

Unsupervised Learning with Gaussian Processes

Carl Henrik Ek - carlhenrik.ek@bristol.ac.uk September 5, 2018

http://www.carlhenrik.com

Introductions

This where I live

This is what I do

Distance to horizon 6.2km Hidden height 125.6m

"In inductive inference, we go from the specific to the general. We make many observations, discern a pattern, make a generalization, and infer an explanation or a theory"

- Wassertheil-Smoller

- ${\mathcal F}$ space of functions
- ${\mathcal A}$ learning algorithm
- $S = \{(x_1, y_1), \dots, (x_N, y_N)\}$
- $\mathcal{S} \sim P(\mathcal{X} \times \mathcal{Y})$
- $\ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y)$ loss function

$$e(\mathcal{S}, \mathcal{A}, \mathcal{F}) = \mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})} \left[\ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y) \right]$$

No Free Lunch

We can come up with a combination of $\{S, A, F\}$ that makes e(S, A, F) take an arbitrary value

$$e(\mathcal{S}, \mathcal{A}, \mathcal{F}) = \mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})} \left[\ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y) \right]$$
$$\approx \frac{1}{M} \sum_{n=1}^{M} \ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x_n, y_n)$$

No Free Lunch

We can come up with a combination of $\{S, A, F\}$ that makes e(S, A, F) take an arbitrary value

IUDICIUM POSTERIUM DISCIPULUS EST PRIORIS

September 5, 2018

Learning

"Machine Learning is nothing but curve fitting, but its amazing what you can do by fitting curves." - Judea Pearl

Conditional Gaussians

$$\mathsf{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}1&0.5\\0.5&1\end{array}\right]\right) \qquad \mathsf{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}1&0.9\\0.9&1\end{array}\right]\right) \qquad \mathsf{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}1&0\\0&1\end{array}\right]\right)$$

Unsupervised Learning

p(y|x)

p(y)

26

Priors

$$p(y) = \int p(y|f)p(f|x)p(x)dfdx$$
$$p(x|y) = p(y|x)\frac{p(x)}{p(y)}$$

- 1. Priors that makes sense
 - p(f) describes our belief/assumptions and defines our notion of complexity in the function
 p(x) expresses our belief/assumptions and defines our notion of complexity in the latent space
- 2. Now lets churn the handle

Relationship between x and data

$$p(y) = \int p(y|f)p(f|x)p(x)\mathrm{d}f\mathrm{d}x$$

• GP prior

$$p(f|x) \sim \mathcal{N}(0, K) \propto e^{-rac{1}{2}(f^{\mathrm{T}}K^{-1}f)}$$

 $K_{ij} = e^{-(x_i - x_j)^{\mathrm{T}}M^{\mathrm{T}}M(x_i - x_j)}$

Relationship between x and data

$$p(y) = \int p(y|f)p(f|x)p(x)\mathrm{d}f\mathrm{d}x$$

• GP prior

$$p(f|x) \sim \mathcal{N}(0, K) \propto e^{-rac{1}{2}(f^{\mathrm{T}}K^{-1}f)}$$

 $K_{ij} = e^{-(x_i - x_j)^{\mathrm{T}}M^{\mathrm{T}}M(x_i - x_j)}$

• Likelihood

$$p(y|f) \sim N(y|f,\beta) \propto e^{-\frac{1}{2\beta}\operatorname{tr}(y-f)^{\mathrm{T}}(y-f)}$$

Relationship between x and data

$$p(y) = \int p(y|f)p(f|x)p(x)\mathrm{d}f\mathrm{d}x$$

• GP prior

$$p(f|x) \sim \mathcal{N}(0, K) \propto e^{-rac{1}{2}(f^{\mathrm{T}}K^{-1}f)}$$

 $K_{ij} = e^{-(x_i - x_j)^{\mathrm{T}}M^{\mathrm{T}}M(x_i - x_j)}$

• Likelihood

$$p(y|f) \sim N(y|f,\beta) \propto e^{-\frac{1}{2\beta}\operatorname{tr}(y-f)^{\mathrm{T}}(y-f)}$$

• Analytically intractable (Non Elementary Integral) and infinitely differientiable

Laplace Integration

"Nature laughs at the difficulties of integrations" - Simon Laplace

Being Bayesian¹

¹By Dieric Bouts (circa 1420-1475) - The Yorck Project: 10.000 Meisterwerke der Malerei, Public Domain, URL

Unnsupervised Learning with GPs

$$\hat{x} = \operatorname{argmax}_{x} \int p(y|f)p(f|x)dfp(x)$$

= $\operatorname{argmin}_{x} \frac{1}{2}y^{\mathrm{T}}\mathsf{K}^{-1}y + \frac{1}{2}|\mathsf{K}| - \log p(x)$

 $^{^{2}\}mbox{Lawrence},$ N. D. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent variable models.

- Li, W., Viola, F., Starck, J., Brostow, G. J., & Campbell, N. D. (2016). Roto++: accelerating professional rotoscoping using shape manifolds. (In proceeding of ACM SIGGRAPH'16)
- Grochow, K., Martin, S. L., Hertzmann, A., & Popovi\'c, Zoran (2004). Style-based inverse kinematics. SIGGRAPH '04: SIGGRAPH 2004
- Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D people tracking with Gaussian process dynamical models. Computer Vision and Pattern Recognition, 2006

Font Demo

URL

- Challenges with ML estimation
 - How to initialise x?
 - What is the dimensionality q?
- Our assumption on the latent space does not reach the data

³Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes.

 $^{^{4}}$ Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent Variable Model

- Challenges with ML estimation
 - How to initialise x?
 - What is the dimensionality q?
- Our assumption on the latent space does not reach the data
- Approximate integration!³

³Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes.

⁴Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent Variable Model

Variational Bayes

 $p(\mathbf{Y})$

$\log p(\mathbf{Y})$

$$\log p(\mathbf{Y}) = \log \int p(\mathbf{Y}, \mathbf{X}) \mathrm{d}\mathbf{X}$$

$$\log p(\mathbf{Y}) = \log \int p(\mathbf{Y}, \mathbf{X}) d\mathbf{X} = \log \int p(\mathbf{X} | \mathbf{Y}) p(\mathbf{Y}) d\mathbf{X}$$

$$\begin{split} \log p(\mathbf{Y}) &= \log \int p(\mathbf{Y}, \mathbf{X}) \mathrm{d}\mathbf{X} = \log \int p(\mathbf{X} | \mathbf{Y}) p(\mathbf{Y}) \mathrm{d}\mathbf{X} \\ &= \log \int \frac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X} | \mathbf{Y}) p(\mathbf{Y}) \mathrm{d}\mathbf{X} \end{split}$$

Jensen Inequality

Convex Function

$$egin{aligned} \lambda f(x_0) + (1-\lambda)f(x_1) &\geq f(\lambda x_0 + (1-\lambda)x_1) \ & x \in [x_{min}, x_{max}] \ & \lambda \in [0,1]] \end{aligned}$$

Jensen Inequality

$$\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$$
$$\int f(x)p(x) dx \ge f\left(\int xp(x) dx\right)$$

Jensen Inequality in Variational Bayes

moving the log inside the the integral is a lower-bound on the integral

$$\log p(\mathbf{Y}) = \log \int \frac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y}) d\mathbf{X} =$$

$$egin{aligned} \log p(\mathbf{Y}) &= \log \int rac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y}) \mathrm{d}\mathbf{X} = \ &\geq \int q(\mathbf{X}) \log rac{p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} \end{aligned}$$

$$\begin{split} \log p(\mathbf{Y}) &= \log \int \frac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y}) \mathrm{d}\mathbf{X} = \\ &\geq \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} \\ &= \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} + \int q(\mathbf{X}) \mathrm{d}\mathbf{X} \log p(\mathbf{Y}) \end{split}$$

$$\begin{split} \log p(\mathbf{Y}) &= \log \int \frac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y}) d\mathbf{X} = \\ &\geq \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y})}{q(\mathbf{X})} d\mathbf{X} \\ &= \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y})}{q(\mathbf{X})} d\mathbf{X} + \int q(\mathbf{X}) d\mathbf{X} \log p(\mathbf{Y}) \\ &= -\mathrm{KL} \left(q(\mathbf{X}) || p(\mathbf{X}|\mathbf{Y}) \right) + \log p(\mathbf{Y}) \end{split}$$

Variational Bayes cont.

$$\begin{split} \log p(\mathbf{Y}) &= \log \int \frac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y}) \mathrm{d}\mathbf{X} = \\ &\geq \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} \\ &= \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} + \int q(\mathbf{X}) \mathrm{d}\mathbf{X} \log p(\mathbf{Y}) \\ &= -\mathrm{KL} \left(q(\mathbf{X}) || p(\mathbf{X}|\mathbf{Y}) \right) + \log p(\mathbf{Y}) \end{split}$$

• if q(X) is the true posterior we have an equality, therefore match the distributions
Variational Bayes cont.

$$\begin{split} \log p(\mathbf{Y}) &= \log \int \frac{q(\mathbf{X})}{q(\mathbf{X})} p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y}) \mathrm{d}\mathbf{X} = \\ &\geq \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y}) p(\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} \\ &= \int q(\mathbf{X}) \log \frac{p(\mathbf{X}|\mathbf{Y})}{q(\mathbf{X})} \mathrm{d}\mathbf{X} + \int q(\mathbf{X}) \mathrm{d}\mathbf{X} \log p(\mathbf{Y}) \\ &= -\mathrm{KL} \left(q(\mathbf{X}) || p(\mathbf{X}|\mathbf{Y}) \right) + \log p(\mathbf{Y}) \end{split}$$

- if q(X) is the true posterior we have an equality, therefore match the distributions
- i.e. $\operatorname{argmin}_{q} \operatorname{KL}(q(\mathsf{X})||p(\mathsf{X}|\mathsf{Y}))$
 - \Rightarrow variational distributions are approximations to intractable posteriors

$\mathrm{KL}(q(\mathsf{X})||p(\mathsf{X}|\mathsf{Y}))$

$$\mathrm{KL}(q(\mathsf{X})||p(\mathsf{X}|\mathsf{Y})) = \int q(\mathsf{X}) \log \frac{q(\mathsf{X})}{p(\mathsf{X}|\mathsf{Y})} \mathrm{d}\mathsf{X}$$

$$\begin{split} \mathrm{KL}(q(\mathsf{X})||p(\mathsf{X}|\mathsf{Y})) &= \int q(\mathsf{X}) \log \frac{q(\mathsf{X})}{p(\mathsf{X}|\mathsf{Y})} \mathrm{d}\mathsf{X} \\ &= \int q(\mathsf{X}) \log \frac{q(\mathsf{X})}{p(\mathsf{X},\mathsf{Y})} \mathrm{d}\mathsf{X} + \log \ p(\mathsf{Y}) \end{split}$$

$$\begin{split} \operatorname{KL}(q(\mathbf{X})||p(\mathbf{X}|\mathbf{Y})) &= \int q(\mathbf{X}) \log \frac{q(\mathbf{X})}{p(\mathbf{X}|\mathbf{Y})} \mathrm{d}\mathbf{X} \\ &= \int q(\mathbf{X}) \log \frac{q(\mathbf{X})}{p(\mathbf{X},\mathbf{Y})} \mathrm{d}\mathbf{X} + \log \ p(\mathbf{Y}) \\ &= H(q(\mathbf{X})) - \mathbb{E}_{q(\mathbf{X})} \left[\log \ p(\mathbf{X},\mathbf{Y}) \right] + \log \ p(\mathbf{Y}) \end{split}$$

$$\log p(\mathbf{Y}) = \mathrm{KL}(q(\mathbf{X})||p(\mathbf{X}|\mathbf{Y})) + \underbrace{\mathbb{E}_{q(\mathbf{X})} [\log p(\mathbf{X},\mathbf{Y})] - H(q(\mathbf{X}))}_{\mathrm{ELBO}}$$

$$log \ p(\mathbf{Y}) = \mathrm{KL}(q(\mathbf{X})||p(\mathbf{X}|\mathbf{Y})) + \underbrace{\mathbb{E}_{q(\mathbf{X})} \left[log \ p(\mathbf{X},\mathbf{Y})\right] - H(q(\mathbf{X}))}_{\mathrm{ELBO}}$$
$$\geq \mathbb{E}_{q(\mathbf{X})} \left[log \ p(\mathbf{X},\mathbf{Y})\right] - H(q(\mathbf{X})) = \mathcal{L}(q(\mathbf{X}))$$

 $log \ p(\mathbf{Y}) = \mathrm{KL}(q(\mathbf{X})||p(\mathbf{X}|\mathbf{Y})) + \underbrace{\mathbb{E}_{q(\mathbf{X})} \left[log \ p(\mathbf{X}, \mathbf{Y})\right] - H(q(\mathbf{X}))}_{\mathrm{ELBO}}$ $\geq \mathbb{E}_{q(\mathbf{X})} \left[log \ p(\mathbf{X}, \mathbf{Y})\right] - H(q(\mathbf{X})) = \mathcal{L}(q(\mathbf{X}))$

- if we maximise the ELBO we,
 - find an approximate posterior
 - get an approximation to the marginal likelihood
- maximising $p(\mathbf{Y})$ is learning
- finding $p(\mathbf{X}|\mathbf{Y}) \approx q(\mathbf{X})$ is prediction

Why is this a sensible thing to do?

• If we can't formulate the joint distribution there isn't much we can do

– Ryan Adams⁵

⁵Talking Machines Season 2, Episode 5

Why is this a sensible thing to do?

- If we can't formulate the joint distribution there isn't much we can do
- Taking the expectation of a log is usually easier than the expectation

– Ryan Adams⁵

⁵Talking Machines Season 2, Episode 5

Why is this a sensible thing to do?

- If we can't formulate the joint distribution there isn't much we can do
- Taking the expectation of a log is usually easier than the expectation
- We are allowed to choose the distribution to take the expectation over

– Ryan Adams⁵

⁵Talking Machines Season 2, Episode 5

$$\mathcal{L} = \int_{\mathbf{X}, \mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y}, \mathbf{F}, \mathbf{X})}{q(\mathbf{X})} \right)$$

⁶Damianou, A. C. (2015). Deep Gaussian Processes and Variational Propagation of Uncertainty (Doctoral dissertation)

$$\mathcal{L} = \int_{\mathbf{X}, \mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y}, \mathbf{F}, \mathbf{X})}{q(\mathbf{X})} \right)$$
$$\int_{\mathbf{X}, \mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y}|\mathbf{F})p(\mathbf{F}|\mathbf{X})p(\mathbf{X})}{q(\mathbf{X})} \right)$$

⁶Damianou, A. C. (2015). Deep Gaussian Processes and Variational Propagation of Uncertainty (Doctoral dissertation)

$$\begin{split} \mathcal{L} &= \int_{\mathbf{X}, \mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y}, \mathbf{F}, \mathbf{X})}{q(\mathbf{X})} \right) \\ &\int_{\mathbf{X}, \mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y} | \mathbf{F}) p(\mathbf{F} | \mathbf{X}) p(\mathbf{X})}{q(\mathbf{X})} \right) \\ &= \int_{\mathbf{F}, \mathbf{X}} q(\mathbf{X}) \log p(\mathbf{Y} | \mathbf{F}) p(\mathbf{F} | \mathbf{X}) - \int_{\mathbf{X}} q(\mathbf{X}) \log \frac{q(\mathbf{X})}{p(\mathbf{X})} \end{split}$$

⁶Damianou, A. C. (2015). Deep Gaussian Processes and Variational Propagation of Uncertainty (Doctoral dissertation)

$$\begin{split} \mathcal{L} &= \int_{\mathbf{X},\mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y},\mathbf{F},\mathbf{X})}{q(\mathbf{X})} \right) \\ &\int_{\mathbf{X},\mathbf{F}} q(\mathbf{X}) \log \left(\frac{p(\mathbf{Y}|\mathbf{F})p(\mathbf{F}|\mathbf{X})p(\mathbf{X})}{q(\mathbf{X})} \right) \\ &= \int_{\mathbf{F},\mathbf{X}} q(\mathbf{X}) \log p(\mathbf{Y}|\mathbf{F})p(\mathbf{F}|\mathbf{X}) - \int_{\mathbf{X}} q(\mathbf{X}) \log \frac{q(\mathbf{X})}{p(\mathbf{X})} \\ &= \tilde{\mathcal{L}} - \mathsf{KL}\left(q(\mathbf{X}) \parallel p(\mathbf{X})\right) \end{split}$$

⁶Damianou, A. C. (2015). Deep Gaussian Processes and Variational Propagation of Uncertainty (Doctoral dissertation)

$$ilde{\mathcal{L}} = \int_{\mathsf{F},\mathsf{X}} q(\mathsf{X}) \log p(\mathsf{Y}|\mathsf{F}) p(\mathsf{F}|\mathsf{X})$$

- Has not eliviate the problem at all, X still needs to go through F to reach the data
- Idea of sparse approximations⁷

⁷Quinonero-Candela, Joaquin, & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression & Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs

• Add another set of samples from the same prior

$$p(\mathbf{U}|\mathbf{Z}) = \prod_{j=1}^{d} \mathcal{N}(\mathbf{u}_{:,j}|\mathbf{0},\mathbf{K})$$

• Add another set of samples from the same prior

$$p(\mathbf{U}|\mathbf{Z}) = \prod_{j=1}^{d} \mathcal{N}(\mathbf{u}_{:,j}|\mathbf{0},\mathbf{K})$$

• Conditional distribution

$$\begin{split} p(\mathbf{f}_{:,j},\mathbf{u}_{:,j}|\mathbf{X},\mathbf{Z}) &= p(\mathbf{f}_{:,j}|\mathbf{u}_{:,j},\mathbf{X},\mathbf{Z})p(\mathbf{u}_{:,j}|\mathbf{Z}) \\ &= \mathcal{N}\left(\mathbf{f}_{:,j}|\mathbf{K}_{fu}(\mathbf{K}_{uu})^{-1}\mathbf{u}_{:,j},\mathbf{K}_{ff} - \mathbf{K}_{fu}(\mathbf{K}_{uu})^{-1}\mathbf{K}_{uf}\right)\mathcal{N}\left(\mathbf{u}_{:,j}|\mathbf{0},\mathbf{K}_{uu}\right), \end{split}$$

$$p(\mathbf{Y}, \mathbf{F}, \mathbf{U}, \mathbf{X} | \mathbf{Z}) = p(\mathbf{X}) \prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}) p(\mathbf{u}_{:,j} | \mathbf{Z})$$

• we have done nothing to the model, just added *halucinated* observations

$$p(\mathbf{Y}, \mathbf{F}, \mathbf{U}, \mathbf{X} | \mathbf{Z}) = p(\mathbf{X}) \prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}) p(\mathbf{u}_{:,j} | \mathbf{Z})$$

- we have done nothing to the model, just added *halucinated* observations
- however, we will now interpret U and X_u not as random variables but variational parameters

$$p(\mathbf{Y}, \mathbf{F}, \mathbf{U}, \mathbf{X} | \mathbf{Z}) = p(\mathbf{X}) \prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}) p(\mathbf{u}_{:,j} | \mathbf{Z})$$

- we have done nothing to the model, just added *halucinated* observations
- however, we will now interpret U and X_u not as random variables but variational parameters
- i.e. parametrise approximate posterior using these parameters (remember sparse motivation)

Variational distributions are approximations to intractable posteriors,

$$\begin{split} q(\mathbf{U}) &\approx p(\mathbf{U}|\mathbf{Y},\mathbf{X},\mathbf{Z},\mathbf{F}) \\ q(\mathbf{F}) &\approx p(\mathbf{F}|\mathbf{U},\mathbf{X},\mathbf{Z},\mathbf{Y}) \\ q(\mathbf{X}) &\approx p(\mathbf{X}|\mathbf{Y}) \end{split}$$

Variational distributions are approximations to intractable posteriors,

 $egin{aligned} q(\mathbf{U}) &\approx p(\mathbf{U}|\mathbf{Y},\mathbf{X},\mathbf{Z},\mathbf{F}) \ q(\mathbf{F}) &pprox p(\mathbf{F}|\mathbf{U},\mathbf{X},\mathbf{Z},\mathbf{Y}) \ q(\mathbf{X}) &pprox p(\mathbf{X}|\mathbf{Y}) \end{aligned}$

 Assume that we can *find* U that completely represents F, i.e. U is sufficient statistics of F,

$$q(\mathsf{F}) \approx p(\mathsf{F}|\mathsf{U},\mathsf{X},\mathsf{Z},\mathsf{Y}) = p(\mathsf{F}|\mathsf{U},\mathsf{X},\mathsf{Z})$$

$$ilde{\mathcal{L}} = \int_{\mathsf{X},\mathsf{F},\mathsf{U}} q(\mathsf{F})q(\mathsf{U})q(\mathsf{X})\lograc{p(\mathsf{Y},\mathsf{F},\mathsf{U}|\mathsf{X},\mathsf{Z})}{q(\mathsf{F})q(\mathsf{U})}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{\mathbf{X}, \mathbf{F}, \mathbf{U}} q(\mathbf{F}) q(\mathbf{U}) q(\mathbf{X}) \log \frac{p(\mathbf{Y}, \mathbf{F}, \mathbf{U} | \mathbf{X}, \mathbf{Z})}{q(\mathbf{F}) q(\mathbf{U})} \\ &= \int_{\mathbf{X}, \mathbf{F}, \mathbf{U}} q(\mathbf{F}) q(\mathbf{U}) q(\mathbf{X}) \log \frac{\prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}_{:,j} | \mathbf{Z})}{q(\mathbf{F}) q(\mathbf{U})} \end{split}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{\mathbf{X}, \mathbf{F}, \mathbf{U}} q(\mathbf{F}) q(\mathbf{U}) q(\mathbf{X}) \log \frac{p(\mathbf{Y}, \mathbf{F}, \mathbf{U} | \mathbf{X}, \mathbf{Z})}{q(\mathbf{F}) q(\mathbf{U})} \\ &= \int_{\mathbf{X}, \mathbf{F}, \mathbf{U}} q(\mathbf{F}) q(\mathbf{U}) q(\mathbf{X}) \log \frac{\prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}_{:,j} | \mathbf{Z})}{q(\mathbf{F}) q(\mathbf{U})} \end{split}$$

 $\bullet\,$ Assume that U is sufficient statistics for F

 $q(\mathsf{F})q(\mathsf{U})q(\mathsf{X}) = p(\mathsf{F}|\mathsf{U},\mathsf{X},\mathsf{Z})q(\mathsf{U})q(\mathsf{X})$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{\mathbf{X},\mathbf{F},\mathbf{U}} \prod_{j=1}^{d} p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}_{:,j}) q(\mathbf{X}) \\ &\log \frac{\prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}_{:,j} | \mathbf{Z})}{\prod_{j=1}^{d} p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}_{:,j})} = \end{split}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{\mathbf{X},\mathbf{F},\mathbf{U}} \prod_{j=1}^{d} p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}_{:,j}) q(\mathbf{X}) \\ &\log \frac{\prod_{j=1}^{d} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}_{:,j} | \mathbf{Z})}{\prod_{j=1}^{d} p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}_{:,j})} = \\ &= \int_{\mathbf{X},\mathbf{F},\mathbf{U}} \prod_{j=1}^{p} p(\mathbf{f}_{:,j} | \mathbf{u}_{:,j}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}_{:,j}) q(\mathbf{X}) \log \frac{\prod_{j=1}^{p} p(\mathbf{y}_{:,j} | \mathbf{f}_{:,j}) p(\mathbf{u}_{:,j} | \mathbf{Z})}{\prod_{j=1}^{p} q(\mathbf{u}_{:,j})} \end{split}$$

 $= \mathbb{E}_{q(\mathsf{F}),q(\mathsf{X}),q(\mathsf{U})}\left[p(\mathsf{Y}|\mathsf{F})\right] - \mathrm{KL}\left(q(\mathsf{U})||p(\mathsf{U}|\mathsf{Z})\right)$

 $\mathbb{E}_{q(\mathsf{F}),q(\mathsf{X}),q(\mathsf{U})}\left[p(\mathsf{Y}|\mathsf{F})\right] - \mathrm{KL}\left(q(\mathsf{U})||p(\mathsf{U}|\mathsf{Z})\right) - \mathrm{KL}\left(q(\mathsf{X})||p(\mathsf{X})\right)$

- Expectation tractable (for some co-variances)
- $\bullet\,$ Reduces to expectations over co-variance functions know as $\Psi\,$ statistics
- Allows us to place priors and not "regularisers" over the latent representation

Latent space priors

$\mathbb{E}_{q(\mathsf{F}),q(\mathsf{X}),q(\mathsf{U})}\left[p(\mathsf{Y}|\mathsf{F})\right] - \mathrm{KL}\left(q(\mathsf{U})||p(\mathsf{U}|\mathsf{Z})\right) - \mathrm{KL}\left(q(\mathsf{X})||p(\mathsf{X})\right)$

- Importantly p(X) appears only in KL term
- Allows us to express stronger assumptions about the model

⁸Damianou, A. C., Titsias, M., & Lawrence, Neil D, Variational Inference for Uncertainty on the Inputs of Gaussian Process Models (2014)

The Gaussian blob

 $p(\mathbf{X}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma e^{-\sum_d^D \alpha_d \cdot (\mathbf{x}_{i,d} - \mathbf{x}_{j,d})^2}$$

GPy

RBF(...,ARD=True) Matern32(...,ARD=True)

Theorem (Change of Variable)

Let $x \in \mathcal{X} \subseteq \mathbb{R}^n$ be a random vector with a probability density function given by $p_x(x)$, and let $y \in \mathcal{Y} \subseteq \mathbb{R}^n$ be a random vector such that $\psi(y) = x$, where the function $\psi : \mathcal{Y} \to \mathcal{X}$ is bijective of class of \mathcal{C}^1 and $|\nabla \psi(y)| > 0, \forall y \in \mathcal{Y}$. Then, the probability density function $p_y(\cdot)$ induced in \mathcal{Y} is given by

$$p_y(y) = p_x(\psi(y)) | \bigtriangledown \psi(y) |$$

where $\nabla \psi(\cdot)$ denotes the Jacobian of $\psi(\cdot)$, and $|\cdot|$ denotes the determinant operator.

Theorem (Change of Variable)

Let $x \in \mathcal{X} \subseteq \mathbb{R}^n$ be a random vector with a probability density function given by $p_x(x)$, and let $y \in \mathcal{Y} \subseteq \mathbb{R}^n$ be a random vector such that $\psi(y) = x$, where the function $\psi : \mathcal{Y} \to \mathcal{X}$ is bijective of class of \mathcal{C}^1 and $|\nabla \psi(y)| > 0, \forall y \in \mathcal{Y}$. Then, the probability density function $p_y(\cdot)$ induced in \mathcal{Y} is given by

$$p_y(y) = p_x(\psi(y)) | \bigtriangledown \psi(y) |$$

where $\nabla \psi(\cdot)$ denotes the Jacobian of $\psi(\cdot)$, and $|\cdot|$ denotes the determinant operator.

Warped Gaussian Processes^{9, 10}

⁹Snelson, E., & Ghahramani, Z. (2004). Warped Gaussian Processes
¹⁰Lazaro-Gredilla, Miguel (2012). Bayesian Warped Gaussian Processes. In , Advances in Neural Information Processing Systems

Deep Gaussian Processes¹¹

• Place a GP as a warping function, that is warped, ...

¹¹Damianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian Processes

Composite Functions

$$y = f_k(f_{k-1}(\ldots f_0(x))) = f_k \circ f_{k-1} \circ \cdots \circ f_1(x)$$

Composition functions

$$y = f_k(f_{k-1}(\dots f_0(x))) = f_k \circ f_{k-1} \circ \dots \circ f_1(x)$$

Kern $(f_1) \subseteq \text{Kern}(f_{k-1} \circ \dots \circ f_2 \circ f_1) \subseteq \text{Kern}(f_k \circ f_{k-1} \circ \dots \circ f_2 \circ f_1)$
$$\text{Im}(f_k \circ f_{k-1} \circ \dots \circ f_2 \circ f_1) \subseteq \text{Im}(f_k \circ f_{k-1} \circ \dots \circ f_2) \subseteq \dots \subseteq \text{Im}(f_k)$$

Data inefficiency¹²

¹²Nguyen, A. M., Yosinski, J., & Clune, J., Deep neural networks are easily fooled: high confidence predictions for unrecognizable images, CoRR, abs/1412.1897(), (2014).

$$y = f(x) + \epsilon$$

$$y = f(x_1, x_2, x_3) + \epsilon$$

IBFA with GP-LVM¹³

$$y_1 = f(w_1^{\mathrm{T}}x) \quad y_2 = f(w_2^{\mathrm{T}}x)$$

¹³Damianou, A., Lawrence, N. D., & Ek, C. H. (2016). Multi-view learning as a nonparametric nonlinear inter-battery factor analysis

¹⁴Lawrence, A. R., Ek, C. H., & Campbell, N. D. F., Dp-gp-lvm: a bayesian non-parametric model for learning multivariate dependency structures, CoRR, (), (2018).

Alignment Learning

Alignment Learning¹⁵

¹⁵Kazlauskaite, I., Ek, C. H., & Campbell, N. D. F., Gaussian Process Latent Variable Alignment Learning, CoRR, (), (2018).

Constrained Latent Space

$$y = f(g(y)) + \epsilon$$

Constrained Latent Space

- Dai, Z., Damianou, A., Gonzalez, Javier, & Lawrence, N., Variational auto-encoded deep Gaussian processes, International Conference on Learning Representations (ICLR), (2016).
- Snoek, J., Adams, R. P., & Larochelle, H., Nonparametric guidance of autoencoder representations using label information, Journal of Machine Learning Research, 13(), 2567–2588 (2012).
- Ek, C. H., Torr, P. H. S., & Lawrence, N. D., Gaussian process latent variable models for human pose estimation, International conference on Machine learning for multimodal interaction, (), 132–143 (2007).

Summary

• Unsupervised learning is very hard

- Unsupervised learning is very hard
 - Its actually not, its really really easy.

- Unsupervised learning is very hard
 - Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful

- Unsupervised learning is very hard
 - Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
- Strong assumptions needed to learn anything from "sensible" amounts of data
- Unsupervised learning is very hard
 - Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
- Strong assumptions needed to learn anything from "sensible" amounts of data
- Stochastic processes such as GPs provide strong, interpretative assumptions that aligns well to our intuitions allowing us to make relevant assumptions

• Composite functions cannot model more things

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirments on data

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirments on data
- Even bigger need for uncertainty propagation, we cannot assume noiseless data

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirments on data
- Even bigger need for uncertainty propagation, we cannot assume noiseless data
- Intuitions needs to change, we need to think of priors over hierarchies

eof

Appendix

Composition: priors

Composition: priors

./bin/composition2.png

IBFA with GP-LVM

IBFA with GP-LVM

