

Aalto University School of Electrical Engineering

Stochastic (partial) differential equations and Gaussian processes

Simo Särkkä

Aalto University, Finland

- 2 Stochastic differential equations and Gaussian processes
- Stochastic partial differential equations and Gaussian processes

2 Stochastic differential equations and Gaussian processes

Stochastic partial differential equations and Gaussian processes

Stochastic differential equations and Gaussian processes

Stochastic partial differential equations and Gaussian processes

Stochastic differential equations and Gaussian processes

Stochastic partial differential equations and Gaussian processes

- 2 Stochastic differential equations and Gaussian processes
- Stochastic partial differential equations and Gaussian processes

Kernel vs. SPDE representations of GPs GP model $\mathbf{x} \in \mathbb{R}^d$. $t \in \mathbb{R}$ | Equivalent S(P)DE model

Spatial $k(\mathbf{x}, \mathbf{x}')$	SPDE model (\mathcal{L} is an operator)
	$\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$
Temporal $k(t, t')$	State-space/SDE model
	$rac{d \mathbf{f}(t)}{dt} = \mathbf{A} \mathbf{f}(t) + \mathbf{L} \mathbf{w}(t)$
Spatio-temporal $k(\mathbf{x}, t; \mathbf{x}', t')$	Stochastic evolution equation $\frac{\partial}{\partial t} \mathbf{f}(\mathbf{x}, t) = \mathcal{A}_{\mathbf{x}} \mathbf{f}(\mathbf{x}, t) + \mathbf{L} \mathbf{w}(\mathbf{x}, t)$

• The $O(n^3)$ computational complexity is a challenge.

• What do we get:

- O(n) state-space methods for SDEs/SPDEs.
- Sparse approximations developed for SPDEs.
- Reduced rank Fourier/basis function approximations.
- · Path to non-Gaussian processes.

• Downsides:

- We often need to approximate.
- Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - O(n) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - O(n) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - O(n) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - O(n) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - O(n) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - *O*(*n*) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - O(n) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

- The $O(n^3)$ computational complexity is a challenge.
- What do we get:
 - *O*(*n*) state-space methods for SDEs/SPDEs.
 - Sparse approximations developed for SPDEs.
 - Reduced rank Fourier/basis function approximations.
 - Path to non-Gaussian processes.
- Downsides:
 - We often need to approximate.
 - Mathematics can become messy.

2 Stochastic differential equations and Gaussian processes

Stochastic partial differential equations and Gaussian processes

• The mean and covariance functions:

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp(-\lambda |x - x'|)$$

• This has a *path representation* as a stochastic differential equation (SDE):

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t).$$

where w(t) is a white noise process with x relabeled as t.

- Ornstein–Uhlenbeck process is a Markov process.
- What does this actually mean \implies white board.

• The mean and covariance functions:

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp(-\lambda |x - x'|)$$

• This has a *path representation* as a stochastic differential equation (SDE):

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t).$$

where w(t) is a white noise process with x relabeled as t.

- Ornstein–Uhlenbeck process is a Markov process.
- What does this actually mean \implies white board.

• The mean and covariance functions:

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp(-\lambda |x - x'|)$$

• This has a *path representation* as a stochastic differential equation (SDE):

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t).$$

where w(t) is a white noise process with x relabeled as t.

- Ornstein–Uhlenbeck process is a Markov process.
- What does this actually mean \implies white board.

• The mean and covariance functions:

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp(-\lambda |x - x'|)$$

• This has a *path representation* as a stochastic differential equation (SDE):

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t).$$

where w(t) is a white noise process with x relabeled as t.

- Ornstein–Uhlenbeck process is a Markov process.
- What does this actually mean \implies white board.

Ornstein-Uhlenbeck process (cont.)

• Consider a Gaussian process regression problem

$$f(x) \sim \text{GP}(0, \sigma^2 \exp(-\lambda |x - x'|))$$
$$y_k = f(x_k) + \varepsilon_k$$

• This is equivalent to the state-space model

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t)$$
$$y_k = f(t_k) + \varepsilon_k$$

that is, with $f_k = f(t_k)$ we have a Gauss-Markov model

$$f_{k+1} \sim p(f_{k+1} \mid f_k)$$
$$y_k \sim p(y_k \mid f_k)$$

• Solvable in O(n) time using Kalman filter/smoother.

Ornstein-Uhlenbeck process (cont.)

• Consider a Gaussian process regression problem

$$f(x) \sim \operatorname{GP}(0, \sigma^2 \exp(-\lambda |x - x'|))$$

$$y_k = f(x_k) + \varepsilon_k$$

This is equivalent to the state-space model

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t)$$
$$y_k = f(t_k) + \varepsilon_k$$

that is, with $f_k = f(t_k)$ we have a Gauss-Markov model

$$egin{aligned} & f_{k+1} \sim \mathcal{P}(f_{k+1} \mid f_k) \ & y_k \sim \mathcal{P}(y_k \mid f_k) \end{aligned}$$

• Solvable in O(n) time using Kalman filter/smoother.

Ornstein-Uhlenbeck process (cont.)

• Consider a Gaussian process regression problem

$$f(x) \sim \operatorname{GP}(0, \sigma^2 \exp(-\lambda |x - x'|))$$

$$y_k = f(x_k) + \varepsilon_k$$

This is equivalent to the state-space model

$$\frac{df(t)}{dt} = -\lambda f(t) + w(t)$$
$$y_k = f(t_k) + \varepsilon_k$$

that is, with $f_k = f(t_k)$ we have a Gauss-Markov model

$$egin{aligned} & f_{k+1} \sim \mathcal{P}(f_{k+1} \mid f_k) \ & y_k \sim \mathcal{P}(y_k \mid f_k) \end{aligned}$$

• Solvable in *O*(*n*) time using Kalman filter/smoother.

State Space Form of Linear Time-Invariant SDEs

• Consider a Nth order LTI SDE of the form

$$\frac{d^N f}{dt^N} + a_{N-1}\frac{d^{N-1}f}{dt^{N-1}} + \cdots + a_0f = w(t).$$

 If we define f = (f,..., d^{N-1}f/dt^{N-1}), we get a state space model:

• The vector process f(t) is Markovian although f(t) isn't.

State Space Form of Linear Time-Invariant SDEs

• Consider a Nth order LTI SDE of the form

$$\frac{d^Nf}{dt^N}+a_{N-1}\frac{d^{N-1}f}{dt^{N-1}}+\cdots+a_0f=w(t).$$

If we define f = (f,..., d^{N-1}f/dt^{N-1}), we get a state space model:

• The vector process f(t) is Markovian although f(t) isn't.

State Space Form of Linear Time-Invariant SDEs

• Consider a Nth order LTI SDE of the form

$$\frac{d^Nf}{dt^N}+a_{N-1}\frac{d^{N-1}f}{dt^{N-1}}+\cdots+a_0f=w(t).$$

If we define f = (f,..., d^{N-1}f/dt^{N-1}), we get a state space model:

• The vector process **f**(*t*) is Markovian although *f*(*t*) isn't.

• By taking the Fourier transform of the LTI SDE, we can derive the spectral density which has the form:

$$S(\omega) = rac{(ext{constant})}{(ext{polynomial in } \omega^2)}$$

• We can also do this conversion to the other direction:

• With certain parameter values, the Matérn has the form: $S(\omega) \propto (\lambda^2 + \omega^2)^{-(p+1)}.$

Many non-rational spectral densities can be approximated:

$$S(\omega) = \sigma^2 \sqrt{\frac{\pi}{\kappa}} \exp\left(-\frac{\omega^2}{4\kappa}\right) \approx \frac{(\text{const})}{N!/0!(4\kappa)^N + \dots + \omega^{2N}}$$

• For the conversion of a rational spectral density to a Markovian (state-space) model, we can use the spectral factorization.

• By taking the Fourier transform of the LTI SDE, we can derive the spectral density which has the form:

$$\mathcal{S}(\omega) = rac{(ext{constant})}{(ext{polynomial in } \omega^2)}$$

• We can also do this conversion to the other direction:

- With certain parameter values, the Matérn has the form: $S(\omega) \propto (\lambda^2+\omega^2)^{-(p+1)}.$
- Many non-rational spectral densities can be approximated:

$$S(\omega) = \sigma^2 \sqrt{\frac{\pi}{\kappa}} \exp\left(-\frac{\omega^2}{4\kappa}\right) \approx \frac{(\text{const})}{N!/0!(4\kappa)^N + \dots + \omega^{2N}}$$

• For the conversion of a rational spectral density to a Markovian (state-space) model, we can use the spectral factorization.

• By taking the Fourier transform of the LTI SDE, we can derive the spectral density which has the form:

$$\mathcal{S}(\omega) = rac{(ext{constant})}{(ext{polynomial in } \omega^2)}$$

• We can also do this conversion to the other direction:

• With certain parameter values, the Matérn has the form:

$$S(\omega) \propto (\lambda^2 + \omega^2)^{-(p+1)}.$$

• Many non-rational spectral densities can be approximated:

$$S(\omega) = \sigma^2 \sqrt{\frac{\pi}{\kappa}} \exp\left(-\frac{\omega^2}{4\kappa}\right) \approx \frac{(\text{const})}{N!/0!(4\kappa)^N + \dots + \omega^{2N}}$$

• For the conversion of a rational spectral density to a Markovian (state-space) model, we can use the spectral factorization.

• By taking the Fourier transform of the LTI SDE, we can derive the spectral density which has the form:

$$\mathcal{S}(\omega) = rac{(ext{constant})}{(ext{polynomial in } \omega^2)}$$

• We can also do this conversion to the other direction:

• With certain parameter values, the Matérn has the form:

$$S(\omega) \propto (\lambda^2 + \omega^2)^{-(p+1)}.$$

• Many non-rational spectral densities can be approximated:

$$S(\omega) = \sigma^2 \sqrt{rac{\pi}{\kappa}} \exp\left(-rac{\omega^2}{4\kappa}
ight) pprox rac{(ext{const})}{N!/0!(4\kappa)^N + \dots + \omega^{2N}}$$

• For the conversion of a rational spectral density to a Markovian (state-space) model, we can use the spectral factorization.

• By taking the Fourier transform of the LTI SDE, we can derive the spectral density which has the form:

$$\mathcal{S}(\omega) = rac{(ext{constant})}{(ext{polynomial in } \omega^2)}$$

- We can also do this conversion to the other direction:
 - With certain parameter values, the Matérn has the form:

$$S(\omega) \propto (\lambda^2 + \omega^2)^{-(p+1)}.$$

• Many non-rational spectral densities can be approximated:

$$S(\omega) = \sigma^2 \sqrt{rac{\pi}{\kappa}} \exp\left(-rac{\omega^2}{4\kappa}
ight) pprox rac{(ext{const})}{N!/0!(4\kappa)^N + \dots + \omega^{2N}}$$

• For the conversion of a rational spectral density to a Markovian (state-space) model, we can use the spectral factorization.

• Results in a linear stochastic differential equation (SDE)

$$d\mathbf{f}(t) = \mathbf{A}\mathbf{f}(t) dt + \mathbf{L} d\mathbf{W}$$

- More generally stochastic evolution equations.
- O(n) GP regression with Kalman filters and smoothers.
- Parallel block-sparse precision methods $\rightarrow O(\log n)$.

Results in a linear stochastic differential equation (SDE)

$$d\mathbf{f}(t) = \mathbf{A} \, \mathbf{f}(t) \, dt + \mathbf{L} \, d\mathbf{W}$$

- More generally stochastic evolution equations.
- O(n) GP regression with Kalman filters and smoothers.
- Parallel block-sparse precision methods $\rightarrow O(\log n)$.

Results in a linear stochastic differential equation (SDE)

$$d\mathbf{f}(t) = \mathbf{A} \, \mathbf{f}(t) \, dt + \mathbf{L} \, d\mathbf{W}$$

• More generally stochastic evolution equations.

- O(n) GP regression with Kalman filters and smoothers.
- Parallel block-sparse precision methods $\longrightarrow O(\log n)$.

Results in a linear stochastic differential equation (SDE)

$$d\mathbf{f}(t) = \mathbf{A} \, \mathbf{f}(t) \, dt + \mathbf{L} \, d\mathbf{W}$$

- More generally stochastic evolution equations.
- O(n) GP regression with Kalman filters and smoothers.
- Parallel block-sparse precision methods $\longrightarrow O(\log n)$.

State-space methods for Gaussian processes

Results in a linear stochastic differential equation (SDE)

$$d\mathbf{f}(t) = \mathbf{A} \, \mathbf{f}(t) \, dt + \mathbf{L} \, d\mathbf{W}$$

- More generally stochastic evolution equations.
- O(n) GP regression with Kalman filters and smoothers.
- Parallel block-sparse precision methods $\rightarrow O(\log n)$.

State-space methods – temporal example

Example (Matérn class 1d)

The Matérn class of covariance functions is

$$k(t,t') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} |t-t'| \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} |t-t'| \right).$$

When, e.g., $\nu = 3/2$, we have

$$d\mathbf{f}(t) = \begin{pmatrix} 0 & 1 \\ -\lambda^2 & -2\lambda \end{pmatrix} \mathbf{f}(t) dt + \begin{pmatrix} 0 \\ q^{1/2} \end{pmatrix} dW(t),$$

$$f(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{f}(t).$$

S(P)DEs and GPs Simo Särkkä 12/24

State-space methods – spatio-temporal example

Example (2D Matérn covariance function)

Consider a space-time Matérn covariance function

$$k(x,t;x',t') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\rho}{l}\right)^{\nu} K_{\nu}\left(\sqrt{2\nu} \frac{\rho}{l}\right).$$

where we have $\rho = \sqrt{(t - t')^2 + (x - x')^2}$, $\nu = 1$ and d = 2.

• We get the following representation:

$$d\mathbf{f}(x,t) = \begin{pmatrix} 0 & 1\\ \frac{\partial^2}{\partial x^2} - \lambda^2 & -2\sqrt{\lambda^2 - \frac{\partial^2}{\partial x^2}} \end{pmatrix} \mathbf{f}(x,t) dt + \begin{pmatrix} 0\\ 1 \end{pmatrix} dW(x,t) dt$$

S(P)DEs and GPs Simo Särkkä 13/24

State-space methods – spatio-temporal example

Example (2D Matérn covariance function)

Consider a space-time Matérn covariance function

$$k(x,t;x',t') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\rho}{l}\right)^{\nu} K_{\nu}\left(\sqrt{2\nu} \frac{\rho}{l}\right).$$

where we have $\rho = \sqrt{(t - t')^2 + (x - x')^2}$, $\nu = 1$ and d = 2.

• We get the following representation:

$$d\mathbf{f}(x,t) = \begin{pmatrix} 0 & 1\\ \frac{\partial^2}{\partial x^2} - \lambda^2 & -2\sqrt{\lambda^2 - \frac{\partial^2}{\partial x^2}} \end{pmatrix} \mathbf{f}(x,t) dt + \begin{pmatrix} 0\\ 1 \end{pmatrix} dW(x,t)$$

S(P)DEs and GPs Simo Särkkä 13/24

Contents

2 Stochastic differential equations and Gaussian processes

Stochastic partial differential equations and Gaussian processes

S(P)DEs and GPs Simo Särkkä 14/24

• Consider e.g. the stochastic partial differential equation:

$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} - \lambda^2 f(x,y) = w(x,y)$$

• Fourier transforming gives the spectral density:

$$S(\omega_x,\omega_y)\propto \left(\lambda^2+\omega_x^2+\omega_y^2
ight)^{-2}$$

• Inverse Fourier transform gives the covariance function:

$$k(x, y; x', y') = \frac{\sqrt{(x - x')^2 + (y - y')^2}}{2\lambda} K_1(\lambda \sqrt{(x - x')^2 + (y - y')^2})$$

• But this is just the Matérn covariance function.

S(P)DEs and GPs Simo Särkkä 15/24

• Consider e.g. the stochastic partial differential equation:

$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} - \lambda^2 f(x,y) = w(x,y)$$

• Fourier transforming gives the spectral density:

$$\mathcal{S}(\omega_x,\omega_y)\propto \left(\lambda^2+\omega_x^2+\omega_y^2
ight)^{-2}.$$

• Inverse Fourier transform gives the covariance function:

$$k(x, y; x', y') = \frac{\sqrt{(x - x')^2 + (y - y')^2}}{2\lambda} K_1(\lambda \sqrt{(x - x')^2 + (y - y')^2})$$

• But this is just the Matérn covariance function.

S(P)DEs and GPs Simo Särkkä 15/24

• Consider e.g. the stochastic partial differential equation:

$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} - \lambda^2 f(x,y) = w(x,y)$$

• Fourier transforming gives the spectral density:

$$S(\omega_x,\omega_y)\propto \left(\lambda^2+\omega_x^2+\omega_y^2
ight)^{-2}$$

Inverse Fourier transform gives the covariance function:

$$k(x,y;x',y') = \frac{\sqrt{(x-x')^2 + (y-y')^2}}{2\lambda} K_1(\lambda \sqrt{(x-x')^2 + (y-y')^2})$$

• But this is just the Matérn covariance function.

S(P)DEs and GPs Simo Särkkä 15/24

• Consider e.g. the stochastic partial differential equation:

$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} - \lambda^2 f(x,y) = w(x,y)$$

• Fourier transforming gives the spectral density:

$$S(\omega_x,\omega_y)\propto \left(\lambda^2+\omega_x^2+\omega_y^2
ight)^{-2}$$

Inverse Fourier transform gives the covariance function:

$$k(x,y;x',y') = \frac{\sqrt{(x-x')^2 + (y-y')^2}}{2\lambda} K_1(\lambda \sqrt{(x-x')^2 + (y-y')^2})$$

• But this is just the Matérn covariance function.

• More generally, SPDE for some linear operator *L*:

 $\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$

• Now *f* is a GP with precision and covariance operators:

$$egin{aligned} \mathcal{K}^{-1} &= \mathcal{L}^* \, \mathcal{L} \ \mathcal{K} &= (\mathcal{L}^* \, \mathcal{L})^{-1} \end{aligned}$$

- Idea: approximate \mathcal{L} or \mathcal{L}^{-1} using PDE/ODE methods:
 - Finite-differences/FEM methods lead to sparse precision approximations.
 - Fourier/basis-function methods lead to reduced rank covariance approximations.
 - Spectral factorization leads to state-space (Kalman) methods which are time-recursive (or sparse in precision).

S(P)DEs and GPs Simo Särkkä 16/24

• More generally, SPDE for some linear operator *L*:

 $\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$

• Now *f* is a GP with precision and covariance operators:

$$egin{aligned} \mathcal{K}^{-1} &= \mathcal{L}^* \, \mathcal{L} \ \mathcal{K} &= (\mathcal{L}^* \, \mathcal{L})^{-1} \end{aligned}$$

- Idea: approximate \mathcal{L} or \mathcal{L}^{-1} using PDE/ODE methods:
 - Finite-differences/FEM methods lead to sparse precision approximations.
 - Fourier/basis-function methods lead to reduced rank covariance approximations.
 - Spectral factorization leads to state-space (Kalman) methods which are time-recursive (or sparse in precision).

S(P)DEs and GPs Simo Särkkä 16/24

• More generally, SPDE for some linear operator *L*:

 $\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$

• Now *f* is a GP with precision and covariance operators:

$$egin{aligned} \mathcal{K}^{-1} &= \mathcal{L}^*\,\mathcal{L} \ \mathcal{K} &= (\mathcal{L}^*\,\mathcal{L})^{-1} \end{aligned}$$

- Idea: approximate \mathcal{L} or \mathcal{L}^{-1} using PDE/ODE methods:
 - Finite-differences/FEM methods lead to sparse precision approximations.
 - Fourier/basis-function methods lead to reduced rank covariance approximations.
 - Spectral factorization leads to state-space (Kalman) methods which are time-recursive (or sparse in precision).

S(P)DEs and GPs Simo Särkkä 16/24

• More generally, SPDE for some linear operator *L*:

 $\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$

• Now *f* is a GP with precision and covariance operators:

$$egin{aligned} \mathcal{K}^{-1} &= \mathcal{L}^*\,\mathcal{L} \ \mathcal{K} &= (\mathcal{L}^*\,\mathcal{L})^{-1} \end{aligned}$$

- Idea: approximate \mathcal{L} or \mathcal{L}^{-1} using PDE/ODE methods:
 - Finite-differences/FEM methods lead to sparse precision approximations.
 - Fourier/basis-function methods lead to reduced rank covariance approximations.
 - Spectral factorization leads to state-space (Kalman) methods which are time-recursive (or sparse in precision).

• More generally, SPDE for some linear operator *L*:

 $\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$

• Now *f* is a GP with precision and covariance operators:

$$egin{aligned} \mathcal{K}^{-1} &= \mathcal{L}^* \, \mathcal{L} \ \mathcal{K} &= (\mathcal{L}^* \, \mathcal{L})^{-1} \end{aligned}$$

- Idea: approximate \mathcal{L} or \mathcal{L}^{-1} using PDE/ODE methods:
 - Finite-differences/FEM methods lead to sparse precision approximations.
 - Fourier/basis-function methods lead to reduced rank covariance approximations.
 - Spectral factorization leads to state-space (Kalman) methods which are time-recursive (or sparse in precision).

• More generally, SPDE for some linear operator *L*:

 $\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$

• Now *f* is a GP with precision and covariance operators:

$$egin{aligned} \mathcal{K}^{-1} &= \mathcal{L}^* \, \mathcal{L} \ \mathcal{K} &= (\mathcal{L}^* \, \mathcal{L})^{-1} \end{aligned}$$

- Idea: approximate \mathcal{L} or \mathcal{L}^{-1} using PDE/ODE methods:
 - Finite-differences/FEM methods lead to sparse precision approximations.
 - Fourier/basis-function methods lead to reduced rank covariance approximations.
 - Spectral factorization leads to state-space (Kalman) methods which are time-recursive (or sparse in precision).

We get an SPDE approximation L ~ L, where L is sparse
The precision operator approximation is then sparse:

$$\mathcal{K}^{-1} \approx \boldsymbol{L}^T \, \boldsymbol{L} = \text{sparse}$$

L need to be approximated as integro-differential operator.
Requires formation of a grid, but parallelizes well.

S(P)DEs and GPs Simo Särkkä 17/24

• We get an SPDE approximation $\mathcal{L} \approx \mathbf{L}$, where \mathbf{L} is sparse

The precision operator approximation is then sparse:

$$\mathcal{K}^{-1} \approx \boldsymbol{L}^T \, \boldsymbol{L} = \text{sparse}$$

- \mathcal{L} need to be approximated as integro-differential operator.
- Requires formation of a grid, but parallelizes well.

S(P)DEs and GPs Simo Särkkä 17/24

- We get an SPDE approximation $\mathcal{L} \approx L$, where L is sparse
- The precision operator approximation is then sparse:

$$\mathcal{K}^{-1} \approx \boldsymbol{L}^T \, \boldsymbol{L} = \text{sparse}$$

L need to be approximated as integro-differential operator.
Requires formation of a grid, but parallelizes well.

S(P)DEs and GPs Simo Särkkä 17/24

- We get an SPDE approximation $\mathcal{L} \approx L$, where L is sparse
- The precision operator approximation is then sparse:

$$\mathcal{K}^{-1} \approx \boldsymbol{L}^T \, \boldsymbol{L} = \text{sparse}$$

L need to be approximated as integro-differential operator.
Requires formation of a grid, but parallelizes well.

- We get an SPDE approximation $\mathcal{L} \approx L$, where L is sparse
- The precision operator approximation is then sparse:

$$\mathcal{K}^{-1} \approx \boldsymbol{L}^T \, \boldsymbol{L} = \text{sparse}$$

- \mathcal{L} need to be approximated as integro-differential operator.
- Requires formation of a grid, but parallelizes well.

$$egin{aligned} & f(\mathbf{x}) pprox \sum_{\mathbf{k} \in \mathbb{N}^d} o_\mathbf{k} \, \exp\left(2\pi\,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}
ight) \ & o_\mathbf{k} \sim \mathrm{Gaussian} \end{aligned}$$

We use less coefficients c_k than the number of data points.
Leads to reduced-rank covariance approximations

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{|\mathbf{k}| \le N} \sigma_{\mathbf{k}}^2 \exp\left(2\pi i \mathbf{k}^{\mathsf{T}} \mathbf{x}\right) \exp\left(2\pi i \mathbf{k}^{\mathsf{T}} \mathbf{x}'\right)^*$$

• Truncated series, random frequencies, FFT, ...

S(P)DEs and GPs Simo Särkkä 18/24

• Approximation:

$$\begin{split} f(\mathbf{x}) &\approx \sum_{\mathbf{k} \in \mathbb{N}^d} \mathbf{c}_{\mathbf{k}} \, \exp\left(2\pi \, \mathrm{i} \, \mathbf{k}^\mathsf{T} \, \mathbf{x}\right) \\ \mathbf{c}_{\mathbf{k}} &\sim \mathsf{Gaussian} \end{split}$$

We use less coefficients ck than the number of data points.
Leads to reduced-rank covariance approximations

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{|\mathbf{k}| \le N} \sigma_{\mathbf{k}}^2 \exp\left(2\pi \,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}\right) \,\exp\left(2\pi \,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}'\right)^*$$

• Truncated series, random frequencies, FFT, ...

S(P)DEs and GPs Simo Särkkä 18/24

$$egin{aligned} & f(\mathbf{x}) pprox \sum_{\mathbf{k} \in \mathbb{N}^d} c_\mathbf{k} \, \exp\left(2\pi\,\mathrm{i}\,\mathbf{k}^\mathsf{T}\,\mathbf{x}
ight) \ & c_\mathbf{k} \sim \mathrm{Gaussian} \end{aligned}$$

We use less coefficients ck than the number of data points.
Leads to reduced-rank covariance approximations

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{|\mathbf{k}| \le N} \sigma_{\mathbf{k}}^2 \exp\left(2\pi \,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}\right) \,\exp\left(2\pi \,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}'\right)^*$$

• Truncated series, random frequencies, FFT, ...

S(P)DEs and GPs Simo Särkkä 18/24

$$egin{aligned} & f(\mathbf{x}) pprox \sum_{\mathbf{k} \in \mathbb{N}^d} c_\mathbf{k} \, \exp\left(2\pi\,\mathrm{i}\,\mathbf{k}^\mathsf{T}\,\mathbf{x}
ight) \ & c_\mathbf{k} \sim \mathrm{Gaussian} \end{aligned}$$

We use less coefficients c_k than the number of data points.
Leads to reduced-rank covariance approximations

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{|\mathbf{k}| \le N} \sigma_{\mathbf{k}}^2 \exp\left(2\pi \,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}\right) \,\exp\left(2\pi \,\mathrm{i}\,\mathbf{k}^{\mathsf{T}}\,\mathbf{x}'\right)^*$$

Truncated series, random frequencies, FFT, ...

• Approximation:

$$f(\mathbf{x}) \approx \sum_{i} c_{i} \phi_{i}(\mathbf{x})$$

 $\langle \phi_{i}, \phi_{i} \rangle_{H} \approx \delta_{ii}, \text{ e.g. } \nabla^{2} \phi_{i} = -\lambda_{i} \phi_{i}$

Again, use less coefficients than the number of data points.Reduced-rank covariance approximations such as

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{i=1}^{N} \sigma_i^2 \phi_i(\mathbf{x}) \phi_i(\mathbf{x}').$$

• Wavelets, Galerkin, finite elements, ...

S(P)DEs and GPs Simo Särkkä 19/24

• Approximation:

$$egin{aligned} f(\mathbf{x}) &\approx \sum_i c_i \, \phi_i(\mathbf{x}) \ &\langle \phi_i, \phi_i
angle_H &pprox \delta_{ii}, \ \mathbf{e.g.} \
abla^2 \phi_i = -\lambda_i \, \phi_i \end{aligned}$$

- Again, use less coefficients than the number of data points.
- Reduced-rank covariance approximations such as

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{i=1}^{N} \sigma_i^2 \phi_i(\mathbf{x}) \phi_i(\mathbf{x}').$$

• Wavelets, Galerkin, finite elements, ...

S(P)DEs and GPs Simo Särkkä 19/24

• Approximation:

$$egin{aligned} f(\mathbf{x}) &pprox \sum_i m{c}_i \, \phi_i(\mathbf{x}) \ &\langle \phi_i, \phi_j
angle_{\mathcal{H}} &pprox \delta_{ij}, ext{ e.g. }
abla^2 \phi_i = -\lambda_i \, \phi_i \end{aligned}$$

Again, use less coefficients than the number of data points.
Reduced-rank covariance approximations such as

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{i=1}^{N} \sigma_i^2 \phi_i(\mathbf{x}) \phi_i(\mathbf{x}').$$

• Wavelets, Galerkin, finite elements, ...

S(P)DEs and GPs Simo Särkkä 19/24

• Approximation:

$$egin{aligned} f(\mathbf{x}) &pprox \sum_i m{c}_i \, \phi_i(\mathbf{x}) \ &\langle \phi_i, \phi_j
angle_{\mathcal{H}} &pprox \delta_{ij}, ext{ e.g. }
abla^2 \phi_i = -\lambda_i \, \phi_i \end{aligned}$$

- Again, use less coefficients than the number of data points.
- Reduced-rank covariance approximations such as

$$k(\mathbf{x}, \mathbf{x}') \approx \sum_{i=1}^{N} \sigma_i^2 \phi_i(\mathbf{x}) \phi_i(\mathbf{x}').$$

• Wavelets, Galerkin, finite elements, ...

Contents

- 2 Stochastic differential equations and Gaussian processes
- Stochastic partial differential equations and Gaussian processes

S(P)DEs and GPs Simo Särkkä 20 / 24

Back to SPDE representations of GPs GP model $\mathbf{x} \in \mathbb{R}^d$, $t \in \mathbb{R}$ | Equivalent S(P)DE model

•••••••••••••••••••••••••••••••••••••••	
Spatial $k(\mathbf{x}, \mathbf{x}')$	SPDE model (\mathcal{L} is an operator)
	$\mathcal{L} f(\mathbf{x}) = w(\mathbf{x})$
Temporal $k(t, t')$	State-space/SDE model
	$\frac{d\mathbf{f}(t)}{dt} = \mathbf{A} \mathbf{f}(t) + \mathbf{L} \mathbf{w}(t)$
Spatio-temporal k(x , t; x ', t')	Stochastic evolution equation $\frac{\partial}{\partial t} \mathbf{f}(\mathbf{x}, t) = \mathcal{A}_{\mathbf{x}} \mathbf{f}(\mathbf{x}, t) + \mathbf{L} \mathbf{w}(\mathbf{x}, t)$

S(P)DEs and GPs Simo Särkkä 21/24

• Exchange and map approximations between the fields:

- Inducing points ↔ point-collocation; spectral methods ↔ Galerkin methods; finite-differences ↔ GMRFs;
- Non-Gaussian processes: Student's-t processes, non-linear Itô processes, jump processes, hybrid point/Gaussian processes.
- Hierarchical (deep) SPDE models: we stack SPDEs on top of each other the SPDE just becomes non-linear.
- Combined first-principles and nonparametric models latent force models (LFM), also non-linear and non-Gaussian LFMs.
- Inverse problems operators in the measurement model.

• Exchange and map approximations between the fields:

- Inducing points ↔ point-collocation; spectral methods ↔ Galerkin methods; finite-differences ↔ GMRFs;
- Non-Gaussian processes: Student's-t processes, non-linear Itô processes, jump processes, hybrid point/Gaussian processes.
- Hierarchical (deep) SPDE models: we stack SPDEs on top of each other the SPDE just becomes non-linear.
- Combined first-principles and nonparametric models latent force models (LFM), also non-linear and non-Gaussian LFMs.
- Inverse problems operators in the measurement model.

- Exchange and map approximations between the fields:
 - Inducing points ↔ point-collocation; spectral methods ↔ Galerkin methods; finite-differences ↔ GMRFs;
- Non-Gaussian processes: Student's-t processes, non-linear Itô processes, jump processes, hybrid point/Gaussian processes.
- Hierarchical (deep) SPDE models: we stack SPDEs on top of each other the SPDE just becomes non-linear.
- Combined first-principles and nonparametric models latent force models (LFM), also non-linear and non-Gaussian LFMs.
- Inverse problems operators in the measurement model.

- Exchange and map approximations between the fields:
 - Inducing points ↔ point-collocation; spectral methods ↔ Galerkin methods; finite-differences ↔ GMRFs;
- Non-Gaussian processes: Student's-t processes, non-linear Itô processes, jump processes, hybrid point/Gaussian processes.
- Hierarchical (deep) SPDE models: we stack SPDEs on top of each other – the SPDE just becomes non-linear.
- Combined first-principles and nonparametric models latent force models (LFM), also non-linear and non-Gaussian LFMs.
- Inverse problems operators in the measurement model.

S(P)DEs and GPs Simo Särkkä 22/24

- Exchange and map approximations between the fields:
 - Inducing points ↔ point-collocation; spectral methods ↔ Galerkin methods; finite-differences ↔ GMRFs;
- Non-Gaussian processes: Student's-t processes, non-linear Itô processes, jump processes, hybrid point/Gaussian processes.
- Hierarchical (deep) SPDE models: we stack SPDEs on top of each other – the SPDE just becomes non-linear.
- Combined first-principles and nonparametric models latent force models (LFM), also non-linear and non-Gaussian LFMs.
- Inverse problems operators in the measurement model.

S(P)DEs and GPs Simo Särkkä 22/24

- Exchange and map approximations between the fields:
 - Inducing points ↔ point-collocation; spectral methods ↔ Galerkin methods; finite-differences ↔ GMRFs;
- Non-Gaussian processes: Student's-t processes, non-linear Itô processes, jump processes, hybrid point/Gaussian processes.
- Hierarchical (deep) SPDE models: we stack SPDEs on top of each other – the SPDE just becomes non-linear.
- Combined first-principles and nonparametric models latent force models (LFM), also non-linear and non-Gaussian LFMs.
- Inverse problems operators in the measurement model.

• Gaussian processes (GPs) are nice, but the computational scaling is bad.

- GPs have representations as solutions to SPDEs.
- In temporal models we can use Kalman/Bayesian filters and smoothers.
- SPDE methods can be used to speed up GP inference.
- New paths towards non-linear GP models.
- Work nicely in latent force models.

- Gaussian processes (GPs) are nice, but the computational scaling is bad.
- GPs have representations as solutions to SPDEs.
- In temporal models we can use Kalman/Bayesian filters and smoothers.
- SPDE methods can be used to speed up GP inference.
- New paths towards non-linear GP models.
- Work nicely in latent force models.

- Gaussian processes (GPs) are nice, but the computational scaling is bad.
- GPs have representations as solutions to SPDEs.
- In temporal models we can use Kalman/Bayesian filters and smoothers.
- SPDE methods can be used to speed up GP inference.
- New paths towards non-linear GP models.
- Work nicely in latent force models.

- Gaussian processes (GPs) are nice, but the computational scaling is bad.
- GPs have representations as solutions to SPDEs.
- In temporal models we can use Kalman/Bayesian filters and smoothers.
- SPDE methods can be used to speed up GP inference.
- New paths towards non-linear GP models.
- Work nicely in latent force models.

- Gaussian processes (GPs) are nice, but the computational scaling is bad.
- GPs have representations as solutions to SPDEs.
- In temporal models we can use Kalman/Bayesian filters and smoothers.
- SPDE methods can be used to speed up GP inference.
- New paths towards non-linear GP models.
- Work nicely in latent force models.

- Gaussian processes (GPs) are nice, but the computational scaling is bad.
- GPs have representations as solutions to SPDEs.
- In temporal models we can use Kalman/Bayesian filters and smoothers.
- SPDE methods can be used to speed up GP inference.
- New paths towards non-linear GP models.
- Work nicely in latent force models.

Useful references

- N. Wiener (1950). Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications. John Wiley & Sons, Inc.
- R. L. Stratonovich (1963). *Topics in the Theory of Random Noise.* Gordon and Breach.
- J. Hartikainen and S. Särkkä (2010). Kalman Filtering and Smoothing Solutions to Temporal Gaussian Process Regression Models. Proc. MLSP.
- S. Särkkä, A. Solin, and J. Hartikainen (2013). Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing. IEEE Sig.Proc.Mag., 30(5):51–61.
- S. Särkkä (2013). Bayesian Filtering and Smoothing. Cambridge University Press.
- S. Särkkä and A. Solin (2017, to appear) Applied Stochastic Differential Equations. Cambridge University Press.

