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"Brooks has proved, he explains, that there were keen
mathematicians here 5,000 years ago, millennia before the Greeks
invented geometry: "Such is the mathematical precision, it is
inconceivable that this work could have been carried out by the
primitive indigenous culture we have always associated with such
structures . . . all this suggests a culture existing in these islands in
the past quite outside our expectation and experience today." He
does not rule out extraterrestrial help." – The Guardian
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1Bad Science Blog
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http://www.badscience.net/2010/01/voices-of-the-ancients/


"We know so little about the ancient Woolworths stores," he
explains, "but we do still know their locations. I thought that if we
analysed the sites we could learn more about what life was like in
2008 and how these people went about buying cheap kitchen
accessories and discount CDs" – Matt Parker interviewed in The
Guardian1

1Bad Science Blog

4

http://www.badscience.net/2010/01/voices-of-the-ancients/
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Napoleon "You have written this huge book on the system of
the world without once mentioning the author of the
universe."

Laplace "I had no need for that assumption"

Laplace "Ah, but that is a fine hypothesis. It explains so
many things"
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Inductivist Fallacy

2

2Chomsky, N. A., & Fodor, J. A. (1980). The inductivist fallacy. Language
and Learning: The Debate between Jean Piaget and Noam Chomsky, (), .
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GPSS

IUDICIUM POSTERIUM DISCIPULUS EST PRIORIS
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Unsupervised Learning



Gaussian Processes
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Gaussian Processes
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Gaussian Processes

p(θ|y) = p(y |θ)
p(θ)

p(y)

"Scientific modelling is a scientific activity, the aim of which is to
make a particular part or feature of the world easier to understand,
define, quantify, visualize, or simulate by referencing it to existing
and usually commonly accepted knowledge." 3

3Wikipedia
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https://en.wikipedia.org/wiki/Scientific_modelling


Unsupervised Learning
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Being Bayesian4

4By Dieric Bouts (circa 1420-1475) - The Yorck Project: 10.000 Meisterwerke
der Malerei, Public Domain, URL
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https://commons.wikimedia.org/w/index.php?curid=148266


Priors

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

p(x |y) = p(y |x)
p(x)

p(y)

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. The priors are "balanced"

3. Now lets churn the handle

15



Relationship between x and data

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

• GP prior
p(f |x) ∼ N (0,K ) ∝ e−

1
2 (f

TK−1f )

Kij = e−(xi−xj )
TMTM(xi−xj )

• Likelihood

p(y |f ) ∼ N(y |f , β) ∝ e−
1
2β tr(y−f )T(y−f )

• Analytically intractable (Non Elementary Integral) and
infinitely differientiable
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Laplace Integration

"Nature laughs at the difficulties of integrations"
– Simon Laplace

17



Unsupervised Learning with GPs



ML/MAP5

x̂ = argmaxx

∫
p(y |f )p(f |x)dfp(x)

= argminx
1
2
yTK−1y +

1
2
|K| − log p(x)

5Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis
with Gaussian process latent variable models.
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Dimensionality Reduction

y ∈ Rd x ∈ Rq d > q

19



GP-LVM

• Li, W., Viola, F., Starck, J., Brostow, G. J., & Campbell, N.
D. (2016). Roto++: accelerating professional rotoscoping
using shape manifolds. (In proceeding of ACM SIGGRAPH’16)

• Grochow, K., Martin, S. L., Hertzmann, A., & Popovi\’c,
Zoran (2004). Style-based inverse kinematics. SIGGRAPH ’04:
SIGGRAPH 2004

• Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D people
tracking with Gaussian process dynamical models. Computer
Vision and Pattern Recognition, 2006

20



Bayesian GP-LVM7

• Challenges with ML estimation
• How to initialise x?
• What is the dimensionality q?

• Our assumption on the latent space does not reach the data

• Approximate integration!6

6Titsias, M. (2009). Variational learning of inducing variables in sparse
Gaussian processes.
7Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent
Variable Model
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Variational Bayes

p(Y)
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Variational Bayes

log p(Y)
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX = log
∫

p(X|Y)p(Y)dX

= log
∫

q(X)

q(X)
p(X|Y)p(Y)dX
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Jensen Inequality

Convex Function

λf (x0) + (1− λ)f (x1) ≥ f (λx0 + (1− λ)x1)

x ∈ [xmin, xmax ]

λ ∈ [0, 1]] 23



Jensen Inequality

E[f (x)] ≥ f (E[x ])∫
f (x)p(x)dx ≥ f

(∫
xp(x)dx

)
24



Jensen Inequality in Variational Bayes

∫
log(x)p(x)dx ≤ log

(∫
xp(x)dx

)
moving the log inside the the integral is a lower-bound on the
integral 25



Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

26
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Variational Bayes cont.

logp(Y) = log
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∫
q(X)dXlog p(Y)

= −KL (q(X)||p(X|Y)) + log p(Y)

• if q(X) is the true posterior we have an equality, therefore
match the distributions

• i.e. argminq KL (q(X)||p(X|Y))

⇒ variational distributions are approximations to
intractable posteriors
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ELBO

KL(q(X)||p(X|Y))
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX

=

∫
q(X)log

q(X)

p(X,Y)
dX + log p(Y)
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX

=

∫
q(X)log

q(X)

p(X,Y)
dX + log p(Y)

= H(q(X))− Eq(X) [log p(X,Y)] + log p(Y)

27



ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))︸ ︷︷ ︸
ELBO

27
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ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))︸ ︷︷ ︸
ELBO

≥ Eq(X) [log p(X,Y)]− H(q(X)) = L(q(X))

• if we maximise the ELBO we,
• find an approximate posterior
• get an approximation to the marginal likelihood

• maximising p(Y) is learning

• finding p(X|Y) ≈ q(X) is prediction

27



ELBO

X

Y

X

Y

θ
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Why is this useful?

Why is this a sensible thing to do?

• If we can’t formulate the joint distribution there isn’t much we
can do

• Taking the expectation of a log is usually easier than the
expectation

• We are allowed to choose the distribution to take the
expectation over

– Ryan Adams8

8Talking Machines Season 2, Episode 5

28

http://www.thetalkingmachines.com/blog/2016/3/10/ivpi7nd68oln8kk9lz2o4nyibvfyqd
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Lower Bound9

L =

∫
X,F

q(X) log

(
p(Y,F,X)

q(X)

)

9Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)

29



Lower Bound9

L =

∫
X,F

q(X) log

(
p(Y,F,X)

q(X)

)
∫

X,F
q(X) log

(
p(Y|F)p(F|X)p(X)

q(X)

)

9Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)

29



Lower Bound9

L =

∫
X,F

q(X) log

(
p(Y,F,X)

q(X)

)
∫

X,F
q(X) log

(
p(Y|F)p(F|X)p(X)

q(X)

)
=

∫
F,X

q(X) log p(Y|F)p(F|X)−
∫

X
q(X) log

q(X)

p(X)

9Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)

29



Lower Bound9

L =

∫
X,F

q(X) log

(
p(Y,F,X)

q(X)

)
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q(X) log
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∫
F,X

q(X) log p(Y|F)p(F|X)−
∫

X
q(X) log

q(X)

p(X)

= L̃ − KL (q(X) ‖ p(X))
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Lower Bound

L̃ =

∫
F,X

q(X) log p(Y|F)p(F|X)

• Has not eliviate the problem at all, X still needs to go through
F to reach the data

• Idea of sparse approximations10

10Quinonero-Candela, Joaquin, & Rasmussen, C. E. (2005). A unifying view of
sparse approximate Gaussian process regression & Snelson, E., & Ghahramani,
Z. (2006). Sparse Gaussian processes using pseudo-inputs
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Lower Bound

• Add another set of samples from the same prior

p(U|Z) =
d∏

j=1

N (u:,j |0,K)

• Conditional distribution

p(f:,j ,u:,j |X,Z) = p(f:,j |u:,j ,X,Z)p(u:,j |Z)

= N
(
f:,j |Kfu(Kuu)−1u:,j ,Kff −Kfu(Kuu)−1Kuf

)
N (u:,j |0,Kuu) ,

31
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Lower Bound

p(Y,F,U,X|Z) = p(X)
d∏

j=1

p(y:,j |f:,j )p(f:,j |u:,j ,X)p(u:,j |Z)

• we have done nothing to the model, just added halucinated
observations

• however, we will now interpret U and Xu not as random
variables but variational parameters

• i.e. parametrise approximate posterior using these parameters
(remember sparse motivation)

32
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Lower Bound

• Variational distributions are approximations to intractable
posteriors,

q(U) ≈ p(U|Y,X,Z,F)

q(F) ≈ p(F|U,X,Z,Y)

q(X) ≈ p(X|Y)

• Assume that we can find U that completely represents F, i.e.
U is sufficient statistics of F,

q(F) ≈ p(F|U,X,Z,Y) = p(F|U,X,Z)

33
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Lower Bound

L̃ =

∫
X,F,U

q(F)q(U)q(X) log
p(Y,F,U|X,Z)

q(F)q(U)
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Lower Bound

L̃ =

∫
X,F,U

d∏
j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=
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Lower Bound

L̃ =

∫
X,F,U

d∏
j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=

=

∫
X,F,U

p∏
j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X) log

∏p
j=1 p(y:,j |f:,j )p(u:,j |Z)∏p

j=1 q(u:,j )

= Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))

35



Summary

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Expectation tractable (for some co-variances)

• Reduces to expectations over co-variance functions know as Ψ

statistics

• Allows us to place priors and not "regularisers" over the latent
representation

36



Latent space priors



Latent space priors11

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Importantly p(X) appears only in KL term

• Allows us to express stronger assumptions about the model

11Damianou, A. C., Titsias, M., & Lawrence, Neil D, Variational Inference for
Uncertainty on the Inputs of Gaussian Process Models (2014)
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Non-Gaussian Data

Theorem (Change-of-variable)

py (y) = px (ρ(y))|Oρ(y)|

x ∈ X ⊆ RDx y ∈ Y ⊆ RDy

• ρ : Y → X
• ρ is a bijective function

38



Change of Variables

p(y) = N (ρ(y)µ,Σ)|Oρ(y)|

p(x) ∼ N (µ,Σ)

p(y∗|y) = N (ρ(y)|µ(x∗|x),Σ(x∗|x))|Oρ(y)|

p(x∗|x) = N (ρ(y)|µ(x∗|x),Σ(x∗|x))

Change of Variable

• We can model non-gaussian data y using a Gaussian variable x

if we have a transformation ρ that makes it "Gaussian"

39



Warped Gaussian Processes12, 13

12Snelson, E., & Ghahramani, Z. (2004). Warped Gaussian Processes
13Lazaro-Gredilla, Miguel (2012). Bayesian Warped Gaussian Processes. In ,
Advances in Neural Information Processing Systems
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Deep Gaussian Processes14

yf1x1f2x2

• Place a GP as a warping function, that is warped, . . .

14Damianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian Processes
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Deep Gaussian Processes15

15Stolen from Neil, who borrowed it from James, who we believe genereated
the plot

42



Explaining Away

y

x ε

y = f (x) + ε

43



Factor Analysis

y

x2x1 x3

θ

y = f (x1, x2, x3) + ε
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Latent Structure
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Explaining Away cont.

y1 y2

f1 f2

x1 x2 x3

θ1 θ2

D1 D2
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IBFA with GP-LVM16

y1 y2

f1 f2

w1 x w3

θ1 θ2

D1 D2

y1 = f (wT
1 x) y2 = f (wT

2 x)

16Damianou, A., Lawrence, N. D., & Ek, C. H. (2016). Multi-view learning as
a nonparametric nonlinear inter-battery factor analysis
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IBFA with GP-LVM
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Constrained Latent Space

y

x

ε

y = f (g(y)) + ε
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Denoising Auto-encoder17, 18

ỹ y

x

θ1 θ2

17Ek, C. H., Torr, P. H. S., & Lawrence, N. D., Gaussian process latent variable
models for human pose estimation, International conference on Machine
learning for multimodal interaction, (), 132–143 (2007).
18Snoek, J., Adams, R. P., & Larochelle, H., Nonparametric guidance of
autoencoder representations using label information, Journal of Machine
Learning Research, 13(), 2567–2588 (2012).
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VAE19

yf1x1f2x2

q(xl ) = g(xl−1)
19Dai, Z., Damianou, A., Gonz\’alez, Javier, & Lawrence, N., Variational
auto-encoded deep Gaussian processes, International Conference on Learning
Representations (ICLR), (2016). 53



Summary



Summary

• Unsupervised learning is very hard

• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• GPs provide strong, interpretative assumptions that aligns well
to our intuitions allowing us to make relevant assumptions
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