: observed data

10 fix)

5

0

5

—100 012 014 0:6 018 Zi.

Dy = {(xi, Ai(x))li =1,...,N}

[F1(x1)]

frl _ |Ai(xn)

f2 fo(x4) 0
|2 (Xn) |

S b A O N B o kN

0.2 0.4 0.6 0.8 1

Do = {(X,’, fg(X,))‘I = 1,. . N}

o

N 0| [bi1K bi2K The matrix K € RV*N has
" 121K bK

elements k(X;, X;).
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ICM: observed data

fi(x)

10 24
1l
5 o
_l L
0 2}
30
5 4l
_5 L

1% 02 04 06 08 1 A 02 04 06 08 1

Dy = {(X,‘, f1 (X,))|I = 1,. . N} Do = {(X,’, fg(X,))‘I = 1,. . N}
The Kronecker product between matrices C € R¢*% and G € R9' %% with

Cig - Clo c11G -+ C1,G
C-= is CxG= :
Coit " Coe Cei1G - Co G
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ICM: observed data

10

fi(x)

0.2 0.4

0.6

0.8 1

D1 = {(X,‘, f1 (X,))|I = 1,.. . N}

_f1 (X1)_

£ ()
f2(X1)

_fz()-(N)_

HED

S b A O N B o kN

0.2 0.4 0.6 0.8 1

Do = {(X,’, fg(X,))‘I = 1,. . N}

o
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ICM: observed data

10

-10

fi(x)
Dy = {(x;, A(X))]i = 1...., N}
)
11 A0 0
fﬂ— Bx) NN(M’B@K)
_fz()-(N)_

S b A O N B o kN

0.8 1

0.6

Do = {(X,’, fg(X,))‘I = 1,. . N}

0.2 0.4

o

The matrix K € RV*N has
elements k(X;, X;).
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ICM: general case

Qa

Qa

Consider a set of functions {fy(x)}5_,.

In the ICM
R . .
fa(x) = &y (x),
i=1

where the functions u/(x) are GPs sampled independently, and share
the same covariance function k(x,Xx’).

For f(x) = [fi(x) - -- fp(X)] T, the covariance cov[f(x), f(x')] is given as
cov[f(x),f(x')] = AAT k(x,x') = Bk(x,x'),
where A =[a' a®---af].

The rank of B € RP*P is given by R.



ICM: autokrigeability

a If the outputs are considered to be noise-free, prediction using the ICM
under an isotopic data case is equivalent to independent prediction
over each output.

0 This circumstance is also known as autokrigeability.

20/7
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Semiparametric Latent Factor Model (SLFM)

O 0O 0O o

ICM uses R samples u/(x) from u(x) with the same covariance
function.

SLFM uses Q samples from uq(x) processes with different covariance
functions.

The SLFM with Q = 1 is the same to the ICM with R = 1.
Consider two outputs f;(x) and £(x) with x € RP.
Suppose we have Q = 2.

We assume the following generative model for the outputs
1. Sample from a GP GP(0, ki (x,x")) to obtain u;(x).
2. Sample from a GP GP(0, k2(x, X)) to obtain u»(x).
3. Obtain f;(x) and f(x) by adding a scaled versions of us(x) and uz(x)

fi(X) = a1,1u1(X) + ar 2u2(x)
h(X) = az,1u1(X) 4 a,2U2(X)

22/7



SLFM: samples

u1(x)

0.2 0.4 0.6 0.8 1

up(x)
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SLFM: samples

u1(x) fi(x) = ariui(x) + a12us(x)

-10

25 -12
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

up(x)
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SLFM: samples

u1(x)

0.2

0.4

up(x)

0.6

0.8

-10

F1(%) = ar1u1 (%) + a1 2u2(x)

-12

o

i

0.2 0.4 0.6 0.8

fa(x) = az1u1(%) + a2 2uz(x)

o
N
o
IS
o
o
o
©
=
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SLFM: samples

uy(x)

0.2 0.4 0.6 0.8 1

up(x)
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SLFM: samples

u1(x)

0.2 0.4 0.6

up(x)

0.8 1

-10

-12
0

F1(%) = ar1u1 (%) + a1 2u2(x)

0.2 0.4 0.6 0.8
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SLFM: samples

u1(x)

0.2

0.4

up(x)

0.6

0.8

-10

-12

F1(%) = ar1u1 (%) + a1 2u2(x)

0 0.2 04 0.6 0.8 1
fa(x) = az1u1 (%) + a2 2uz(x)
0 0.2 04 0.6 0.8 1

23/76



SLFM: covariance

o The vector-valued function can be written as f(x)
f(x) = ajur(X) + agup(X)
where a; = [a11 a»1]" andax = [ar12 a22] .
a The covariance for f(x) is computed as
cov (f(x),f(x’)) = as(ay) " cov(uy(x), ur (X)) + az(az) " cov(up(X), ua(X'))
=ai(ar) ki(x,x) +az(az) " ka(x,X)
0  We define By = a;(a;)" and B, = ax(az) ", leading to

cov (f(x),f(x)) = Bk (x,X’) + Boka(X, X')

0 Notice that By and B, have rank one.

24/7



SLFM: observed data

-10

-12
0

fi(x)

0.2

0.4

0.6

0.8
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SLFM: observed data

-10

-12

fi(x)

0

0.2 0.4 0.6 0.8 1

D1 = {(X,‘, f1 (X,))|I = 1,. . N}

~o 02 04 06 08

Do = {(X,’, fg(X,))‘I = 1,. . N}

1
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SLFM: observed data

0 fi(x)
2
-4
6
-8
-10
-12 . . . . ) - . . . . .
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Dy ={(x;, i (x;))]i=1,...,N} Dy = {(x;, (x))]i=1,...,N}
i (x)T
t1 | f(xw) 0 )
{fz} f(x1) N ol’ 1 QK1+ B2 ® Ko
| 2(Xn)
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SLFM: observed data

. A

2

-4

6

8

-10

—120 012 0‘.4 016 0‘.8 i
Dy = {(x;, fi(x;)))li=1,...,N}

_f1 (X1)_

£ (X)

o] ] v (8 0w

_fz()-(N)_

~o 02 04 06 08 1

Do = {(X,’, fg(X,))‘I = 1,. . N}

The matrix Ky € RV*N has
elements ki (X;, X;).
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SLFM: observed data

fi(x)

-10

-12

0 0.2 0.4 0.6 0.8 1

Dy = {(X,‘, f1 (X,))|I = 1,.. . N}
_f1 (X1)_

£ (X)

m = [ NN(m By ® K, +Bg®K2)

_fz()-(N)_

~o 02 04 06 08 1

Do = {(X,’, fg(X,))‘I = 1,. . N}

The matrix Ky € RV*N has
elements ki (X;, X;).

The matrix K, € RV*N has
elements ka(X;, X;).
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SLFM: general case

O

Consider a set of functions {fy(x)}5_,.
In the SLFM

Q
fa(X) = ag,qg(X),
q=1

where the functions ugy(x) are GPs with covariance functions kg4(x, X’).

For f(x) = [fi(x) - - fo(x)] T, the covariance cov[f(x), f(x)] is given as

Q Q
cov[f(x), f(X)] = > AgAj kg(x.X') = > Bgke(x,X'),
g=1 q=1

where A, = a,.

The rank of each Bg € RP*P is one.
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Linear model of coregionalization (LMC)

o The LMC generalizes the ICM and the SLFM allowing several
independent samples from GPs with different covariances.

0 Consider a set of functions {fy(x)}5_,.

o Inthe LMC

Q Ay . )
fa(x) = Z Z ald,quzlq(x)a

g=1 i=1

where the functions ug(x) are GPs with zero means and covariance
functions

cov[ul(x), Ul (x')] = ke(X,X'),

ifi=iandg=¢q.
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LMC: interpretation

0 Inthe LMC
Q Hq B .
fa(X) = ) al qug(x).
g=1 i=1

o There are Q groups of samples.

0 For each group, there R; samples obtained independently from the
same GP with covariance kq(X, x’).

Group 1 Group 2 Group Q

k,(x, x")

ky(x, x') kox, x')

Rsamples

R, samples

R, samples
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LMC: example

0 The LMC corresponds to the sum of Q ICMs.

0 Suppose we have D =2, Q = 2 and R, = 2. According to the LMC
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0 The LMC corresponds to the sum of Q ICMs.

0 Suppose we have D =2, Q = 2 and R, = 2. According to the LMC

f1(x) f2(x)
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LMC: covariance for f(x)

a  Forf(x) = [fi(x)---fp(X)]", the covariance cov[f(x), f(x')] is given as

Q Q
cov[f(x), f(X)] = > AgAg kg(x,X') = > Bgke(X,X'),
q=1 q=1

where Ay = [a} a3 - ag’].
Q2 The rank of each By is Ry.

2 The matrices B, are known as the coregionalization matrices.
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LMC: observed data
fi(x) fa(x)
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LMC: observed data
fi(x) fa(x)

Dy = {(Xia f1(X,))|I =1,..., N} Dy = {(X,’, fg(X,))‘I =1,.. ,N}
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LMC: observed data

B f2(X1 )

_fz()-(N)_

fi(x) fa(x)
Dy = {(x;, H(X;))|li=1,...,N} Do = {(Xi, b(X))|i=1,..., N}
_f1(X1)_
f E 0] &
LIV ([O] ,ZBq@)Kq)
g=1
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LMC: observed data
fi(x) fa(x)

Dy = {(x;, i(x;))|i =1,...,N} Do = {(X;, (x))|i=1,...,N}

£ (x)
1(. g The matrix K4 € RV*N has

f f():( ) ) elements kq(x;, X)).
1 1\AN
M o o NN(M,;Bqé@Kq)

_fz()-(N)_
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LMC: observed data

fi(x)

fa(x)

Dy = {(X,‘, f1 (X,))|I = 1,.. . N}

_f1 (X1)_

£ (X)
f2(X1)

_fz()-(N)_

N([g]z)

Do = {(X,’, fg(X,))‘I = 1,. . N}

The matrix K4 € RV*N has
elements kq(X;, X;).

The matrix B, € RP*P has
elements b,-cj’.
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Moving average function

Q

Consider again a set of D functions {fy(x)}5_,.

Each function could be expressed through a convolution integral
between a kernel, {G4(x)}5_,, and a function u(x),

/Gd —2Z)u(z)dz = Gg(x) * u(x).

For the integral to exist, it is assumed that the kernel G4(x) is a
continuous function with compact support or square-integrable.

The kernel Gy4(x) is also known as the moving average function or the
smoothing kernel.

In Dependet Gaussian processes (DGP) the latent function u(x) is
white Gaussian noise (WGN).
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A pictorial representation

u(x): latent function.
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A pictorial representation

o A
*
%
Gw N

u(x): latent function.
Gi(x), Go(x): smoothing kernels.
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A pictorial representation

G1 (X)

fi (%)

——

* J\/\
% (%)
—> /—\
Gz(x) /\

u(x): latent function.
Gi(x), Gz(x): smoothing kernels.
fi(x), f(x): output functions.
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Cross-covariance between fy(x) and 7y (X)
0 The cross-covariance between fy(x) and fy (X’), cov [fy(X), fo (X')], is

E UX Ga(x — z)u(z)dz/X Go (X' — z')u(z/)dz/} N
E {/X Gy(x — z)u(z)dz] E {/X Gar (X — Z/)U(Z’)dz/]
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Cross-covariance between fy(x) and 7y (X)
0 The cross-covariance between fy(x) and fy (X’), cov [fy(X), fo (X')], is

E { /X Ga(X — 2)u(z)dz /X G (X — z’)u(z’)dz’} _

E { /X Ga(x — z)u(z)dz] E { /X G (X' — z’)u(z’)dz’]
_ /X /X Ga(X — 2)Gy (X — Z)E [u(z)u(2))] dz'dz—
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Cross-covariance between fy(x) and 7y (X)
0 The cross-covariance between fy(x) and fy (X’), cov [fy(X), fo (X')], is

E UX Ga(x — z)u(z)dz/X Go (X' — z')u(z/)dz/} N
E {/X Gy(x — z)u(z)dz] E {/X Gar (X — Z')U(Z’)dz’]

- / / Ga(X — 2) Gy (X' — 2) E [u(z)u(2)] dz'dz—
/ Gu(x — 2)E[u(z) ]dz/ G (X' —2')E [u(Z')] dZ’

//Gd —2)Gy (X' —2')x

{E[u(z)u(2)] - E[u(2)] E [u(2)]} d2dZ’
:/ / G4(x — 2)Gy (X' — 2')k(z,2')dzdZ

2 Inthe DGP k(z,2') = 025(z — Z').
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Example of cov [fy(X), fo(X')] (1)

0 The cross-covariance between fy(x) and fy/ ('), cov [fy(X), fgr (X')], is

cov [fy(X), f (X')] = 02 /X Ga(X — 2)Gy (X' — 2)d2

0 Example. Assume that the smoothing kernels follow a Gaussian form

_ S4|Py|'/2

Gy(x —2) 7(%),3/2

oxp |- 5(x~2) Pulx - 2)].

0 We use the identity of the product of two Gaussians
N(X|[J1 ) P1_‘1 )N(x|l"’23 P2_1) = N(p’1 ‘/’LQ, P1_1 + I;’2_1 )N(X“J,C, P;1 )a

where pe = (P1 + P2) ™' (P11 + Popz) and P 1 = (Py + P) ™.



Example of cov [fy(X), fz(X')] (II)

0 The cross-covariance between fy(x) and fy (x’), cov [fy(X), fyr (X')], is

cov [fy(X), fy (X)] = o2 /X Go(x — 2)Gy (X' — 2)dz

0'2 Sd Sd/

_ 1 NnT p—1 /
_Wwexp{—2(x—x) Peqv(x—x) ,

0 Exercise. Show how to obtain the expression above
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PC: samples

25

15

05

-0.5

fi(x)

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

39/76



PC: samples
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PC: observed data
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PC: observed data

fi(x)

-0.5

-15

25 . . . . .
0 0.2 0.4 0.6 0.8 1

D1 = {(X,‘, f1 (X,))|I = 1,. . N}

fa(x)

0.2 0.4 0.6 0.8 1

Do = {(X,’, fg(X,))‘I = 1,. . N}
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PC:

-0.5

-15

-2.5

fi(x)

observed data

fa(x)

0 0.2

0.4 0.6

0.8 1 o 0.2 0.4 0.6 0.8 1

Dy ={(x;, i (x;))]i=1,...,N} Do = {(x;, L(x;)))li=1,...,N}

o (x)]

£ (X)
f2(X1)

(xw),

s 1)
0|’ Kf27f1 Kf27f2 ’
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PC: observed data

fi(x) fa(x)

-0.5 1r

-15
2
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
D1 = {(X,‘, f1 (X,))|I = 1,. . N} Dz = {(X,’, fg(X,))‘I = 1,. . N}
_f1 (X1 )_ .
. The matrix K¢, ¢, € RV*N has
: elements cov [f4(x), fu(x')].
- (B e )
f fa(X1) 0]’ |Ke,1, Kit]’
L2 (Xn)

40/76



PC: observed data

fi(x) fa(x)

-0.5 1r

-15

-2.5

0 012 014 0:6 018 l - 0 0:2 014 0:6 018 1
Dy ={(x;, i (x;))]i=1,...,N} Dy = {(x;, (x))]i=1,...,N}
_f1 (X1 )_ . NxN
) The matrix K¢, ¢, € RY*" has
: elements cov [f4(x), fu(x')].
{h} IEICIY ({ } [Kfm Kf1,f2] )
fo f2(X1) 0|’ Kf27f1 Kf27f2 ’ The matrix deafd’ c RN%N has
: elements cov [f4(X), fy (X)].

(xw),
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Beyond u(x) as a white Gaussian noise

0 Consider again a set of D functions {fy(x)}5_;.

o Each function could be expressed through a convolution integral
between a kernel, {Gg(x)}5_,, and a function u(x),

f4(x) = / Ga(X — 2)u(2)dz = Gy(X) * U(X).
X
0 Assuming u(x) is a GP with zero mean and covariance k(x,x’).

0 The cross-covariance is now given as

cov [fy(x), fg (X')] = /x /X G4(x — 2)Gy (X' — 2')k(z,2')dzdZ
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A process u(x) with covariance k(x, x’)
0 The cross-covariance is

cov [fy(X), fy (X)] = /X /X Gu(x —2)Gy (X' — 2')k(z,2')dzdZ’
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A process u(x) with covariance k(x, x’)
0 The cross-covariance is

cov [fy(X), fy (X)] = /X /X Gu(x —2)Gy (X' — 2')k(z,2')dzdZ’

o Example. Assume that the smoothing kernels and the covariance for
u(x) follow a Gaussian form

1/2
Gy(x—2) = s(dz“;;?'/z exp [—;(x —2)"Pg(x — z)} :
1/2
k(z,2') = (|21:r|)P/2 exp {; z-2) A@z- z’)} ,
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A process u(x) with covariance k(x, x’)
0 The cross-covariance is

cov [fy(X), fy (X)] = /X /X Gu(x —2)Gy (X' — 2')k(z,2')dzdZ’

o Example. Assume that the smoothing kernels and the covariance for
u(x) follow a Gaussian form
SqlP4|'2
(2m)P/2

1/2
k(z,Z') = (|21:r|)P/2 exp {; (z-2) A(z- z’)} ,

Gy(x —2) = exp [—;(x —2) Py(x — z)} ,

0 Using again the identities of products of two Gaussians, we get

cov [fg(x), fy (X)] = /X G4(x — 2)Gy (X' — 2)dz

Sde' 1 N1 p— !

where Peqy =P, +P,' + AT,
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More general process convolutions

0 We can include more latent processes u1(X), Ux(X), . .., Ug(X)
Q Hq . .
=YY / Gl o(x — 2)u(2)dz.
g=1 i=1 /¥

where cov[u}(2), u}, (2)] = Kkq(2,2')6/,i6,q -
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More general process convolutions

0 We can include more latent processes u1(X), Ux(X), . .., Ug(X)
Q Hq . .
=YY / Gl o(x — 2)u(2)dz.
g=1i=17%

where cov[u}(2), u}, (2)] = Kkq(2,2')6/,i6,q -

0 A general expression for cov [f4(X), fy (X")] follows as

Q HRq

SN /X Gy o(x—2) /X Gy o(X' —2')kq(2,2')dZ'dz.

qg=1 i=1
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Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
fa(x') follows

Q Rq

ke, r, (X, X') = Z Z /X Gl o(x —2) /X Gl o(X' —2')kq(2,2')dZ'dz.

g=1 i=1

44/76



Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
fa(x') follows

Q Rq

ke, r, (X, X') = Z Z /X Gl o(x —2) /X Gl o(X' —2')kq(2,2')dZ'dz.

g=1 i=1

Some particular cases:

44/76



Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
fa(x') follows

Q Rq
Ke,p, (X, X') = Z Z/ Gl g(x — z)/ Gy (X' — 2')ky(z,2')d2' dz.
g=1i=1"% X
Some particular cases:

Intrinsic Coregionalization Model [Goovaerts, 1997] or Multi-task
Gaussian Processes [Bonilla et al., 2008]

447



Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
fa(x') follows

Q Rq

ke, r, (X, X') = Z Z /X Gl o(x —2) /X Gl o(X' —2')kq(2,2')dZ'dz.

g=1 i=1

Some particular cases:

Intrinsic Coregionalization Model [Goovaerts, 1997] or Multi-task
Gaussian Processes [Bonilla et al., 2008]

GioXx—2)=ay,6(x-2), Q=1 Rg>1

447



Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
fa(x') follows

Q Rq

Kty t, (%, X") ZZ/ Gl 4(x —z/Gd, X' —2')ky(z,2')dz'dz.

g=1 i=1

Some particular cases:
Intrinsic Coregionalization Model [Goovaerts, 1997] or Multi-task
Gaussian Processes [Bonilla et al., 2008]
GioXx—2)=ay,6(x-2), Q=1 Rg>1
Ry

Kiyoty (X, X) = &yl 1ka (X, X).
i=1

447



Starting with the general expression we had before ...

Intrinsic Coregionalization Model

Kf7f:B®K
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Starting with the general expression we had before ...

Intrinsic Coregionalization Model

Kf7f:B®K

p 3
ICM R, = 2, fa(z)

2 3
ICM R, =1, f5(x)

Rank 1 Rank 2
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Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
f(x') follows [Higdon, 2002, Boyle and Frean, 2005, Alvarez et al., 2012]

Q Rq

ke, r, (X, X') = Z Z /X Gl o(x—2) /X Gl o(X' —2')kq(2,2')dZ'dz.

g=1 i=1

Some particular cases:
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Starting with the general expression we had before ...

Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
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Starting with the general expression we had before ...
Semiparametric Latent Factor Model

Q

K” = ZaqaqT X Kq
g=1
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Starting with the general expression we had before ...

Semiparametric Latent Factor Model

Q

K” = ZaqaqT X Kq
g=1

1 2 3
LMC with Ry =1 and Q =2, fi(x)

1 2 3 4
LMC with R, =1 and Q = 2, fao(x)

4 5
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Starting with the general expression we had before ...
Linear Model of Coregionalization

Q

Kis=> Bg@Kqg
g=1
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Starting with the general expression we had before ...
Linear Model of Coregionalization

Q

Kis=> Bg@Kqg
g=1

1 2 3 4 5
LMC with R, = 2 and Q = 2, fi(x)
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Starting with the general expression we had before ...
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Assume we have D outputs, {f3(x)}5_,. The covariance between f3(x) and
f(x') follows [Higdon, 2002, Boyle and Frean, 2005, Alvarez et al., 2012]

Q Rq

ke, r, (X, X') = Z Z /X Gl o(x—2) /X Gl o(X' —2')kq(2,2')dZ'dz.

g=1 i=1

Some particular cases:
Dependent GPs [Higdon, 2002, Boyle and Frean, 2005]

Q=1, Ry=1 ki(z2,2) =0%(z,2),

Ke,r, (X, X) = 02/ Gy(Xx — 2)Gy (X' — 2)dz.
X
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Gaussian process priors for vector-valued functions

0 We saw a series of models for the set of outputs {f3(x)}5_,, that led to
a valid covariance function for the vector f(x).
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Noisy observations
0 In practice, we usually have access to noisy observations, so we model
the outputs {yy(x)}2_, using
Ya(X) = fa(X) + €q(X),

where {eq4(x)}5_, are independent white Gaussian noise processes
with variance o?2.
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Noisy observations

0 In practice, we usually have access to noisy observations, so we model

the outputs {yy(x)}2_, using
Ya(X) = fa(X) + €q(X),

where {eq4(x)}5_, are independent white Gaussian noise processes
with variance o?2.

o The marginal likelihood is given as

p(y|X,0) = N(y|0, K¢t + 30),
T

wherey = [y{,y,; ....y}]

o The vector 0 refers to the hyperparameters and ¥ = ¥ ® Iy.



Hyperparameter Learning

a0 LetD = {X,,yn}"N_, represents the data, and  represents the
hyperparameters of the covariance function.

o The marginal likelihood for the outputs can be written as

p(y|X7 9) = N(y|07 Kf,f + 2)7

where K¢ € RVP*ND with each element given by cov[fy(Xn), far (X )]-

o The matrix 3 represents the covariance associated with some
independent processes.

0 Hyperparameters are estimated by maximizing the logarithm of the
marginal likelihood.



Predictive distribution

0 Prediction for a set of test inputs X, is done using standard Gaussian
process regression techniques.

o The predictive distribution is given by
p(y*|ya Xa 0) = N(y* |/"*, KV*,y* )7
with

e = Ky, 1 (K + )y,
Ky.y. =Kir. — Kp s (Kig+3) 7 K{ ¢+ 3.



Can you prove autokrigeability?

0 The predictive distribution is given by
p(y*ly, X, 0) = N(y* |ll:*, KV*’Y* )7
with

e = Ky, 1 (K + )y,
Ky.y. = Ki. 1. — Ki s (Keg+ )7 K ¢+ ..

o Exercise: Prove that if the outputs are considered to be noise-free,
prediction using the ICM under an isotopic data case is equivalent to
independent prediction over each output.
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The cokriging estimator

0 In geostatistics, the framework that allows for optimal predictions in the
multivariate case is known by the general name of cokriging
[Goovaerts, 1997].

0 In general, the output value for fy evaluated at x, is estimated as

D ns(x«
(X)) — pa(Xs) Z Z (%) [fs(Xay) — ps(Xa,)]

where \,,(X.) are the weights assigned to the output data fs(x,,),
us(Xq,) are the expected values of f5(x,, ), and ng(x.) < N.

0 Cokriging estimators need to be unbiased (E[fy(x.) — f,(x.)] = 0) and
minimize the error variance o2,

A

o2(x.) = var [fd(x*) — fa(x.)] .



Cokriging assumes a model for fy

0 Cogriking estimators differ in the form they assume for fy(x).

0 In general, each output function is decomposed into a residual Ry(x)
and a trend ug(X),

fa(X) = Ra(X) + pa(x), Vvd
0 Residuals are assumed to be Gaussian processes with zero mean.

0 The covariance for the residuals is denoted as kq ¢(X, x’) and the
cross-covariance between residuals as kg o (X, X’).
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Simple cokriging

a The simple cokriging estimator is given as

D ns(x.
?(x*>w:22 0 () [fs(Xa) — 15)]

0 It can be shown that this is an unbiased estimator.

0 Coefficients \,,(X.) can be obtained by minimizing the variance
o2(x.), leading to

A1 (Xy) Kii - Kip B K1 1

Ap(X.) Kpi1 - Kpp kp.1
where Ky o' = [Kd,a'(Xay: X3, )] @and Ka 1 = [Kd,1(Xagy, Xi)]-

0 The predictor is then y(x,) = ATT.
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Efficient approximations (l)

o Learning 8 through marginal likelihood maximization involves the
inversion of the matrix K¢ + 3.

Q  The inversion of this matrix scales as O(D3N?®).

0 Ifonly a few number K < N of values of u(x) are known, then the set of
outputs are uniquely determined.



Efficient approximations (Il)

Sample from p(u) fa(X) = / Gq(x — Z)u(z)dz
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Efficient approximations (Il)

Sample from p(u) fa(X) = / Gq(x — Z)u(z)dz

Sample from

fg(X) ~ / Gua(x — 2) E [u(z)|u] dz
p(ulu) v
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Cross-coregionalization matrices

0 Inthe LMC

Q HAq

fa(X) = ay quy(x).

g=1 i=1

0 The basic processes uﬁ,(x) [Guzman et al., 2002] are assumed to be
nonorthogonal, leading to the following covariance function

Q Q

cov[f(x), f(x')] = Z Z Bg,q kg, (X, X),

q=1qg'=1

where By o are cross-coregionalization matrices. matrices.
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Non-stationarity LMC

0 We can write the vector-valued function f(x) as
f(x) = Au(x),

where A = [a; --- ag] and u(x) = [us(X) -+ ug(x)]".

0 A non-stationary version allows A to change with x [Gelfand et al.,
2004, Wilson et al., 2012]
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Extensions [Calder and Cressie, 2007]

0 A more general form

f4(x) = / Go(x,z)u(z)dz
fa(x) =Y Ga(x,2))u(2))
J

0 Non-stationary models
fa(x) :/Gd’e(x)(x,z)u(z)dz,

fa(X) :/Gd(X,Z)Ug(z)(X)dZ
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Latent force models [Alvarez et al., 2009]

0 Mechanistically inspired kernel smoothing functions.
Gy(t, 1) c exp [—Dg (t — t')] first ODE

Gy(t, 1) oc exp [—aq (t — t')] sinfwq (t — t')] second ODE
\2
Ga(x,x') = exp [~ 50, Y] PDE
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Summary
0 We can do multi-task learning or transfer learning with GPs.
o Different ways to build meaningful cross-covariance functions.

0 Once defined, we can do all the things we know to do with a
single-output GP.

o Cokriging is just prediction with GPs (with a quadratic loss function).
0 Several extensions of LMC and PCs.

a Current research: spectral representations for the joint covariance
function.
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