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This where I live
8/16/2017 Google Maps

https://www.google.co.uk/maps/@51.0764445,-3.6025373,9z 1/1

Map data ©2017 Google United Kingdom 20 km 
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This is what I do
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Distance to horizon 6.2km

Hidden height 125.6m
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Machine Learning

"In inductive inference, we go from the specific to the
general. We make many observations, discern a pattern,
make a generalization, and infer an explanation or a
theory"
– Wassertheil-Smoller
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Learning Theory

• F space of functions

• A learning algorithm

• S = {(x1, y1), . . . , (xN , yN)}
• S ∼ P(X × Y)

• `(AF (S), x , y) loss function
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Statistical Learning

e(S,A,F) = EP({X ,Y}) [`(AF (S), x , y)]

No Free Lunch
We can come up with a combination of {S,A,F} that makes
e(S,A,F) take an arbitary value
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Statistical Learning

e(S,A,F) = EP({X ,Y}) [`(AF (S), x , y)]

≈ 1
M

M∑

n=1

`(AF (S), xn, yn)

No Free Lunch
We can come up with a combination of {S,A,F} that makes
e(S,A,F) take an arbitary value
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GPSS

IUDICIUM POSTERIUM DISCIPULUS EST PRIORIS
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Today

September 5, 2018
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Machine Learning

"Machine Learning is nothing but
curve fitting, but its amazing what
you can do by fitting curves."

– Judea Pearl
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Gaussian Processes
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Gaussian Processes
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Conditional Gaussians
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Gaussian Processes
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Gaussian Processes
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Unsupervised Learning



Unsupervised Learning
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Priors
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Priors

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

p(x |y) = p(y |x)
p(x)

p(y)

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. Now lets churn the handle
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Relationship between x and data

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

• GP prior
p(f |x) ∼ N (0,K ) ∝ e−

1
2 (f

TK−1f )

Kij = e−(xi−xj )
TMTM(xi−xj )

• Likelihood

p(y |f ) ∼ N(y |f , β) ∝ e−
1
2β tr(y−f )T(y−f )

• Analytically intractable (Non Elementary Integral) and
infinitely differientiable

30

https://en.wikipedia.org/wiki/Nonelementary_integral
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Laplace Integration

"Nature laughs at the difficulties of integrations"
– Simon Laplace
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Priors
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Being Bayesian1

1By Dieric Bouts (circa 1420-1475) - The Yorck Project: 10.000 Meisterwerke
der Malerei, Public Domain, URL
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https://commons.wikimedia.org/w/index.php?curid=148266


Unnsupervised Learning with GPs



ML/MAP2

x̂ = argmaxx

∫
p(y |f )p(f |x)dfp(x)

= argminx
1
2
yTK−1y +

1
2
|K| − log p(x)

2Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis
with Gaussian process latent variable models.
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GP-LVM

• Li, W., Viola, F., Starck, J., Brostow, G. J., & Campbell, N.
D. (2016). Roto++: accelerating professional rotoscoping
using shape manifolds. (In proceeding of ACM SIGGRAPH’16)

• Grochow, K., Martin, S. L., Hertzmann, A., & Popovi\’c,
Zoran (2004). Style-based inverse kinematics. SIGGRAPH ’04:
SIGGRAPH 2004

• Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D people
tracking with Gaussian process dynamical models. Computer
Vision and Pattern Recognition, 2006
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Font Demo

URL
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http://cs.bath.ac.uk/~nc537/projects_fonts.html#interactive_demo


Bayesian GP-LVM4

• Challenges with ML estimation
• How to initialise x?
• What is the dimensionality q?

• Our assumption on the latent space does not reach the data

• Approximate integration!3

3Titsias, M. (2009). Variational learning of inducing variables in sparse
Gaussian processes.
4Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent
Variable Model
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Variational Bayes

p(Y)
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Variational Bayes

log p(Y)
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX = log
∫

p(X|Y)p(Y)dX
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Variational Bayes

log p(Y) = log
∫

p(Y,X)dX = log
∫

p(X|Y)p(Y)dX

= log
∫

q(X)

q(X)
p(X|Y)p(Y)dX
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Jensen Inequality

Convex Function

λf (x0) + (1− λ)f (x1) ≥ f (λx0 + (1− λ)x1)

x ∈ [xmin, xmax ]

λ ∈ [0, 1]] 39



Jensen Inequality

E[f (x)] ≥ f (E[x ])
∫

f (x)p(x)dx ≥ f

(∫
xp(x)dx

)

40



Jensen Inequality in Variational Bayes

∫
log(x)p(x)dx ≤ log

(∫
xp(x)dx

)

moving the log inside the the integral is a lower-bound on the
integral 41



Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

42



Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

≥
∫

q(X)log
p(X|Y)p(Y)

q(X)
dX
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Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

≥
∫

q(X)log
p(X|Y)p(Y)

q(X)
dX

=

∫
q(X)log

p(X|Y)

q(X)
dX +

∫
q(X)dXlog p(Y)
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Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

≥
∫

q(X)log
p(X|Y)p(Y)

q(X)
dX

=

∫
q(X)log

p(X|Y)

q(X)
dX +

∫
q(X)dXlog p(Y)

= −KL (q(X)||p(X|Y)) + log p(Y)
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Variational Bayes cont.

logp(Y) = log
∫

q(X)

q(X)
p(X|Y)p(Y)dX =

≥
∫

q(X)log
p(X|Y)p(Y)

q(X)
dX

=

∫
q(X)log

p(X|Y)

q(X)
dX +

∫
q(X)dXlog p(Y)

= −KL (q(X)||p(X|Y)) + log p(Y)

• if q(X) is the true posterior we have an equality, therefore
match the distributions

• i.e. argminq KL (q(X)||p(X|Y))

⇒ variational distributions are approximations to
intractable posteriors

42



Variational Bayes cont.
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ELBO

KL(q(X)||p(X|Y))
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX

=

∫
q(X)log

q(X)

p(X,Y)
dX + log p(Y)
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ELBO

KL(q(X)||p(X|Y)) =

∫
q(X)log

q(X)

p(X|Y)
dX

=

∫
q(X)log

q(X)

p(X,Y)
dX + log p(Y)

= H(q(X))− Eq(X) [log p(X,Y)] + log p(Y)
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ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))
︸ ︷︷ ︸

ELBO
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ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))
︸ ︷︷ ︸

ELBO

≥ Eq(X) [log p(X,Y)]− H(q(X)) = L(q(X))
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ELBO

log p(Y) = KL(q(X)||p(X|Y)) + Eq(X) [log p(X,Y)]− H(q(X))
︸ ︷︷ ︸

ELBO

≥ Eq(X) [log p(X,Y)]− H(q(X)) = L(q(X))

• if we maximise the ELBO we,
• find an approximate posterior
• get an approximation to the marginal likelihood

• maximising p(Y) is learning

• finding p(X|Y) ≈ q(X) is prediction

43



ELBO

x

y y

x

y

p(y) =

∫

x
p(y|x)p(x) =

p(y|x)p(x)

p(x|y)

x

y

θ

qθ(x) ≈ p(x|y)
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Why is this useful?

Why is this a sensible thing to do?

• If we can’t formulate the joint distribution there isn’t much we
can do

• Taking the expectation of a log is usually easier than the
expectation

• We are allowed to choose the distribution to take the
expectation over

– Ryan Adams5

5Talking Machines Season 2, Episode 5

45

http://www.thetalkingmachines.com/blog/2016/3/10/ivpi7nd68oln8kk9lz2o4nyibvfyqd
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Lower Bound6

L =

∫

X,F
q(X) log

(
p(Y,F,X)

q(X)

)

6Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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Lower Bound6

L =

∫

X,F
q(X) log

(
p(Y,F,X)

q(X)

)

∫

X,F
q(X) log

(
p(Y|F)p(F|X)p(X)

q(X)

)

=

∫

F,X
q(X) log p(Y|F)p(F|X)−

∫

X
q(X) log

q(X)

p(X)

6Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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Lower Bound6

L =

∫

X,F
q(X) log

(
p(Y,F,X)

q(X)

)

∫

X,F
q(X) log

(
p(Y|F)p(F|X)p(X)

q(X)

)

=

∫

F,X
q(X) log p(Y|F)p(F|X)−

∫

X
q(X) log

q(X)

p(X)

= L̃ − KL (q(X) ‖ p(X))

6Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)

46



Lower Bound

L̃ =

∫

F,X
q(X) log p(Y|F)p(F|X)

• Has not eliviate the problem at all, X still needs to go through
F to reach the data

• Idea of sparse approximations7

7Quinonero-Candela, Joaquin, & Rasmussen, C. E. (2005). A unifying view of
sparse approximate Gaussian process regression & Snelson, E., & Ghahramani,
Z. (2006). Sparse Gaussian processes using pseudo-inputs
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Lower Bound

• Add another set of samples from the same prior

p(U|Z) =
d∏

j=1

N (u:,j |0,K)

• Conditional distribution

p(f:,j ,u:,j |X,Z) = p(f:,j |u:,j ,X,Z)p(u:,j |Z)

= N
(
f:,j |Kfu(Kuu)−1u:,j ,Kff −Kfu(Kuu)−1Kuf

)
N (u:,j |0,Kuu) ,

48
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Lower Bound

p(Y,F,U,X|Z) = p(X)
d∏

j=1

p(y:,j |f:,j )p(f:,j |u:,j ,X)p(u:,j |Z)

• we have done nothing to the model, just added halucinated
observations

• however, we will now interpret U and Xu not as random
variables but variational parameters

• i.e. parametrise approximate posterior using these parameters
(remember sparse motivation)
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Lower Bound

• Variational distributions are approximations to intractable
posteriors,

q(U) ≈ p(U|Y,X,Z,F)

q(F) ≈ p(F|U,X,Z,Y)

q(X) ≈ p(X|Y)

• Assume that we can find U that completely represents F, i.e.
U is sufficient statistics of F,

q(F) ≈ p(F|U,X,Z,Y) = p(F|U,X,Z)

50
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Lower Bound

L̃ =

∫

X,F,U
q(F)q(U)q(X) log

p(Y,F,U|X,Z)

q(F)q(U)
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Lower Bound

L̃ =

∫

X,F,U

d∏

j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)
∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=
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Lower Bound

L̃ =

∫

X,F,U

d∏

j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)
∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=

=

∫

X,F,U

p∏

j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X) log

∏p
j=1 p(y:,j |f:,j )p(u:,j |Z)
∏p

j=1 q(u:,j )

= Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))
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Summary

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Expectation tractable (for some co-variances)

• Reduces to expectations over co-variance functions know as Ψ

statistics

• Allows us to place priors and not "regularisers" over the latent
representation
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Latent space priors



Latent space priors8

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Importantly p(X) appears only in KL term

• Allows us to express stronger assumptions about the model

8Damianou, A. C., Titsias, M., & Lawrence, Neil D, Variational Inference for
Uncertainty on the Inputs of Gaussian Process Models (2014)
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The Gaussian blob

p(X) ∼ N (0, I )
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Automatic Relevance Determination

k(xi , xj ) = σe−
∑D

d αd ·(xi,d−xj,d )
2

GPy

RBF(...,ARD=True)
Matern32(...,ARD=True)
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Change of Variables

Theorem (Change of Variable)
Let x ∈ X ⊆ Rn be a random vector with a probability density
function given by px (x), and let y ∈ Y ⊆ Rn be a random vector
such that ψ(y) = x , where the function ψ : Y → X is bijective of
class of C1 and | 5 ψ(y)| > 0,∀y ∈ Y. Then, the probability
density function py (·) induced in Y is given by

py (y) = px (ψ(y))| 5 ψ(y)|

where 5ψ(·) denotes the Jacobian of ψ(·), and | · | denotes the
determinant operator.
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Sampling
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Sampling
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Sampling
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Change of Variables

Theorem (Change of Variable)
Let x ∈ X ⊆ Rn be a random vector with a probability density
function given by px (x), and let y ∈ Y ⊆ Rn be a random vector
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class of C1 and | 5 ψ(y)| > 0,∀y ∈ Y. Then, the probability
density function py (·) induced in Y is given by

py (y) = px (ψ(y))| 5 ψ(y)|

where 5ψ(·) denotes the Jacobian of ψ(·), and | · | denotes the
determinant operator.
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Warped Gaussian Processes9, 10

9Snelson, E., & Ghahramani, Z. (2004). Warped Gaussian Processes
10Lazaro-Gredilla, Miguel (2012). Bayesian Warped Gaussian Processes. In ,
Advances in Neural Information Processing Systems
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Deep Gaussian Processes11

yf1x1f2x2

• Place a GP as a warping function, that is warped, . . .

11Damianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian Processes
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Composite Functions

y = fk (fk−1(. . . f0(x))) = fk ◦ fk−1 ◦ · · · ◦ f1(x)
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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MacKay plot
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Composition functions

y = fk (fk−1(. . . f0(x))) = fk ◦ fk−1 ◦ · · · ◦ f1(x)

Kern(f1) ⊆ Kern(fk−1 ◦ . . . ◦ f2 ◦ f1) ⊆ Kern(fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1)

Im(fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) ⊆ Im(fk ◦ fk−1 ◦ . . . ◦ f2) ⊆ . . . ⊆ Im(fk )
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Data inefficiency12

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

12Nguyen, A. M., Yosinski, J., & Clune, J., Deep neural networks are easily
fooled: high confidence predictions for unrecognizable images, CoRR,
abs/1412.1897(), (2014).
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Explaining Away

y

x ε

y = f (x) + ε
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Factor Analysis

y

x2x1 x3

θ

y = f (x1, x2, x3) + ε
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IBFA with GP-LVM13

y1 y2

f1 f2

w1 x w3

θ1 θ2

D1 D2

y1 = f (wT
1 x) y2 = f (wT

2 x)

13Damianou, A., Lawrence, N. D., & Ek, C. H. (2016). Multi-view learning as
a nonparametric nonlinear inter-battery factor analysis
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GP-DP14

14Lawrence, A. R., Ek, C. H., & Campbell, N. D. F., Dp-gp-lvm: a bayesian
non-parametric model for learning multivariate dependency structures, CoRR,
(), (2018).
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Alignment Learning15

15Kazlauskaite, I., Ek, C. H., & Campbell, N. D. F., Gaussian Process Latent
Variable Alignment Learning, CoRR, (), (2018). 81



Constrained Latent Space

y

x

ε

y = f (g(y)) + ε
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Constrained Latent Space

• Dai, Z., Damianou, A., Gonzalez, Javier, & Lawrence, N.,
Variational auto-encoded deep Gaussian processes,
International Conference on Learning Representations (ICLR),
(2016).

• Snoek, J., Adams, R. P., & Larochelle, H., Nonparametric
guidance of autoencoder representations using label
information, Journal of Machine Learning Research, 13(),
2567–2588 (2012).

• Ek, C. H., Torr, P. H. S., & Lawrence, N. D., Gaussian process
latent variable models for human pose estimation,
International conference on Machine learning for multimodal
interaction, (), 132–143 (2007).
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Summary

• Unsupervised learning is very hard

• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes such as GPs provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions
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Summary II

• Composite functions cannot model more things

• However, they can easily warp the input space to model less
things

• This leads to high requirments on data

• Even bigger need for uncertainty propagation, we cannot
assume noiseless data

• Intuitions needs to change, we need to think of priors over
hierarchies
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Composition: priors
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Composition: priors
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Composition: uncertainty

89



Composition: uncertainty

90



Composition: uncertainty

91



Composition: uncertainty
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Latent Structure
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