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Wait a minute...did I say S P E C T R A L?

Ouch!
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Clustering techniques: two categories

Clustering	

Hierarchical		 Par11oning	
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nonlinear separating hypersurfaces

What if we consider non linear clusters?

need of clustering methods that produce nonlinear separating
hypersurfaces among clusters

two big families: kernel and spectral clustering methods.
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Kernel and Spectral methods

Kernel clustering

Kernels allow to map implicitly
data into a high dimensional
feature space;

computing a linear partitioning
in this feature space results in
a nonlinear partitioning in the
input space.

Spectral clustering

Construct a weighted graph
from the initial data set;

eigenvalue decomposition
(spectrum) of the Laplacian
matrix for dimensionality
reduction − > clustering in
fewer dimensions.
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A unified view of Spectral and Kernel methods

Hint: the adjacency between patterns in the spectral approach is the
analogous of the kernel functions in kernel methods.

explicit mathematical proof in A survey of kernel and spectral
methods for clustering by M. Filippone et. al.

In particular Kernel K-Means and Spectral clustering, with the ratio
association as the objective function, are perfectly equivalent
(shown by Dhillon et al.)

OMdays
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Complex Networks Representation

Let X = {x1, . . . , xn} and W = (wij ≥ 0)i ,j=1,...,n be a set of data and a
matrix of similarities between pairs of vertices

Similarity Graph

G = (V ,E ,W ), a weighted undirected graph with V = {1, 2, . . . , n} the
vertex set, E = {(i , j) = (j , i) | wij > 0} the edge set, and W the edge
weight matrix

Graph Laplacian

The Laplacian matrix of the graph G is:

L = D −W ∈ Rn×n,

where D = diag(di =
∑n

j=1 wij)i=1,...,n is the diagonal matrix of weighted
vertex degrees
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Community detection

Communities/Clusters

Vertices groups with dense connections within groups
and only sparser connections between them

functional units such as cycles or pathways in
metabolic networks

collections of pages on a single topic on the web

individuals contacts in social networks

Community detection as mincut problem

Find a graph partition V1, . . . ,VK minimizing:

RatioCut(V1, . . . ,VK ) =
1

2

K∑
k=1

W (Vk ,Vk)

|Vk |
,

where W (Vk ,Vk) =
∑

i∈Vk ,j∈Vk
wij and Vk complement of Vk in V
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Mincut as trace minimization problem

Given a partition V1, . . . ,VK , let hk = (h1k , . . . , hnk)T and
H = (hk)k=1,...,K ∈ Rn×K be, where:

hik =

{
1/
√
|Vk | if xi ∈ Vk

0 otherwise
i = 1, . . . , n; k = 1, . . . ,K .

It holds:

RatioCut(V1, . . . ,VK ) =
K∑

k=1

(HTLH)kk = Tr(HTLH), with HTH = I

trace minimization problem for graph Laplacian

min
V1,...,VK

Tr(HTLH), subject to HTH = I

(hk)k=1,...,K first K eigenvectors of L are the solution
(Rayleigh-Ritz theorem)
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Spectral Clustering

Using the first K eigenvectors of graph Laplacian as
low-dimension graph embedding (Euclidean) space

and applying a spatial clutering in the new space

Peng et al., Partitioning Well-Clustered Graphs: Spectral Clustering Works! JMLR, 2015
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Our Proposal

We propose to use as graph embedding, the space spanned by the
algebraically smooth vectors of the graph Laplacian, associated to an

adaptive algebraic multigrid method for solving linear systems.

Algebraic MultiGrid (AMG)
1 AMG are scalable iterative methods for solving large and sparse linear

systems arising from modern applications

2 apply recursively a two-grid process: smoother iterations and a
coarse-grid correction
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Smooth Vectors of Graph Laplacian

Lx = b, b subject to
∑
i

bi = 0

Algebraic MultiGrid (AMG)

1 Pre-smoothing: x = x + M−1(b− Lx)

2 Residual restriction: rc = PT (b− Lx)

3 Solution on coarse grid: Lce = rc ,
applying recursion

4 Error interpolation and solution update:
x = x + Pe

5 Post-smoothing: x = x + (MT )−1(b− Lx)
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Estimating smooth vectors

Laplacian graph L can be transformed to s.p.d matrix by rank-1 update:

LS = L + αqqT , α > 0

with q having non-zero entries qi = qj = 1 for an arbitrary edge (i , j) ∈ E

Smooth vectors can be estimated by applying iterative methods to the
homogeneous system LSx = 0, starting from arbitrary x0:

x` := (I − B−1LS)x`−1 ` = 1, . . . , `max
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Smooth Vectors as effective embedding space

Effective embedding

algebraically smooth vectors of LS computed by (good convergent)
bootstrap AMG well capture the global connectivity of a graph
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BootCMatch Software Framework

AMG Solver Krylov Solvers

Bootstrap AMG Apply

Bootstrap AMG Build

Single AMG

Hierarchy Build
Matching

Matrix/Vector

HSL−MC64

Auction

Half−approximate

SuperLU

BootCMatch Software Framework.
Available at github.com/bootcmatch/BootCMatch/

D’Ambra et al., BootCMatch: a Software package for Bootstrap AMG based on Graph
Weighted Matching, ACM TOMS, 2018
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Quality Metrics for Clustering

Modularity Function

Graphs with strong community structure has large values of:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δViVj

defined as the fraction of the edges that fall within the groups minus the
expected such fraction if edges were distributed at random.

Variation of Information

A measure to compare partitions is the Variation of Information (VI):

VI (C, C′) = H(C) + H(C′)− 2I (C, C′)

where H(C ) is the entropy associated with partition C and I (C ,C ′) is the
mutual information between C and C′, i.e., the information that one
partition has about the other
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Experimental Setting

BootCMatch+ Kmeans :

Coarsening based on default parameters
maximum number of bootstrap iterations (smooth
vectors) maxstages = 40
Kmeans Matlab post-processing;
maximum modularity clustering out of 100 executions

Comparisons with R igraph package
Network comm. extract. methods:

Louvain: a greedy modularity optimization method
(Blondel et al., 2008)
LeadingEigen: a method based on the leading
eigenvector of modularity matrix (Newman, 2006)

L. Cutillo (Univ. of Leeds) Bootstrap AMG in spectral clutering GPSS 2108 17 / 28



Results on benchmarks from DC-SBM

Stochastic Block Model

random graphs where the probability of having an edge between two nodes
depends on the communities they belong to.

Degree Corrected SBM assumes vertex degree variability within
communities, as in realistic networks.

144 graphs of increasing dimension n = 1000, 2000, 3000, 4000

sparsity degree ranging in [0.01, 0.35]

edge probability within each community Min uniformly generated in
[0.3, 0.7], unique edge probability between any couple of communities
Mout ∈ [0.001, 0.8], corresponding to decreasing modularity

different numbers of communities K = 4, 8, 12, 16 per each
dimension, 9 graphs per each K numbered according to increasing
modularity.

Cutillo et al., An inferential procedure for community structure validation in networks,
arXiv:1710.06611
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Clustering Results on DC-SBM: n=1000, K=4, Q=0.62
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Original Graph (left); Clustering obtained with BootCMatch (right)

Output Parameters by Bootstrap AMG

number of smooth vectors d = 14, corresponding to a convergence factor
ρ = 4.51× 10−9; computed modularity Q = 0.6192
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Clustering Results on DC-SBM: modularity values

Comparison of modularity among different clustering
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Clustering Results on DC-SBM: VI w.r.t. true clustering

Comparison of different clustering VI w.r.t. to true clustering
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Clustering Results on DC-SBM: modularity values

Comparison of modularity among different clustering
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Clustering Results on DC-SBM: VI w.r.t. true clustering

Comparison of different clustering VI w.r.t. to true clustering
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Clustering Results on real networks

●
●

●

●
●
●

●

●
●

●●

●●
●

●

●●

●
●

●
●

●●●●

●●

●●
●

●●
●●

●
●●

●●●
●●

●

●●

●
●
●●

●●●●●
●●
●

●
●●

●
●

●
●●●

●

●

●
●
● ●

●●●

●●

●

●

●
●●
●

●●
●

●
●●●●●●●

●

●●
●

●
●

●
●
●
●

●

●
●

●

●

●
●
●

●
●

●●
● ●●

●

●

●●

●
●

●
●

●●
●●

●
●
●

●
●

●

●

●
●

●●

●

●

●●

●
●

●●
●

●●●●
●
●

●●
●

●

●
●

●●

●

●

●●●●

●
●

●

●●

●
●

● ●

●●●

●●
●●

●
●

●●●●
●

●
●●

●

●

●

●●
●●
●●

●
●●●●

●

●
●

●
●●●

●●
●

●
●●

●
●

●
●
●●●●

●
●

●
●

●●●●
●
●●

●●
●
●
●

●

●●

●●
●●
●
●

●●●
●

●
●

●●●

●
●
●●●●●●

●●
●

●
●

●

●●●
●

●
●

●

●●●
●

●
●●●●● ●●●

●
●

●

●
●●●

●
●

●
●
●

●●

●●
●
●

●●

●
●

●
●●
●
●●●●

●
●

●
●

●
●

●
●
●

●

●

●

●
●●

●

●
●●

●

●
●●
●

●
●●

●
●
●

●

●
●●

●
●
●●

●
●

●●●
●●●●●●

●
●

●
●

●
●

●●●

●●
●●

●●
●
●
●●
●●
●

●

●
●●

●

●
●

●
●

●
●

●●
●●●

●
●

●● ●
●
●

●●
●
●●●

●
●

●●
●

●●

●
●●●

●●●

●
●

●

●

●

●

●

●
●
● ●● ●●

●
●

●

●●

●●

●

●●

●
●

●
●

●●
●●

●
●

●●
●●
●●

●●

●
●●

●
●●●

●●●

●
●●
●
●
●●●●

●
●●●

●●●
●●
●●●●●●●

●
●

●

●
●

●

●
●●●

●●●●
●●●

●●

●
●
●●

●●● ●●
●● ●

●
●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●●
●●

●
●

●
●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●
●

●

●

●
●
●●
●
●●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●●

●●

●
●●

●

●

●
●

●

●

●

●

●●
●●

●

●

●
●

●●
●

●
●
●

●
●

●

●●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●●

●● ●● ●●
●

●
●
●

●
●

●●

●●
●
●

●
●●

●●●●●● ●●

●
●●●

●
●●
●

●
●
●

●
●

●
●

●●
●

●
●●●

●
●

●●

●

●●●
●

●●
●

●●
●

●●
●●
●

●
●

●●
●

●●●

●
●

●

●
●

●
●●

●

●●

●
●

●
●●

●●●●

●●●●
●●

● ●

●●

●
●

●

●●

●
●●

●
●●

●
●

●●
●●
●●

●
●●●

●●
●●

●●
●●
● ●●●

●●
● ●

● ●● ●
●●

●●●●●
●

●●●
●

●●

●●

●●
●
●●●
●

●●
●●

●●●●
●● ●●●

●
●●

●
●
●●

●
●●

●

● ●

●

●
●
●

●

●●

●
●●●

●●
●

●
●●● ●

●●
●●●
●

●
●

●●

●

●
●

●
●●●●

●
●

●●

●●

●●●●

●
●●
●●
●

●
●

●
●●●●
●

●●
●●

●

●
●●●

●●

●●

●
●
●
●●

●●
●●●●

●●
●●●●●

●●
●●

●
●●

●
●

●
●
●

●
●
●●

●
●

●●
●●●
●

●●
●●

●●●●
●●

●
●

●●●●

●

●
●●● ●

●
●●

●●
●
●●

●●●

● ●
●●●●●

●●●●●●
●

●●

●●●
●
●
●●
●●

●
●●

●●●

●
●

●●●●●
●●

●●

●●

●●●●●
●●

●●
●●● ●●●●●●●

●●
●●●●

●
●●

●●

●●
●

●

●
●●

●

● ●
●

●
● ●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●●

●
●

●

●
●

●

●
●
●
●
●
●
●

●●
●

●
●

●

●
●

●
●●

●●
●
●●

●

●●●
●

●

●
●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●●●●
●

●

●
●
●

●
●

●
●

●●
●

●●●●

●
●●

●
●

●
●

●●

●●
●●

●
●●

●
●●

●
●

●

●
●
●

●●
●
●

●
●●

●●
●●●●●●

●●●

●

●
●
● ●●

●
●

●●●
●
●

●

●

●

●

●

●

●
●●
●●●●

●●

●
●●

●●●
●

●
●
●

●●

●●●
●

●●●●●●

●●
●

●●●

●
●
●●

●

●
● ●●

●●

●●

ct2010, Dimacs 10th Collection:
Connecticut State from Census and
Tiger/Line 2010 Shapefiles, n = 67578
vertices and m = 168176 edges, sparsity
10−5, min/max vertex degree 1 / 53

immuno, igraphdata package collection:
Immunoglobulin Interaction Network,
n = 1316 vertices and m = 6300 edges,
sparsity 10−3, min/max vertex degree
3 / 17
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Clustering Results on real networks

BootCMatch LeadingEigen Louvain

Name K Q VI K Q VI K Q

ct2010 39 0.954 1.57 20 0.230 4.040 80 0.964
immuno 21 0.821 1.55 12 0.863 1.03 9 0.826

Bootstrap AMG uses eigengap heuristic for setting number K of clusters:
|σK+1 − σK | > 0.1, with σr from SVD of smooth vectors.
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Figure: Clustering of Immuno Network. BootCMatch (left) and Louvain (right)
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Some Remarks and Work in Progress

Clustering based on bootstrap AMG gives very promising results for
well clustered networks (medium/high values of modularity)

It seems to overcome other methods based on spectral techinques
(LeadinEigen)

Spectral projection based on Bootstrap AMG has a linear complexity

Using different spatial clustering (more reliable than K-means while
dealing with small modularities) and comparisons in terms of
execution times on very large networks are work in progress
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