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Kernel vs. SPDE representations of GPs
GP model x ∈ Rd , t ∈ R Equivalent S(P)DE model
Spatial k(x,x′) SPDE model (L is an operator)

L f (x) = w(x)

Temporal k(t , t ′) State-space/SDE model

df(t)
dt

= A f(t) + L w(t)

Spatio-temporal
k(x, t ; x′, t ′)

Stochastic evolution equation

∂

∂t
f(x, t) = Ax f(x, t) + L w(x, t)
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Why use S(P)DE solvers for GPs?

The O(n3) computational complexity is a challenge.
What do we get:

O(n) state-space methods for SDEs/SPDEs.
Sparse approximations developed for SPDEs.
Reduced rank Fourier/basis function approximations.
Path to non-Gaussian processes.

Downsides:
We often need to approximate.
Mathematics can become messy.
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Ornstein-Uhlenbeck process

The mean and covariance functions:

m(x) = 0

k(x , x ′) = σ2 exp(−λ|x − x ′|)

This has a path representation as a stochastic differential
equation (SDE):

df (t)
dt

= −λ f (t) + w(t).

where w(t) is a white noise process with x relabeled as t .
Ornstein–Uhlenbeck process is a Markov process.
What does this actually mean =⇒ white board.
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Ornstein-Uhlenbeck process (cont.)
Consider a Gaussian process regression problem

f (x) ∼ GP(0, σ2 exp(−λ|x − x ′|))

yk = f (xk ) + εk

This is equivalent to the state-space model

df (t)
dt

= −λ f (t) + w(t)

yk = f (tk ) + εk

that is, with fk = f (tk ) we have a Gauss-Markov model

fk+1 ∼ p(fk+1 | fk )

yk ∼ p(yk | fk )

Solvable in O(n) time using Kalman filter/smoother.
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State Space Form of Linear Time-Invariant SDEs
Consider a Nth order LTI SDE of the form

dN f
dtN + aN−1

dN−1f
dtN−1 + · · ·+ a0f = w(t).

If we define f = (f , . . . ,dN−1f/dtN−1), we get a state space
model:

df
dt

=


0 1

. . . . . .
0 1

−a0 −a1 . . . −aN−1


︸ ︷︷ ︸

A

f +


0
...
0
1


︸ ︷︷ ︸

L

w(t)

f (t) =
(
1 0 · · · 0

)︸ ︷︷ ︸
H

f.

The vector process f(t) is Markovian although f (t) isn’t.
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Spectra of Linear Time-Invariant SDEs
By taking the Fourier transform of the LTI SDE, we can
derive the spectral density which has the form:

S(ω) =
(constant)

(polynomial in ω2)
We can also do this conversion to the other direction:

With certain parameter values, the Matérn has the form:

S(ω) ∝ (λ2 + ω2)−(p+1).

Many non-rational spectral densities can be approximated:

S(ω) = σ2
√
π

κ
exp

(
−ω

2

4κ

)
≈ (const)

N!/0!(4κ)N + · · ·+ ω2N

For the conversion of a rational spectral density to a
Markovian (state-space) model, we can use the spectral
factorization.
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State-space methods for Gaussian processes

Approximation:

S(ω) ≈ b0 + b1 ω
2 + · · ·+ bM ω

2M

a0 + a1 ω2 + · · ·+ aN ω2N
Location

(x) Ti
m
e
(t
)

f
(x

,
t)

The state at time t

Results in a linear stochastic differential equation (SDE)

df(t) = A f(t) dt + L dW

More generally stochastic evolution equations.
O(n) GP regression with Kalman filters and smoothers.
Parallel block-sparse precision methods −→ O(log n).
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State-space methods – temporal example

Example (Matérn class 1d)
The Matérn class of covariance functions is

k(t , t ′) = σ2 21−ν

Γ(ν)

(√
2ν
`
|t − t ′|

)ν
Kν

(√
2ν
`
|t − t ′|

)
.

When, e.g., ν = 3/2, we have

df(t) =

(
0 1
−λ2 −2λ

)
f(t) dt +

(
0

q1/2

)
dW (t),

f (t) =
(
1 0

)
f(t).
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State-space methods – spatio-temporal example

Example (2D Matérn covariance function)
Consider a space-time Matérn covariance function

k(x , t ; x ′, t ′) = σ2 21−ν

Γ(ν)

(√
2ν

ρ

l

)ν
Kν
(√

2ν
ρ

l

)
.

where we have ρ =
√

(t − t ′)2 + (x − x ′)2, ν = 1 and
d = 2.
We get the following representation:

df(x , t) =

(
0 1

∂2

∂x2 − λ2 −2
√
λ2 − ∂2

∂x2

)
f(x , t) dt+

(
0
1

)
dW (x , t).
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Basic idea of SPDE inference on GPs [1/2]
Consider e.g. the stochastic partial differential equation:

∂2f (x , y)

∂x2 +
∂2f (x , y)

∂y2 − λ2 f (x , y) = w(x , y)

Fourier transforming gives the spectral density:

S(ωx , ωy ) ∝
(
λ2 + ω2

x + ω2
y

)−2
.

Inverse Fourier transform gives the covariance function:

k(x , y ; x ′, y ′) =

√
(x − x ′)2 + (y − y ′)2

2λ
K1(λ

√
(x − x ′)2 + (y − y ′)2)

But this is just the Matérn covariance function.
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Basic idea of SPDE inference on GPs [2/2]
More generally, SPDE for some linear operator L:

L f (x) = w(x)

Now f is a GP with precision and covariance operators:

K−1 = L∗ L
K = (L∗ L)−1

Idea: approximate L or L−1 using PDE/ODE methods:
1 Finite-differences/FEM methods lead to sparse precision

approximations.
2 Fourier/basis-function methods lead to reduced rank

covariance approximations.
3 Spectral factorization leads to state-space (Kalman)

methods which are time-recursive (or sparse in precision).
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Finite-differences/FEM – sparse precision

Basic idea:

∂f (x)

∂x
≈ f (x + h)− f (x)

h
∂2f (x)

∂x2 ≈ f (x + h)− 2f (x) + f (x − h)

h2

We get an SPDE approximation L ≈ L, where L is sparse
The precision operator approximation is then sparse:

K−1 ≈ LT L = sparse

L need to be approximated as integro-differential operator.
Requires formation of a grid, but parallelizes well.
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Classical and random Fourier methods – reduced
rank approximations and FFT

Approximation:

f (x) ≈
∑
k∈Nd

ck exp
(
2π i kT x

)
ck ∼ Gaussian

We use less coefficients ck than the number of data points.
Leads to reduced-rank covariance approximations

k(x,x′) ≈
∑
|k|≤N

σ2
k exp

(
2π i kT x

)
exp

(
2π i kT x′

)∗
Truncated series, random frequencies, FFT, . . .



S(P)DEs and GPs
Simo Särkkä

18 / 24

Classical and random Fourier methods – reduced
rank approximations and FFT

Approximation:

f (x) ≈
∑
k∈Nd

ck exp
(
2π i kT x

)
ck ∼ Gaussian

We use less coefficients ck than the number of data points.
Leads to reduced-rank covariance approximations

k(x,x′) ≈
∑
|k|≤N

σ2
k exp

(
2π i kT x

)
exp

(
2π i kT x′

)∗
Truncated series, random frequencies, FFT, . . .



S(P)DEs and GPs
Simo Särkkä

18 / 24

Classical and random Fourier methods – reduced
rank approximations and FFT

Approximation:

f (x) ≈
∑
k∈Nd

ck exp
(
2π i kT x

)
ck ∼ Gaussian

We use less coefficients ck than the number of data points.
Leads to reduced-rank covariance approximations

k(x,x′) ≈
∑
|k|≤N

σ2
k exp

(
2π i kT x

)
exp

(
2π i kT x′

)∗
Truncated series, random frequencies, FFT, . . .



S(P)DEs and GPs
Simo Särkkä

18 / 24

Classical and random Fourier methods – reduced
rank approximations and FFT

Approximation:

f (x) ≈
∑
k∈Nd

ck exp
(
2π i kT x

)
ck ∼ Gaussian

We use less coefficients ck than the number of data points.
Leads to reduced-rank covariance approximations

k(x,x′) ≈
∑
|k|≤N

σ2
k exp

(
2π i kT x

)
exp

(
2π i kT x′

)∗
Truncated series, random frequencies, FFT, . . .



S(P)DEs and GPs
Simo Särkkä

19 / 24

Hilbert-space/Galerkin methods – reduced rank
approximations

Approximation:

f (x) ≈
∑

i

ci φi (x)

〈φi , φj〉H ≈ δij , e.g. ∇2φi = −λi φi

Again, use less coefficients than the number of data points.
Reduced-rank covariance approximations such as

k(x,x′) ≈
N∑

i=1

σ2
i φi(x)φi(x′).

Wavelets, Galerkin, finite elements, . . .
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Back to SPDE representations of GPs
GP model x ∈ Rd , t ∈ R Equivalent S(P)DE model
Spatial k(x,x′) SPDE model (L is an operator)

L f (x) = w(x)

Temporal k(t , t ′) State-space/SDE model

df(t)
dt

= A f(t) + L w(t)

Spatio-temporal
k(x, t ; x′, t ′)

Stochastic evolution equation

∂

∂t
f(x, t) = Ax f(x, t) + L w(x, t)
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What then?

Exchange and map approximations between the fields:
Inducing points↔ point-collocation; spectral methods↔
Galerkin methods; finite-differences↔ GMRFs;

Non-Gaussian processes: Student’s-t processes,
non-linear Itô processes, jump processes, hybrid
point/Gaussian processes.
Hierarchical (deep) SPDE models: we stack SPDEs on top
of each other – the SPDE just becomes non-linear.
Combined first-principles and nonparametric models –
latent force models (LFM), also non-linear and
non-Gaussian LFMs.
Inverse problems – operators in the measurement model.
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Summary

Gaussian processes (GPs) are nice, but the computational
scaling is bad.
GPs have representations as solutions to SPDEs.
In temporal models we can use Kalman/Bayesian filters
and smoothers.
SPDE methods can be used to speed up GP inference.
New paths towards non-linear GP models.
Work nicely in latent force models.
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