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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

Kernel methods and invariances/degeneracies
Kernels are a crucial ingredient in a number of mathematical and statistical
methods for function approximation, data classification and beyond:

Support Vector Machines,

Gaussian Process Modelling,

Regularization in Reproducing Kernel Hilbert Spaces,

Kernel Principal Component Analysis,

Embedding of measures in RKHS,

Etc.

The implementation of any of these methods require a valid kernel k .

We focus on the choice of k in the function approximation framework and in
particular on invariance/degeneracy properties that can be driven by k .
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

What are (complex- and real-valued) p.d. kernels?

Let D be a set and k : D × D −→ C.

k is called a positive definite kernel when
n∑

i=1

n∑
j=1

aiajk(xi , xj ) ∈ [0,+∞)

for all n ≥ 1, a1, . . . , an ∈ C, and x1, . . . , xn ∈ D.

Follow directly from this definition (More here ):

k(x, x) ∈ [0,+∞) for all x ∈ D
k(x′, x) = k(x, x′) for all x, x′ ∈ D (k is hermitian)
Non-negative combinations and limits of p.d. kernels are p.d.

NB: k : D × D −→ R is p.d. when both
∑n

i=1

∑n
j=1 aiajk(xi , xj ) ∈ [0,+∞) for

all n ≥ 1, a1, . . . , an ∈ R and x1, . . . , xn ∈ D, and k is symmetric.
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

Considered kernel methods for function approximation

Here we focus on two classes of kernel methods for the approximation of
functions based on observational/evaluation data:

Gaussian Process (GP) modelling/interpolation/regression

Interpolation/Regularization in Reproducing Kernel Hilbert Spaces

Typical settings of interest are those of an objective function f : D −→ R (e.g.
with D ⊂ Rd , d ≥ 1) that one wishes to approximate relying on a limited
number n ≥ 1 of evaluations at points xi ∈ D (1 ≤ i ≤ n).

7 / 42



Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

About Gaussian Process modelling

GP modelling basically consists in postulating that f is a realization of a
real-valued Gaussian random field Z = (Zx)x∈D and to do inferences on f by
using the conditional distribution of Z given the available evaluation results.

As we know, in the Gaussian case the mean and covariance functions (say m
and k , here) characterize Z ’s distribution, so choosing them is crucial.
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

Reminder: GP/Kriging equations

The GP/Kriging prediction amounts to calculating the conditional expectation
and covariance of Zx knowing ZXn = zn, with zn = (f (x1), . . . , f (xn))′:


mn(x) = E[Zx|ZXn = zn] = m(x) + k(x,Xn)k(Xn,Xn)−1 (zn −m(X n))

kn(x, x′) = Cov[Zx,Zx′ |ZXn = zn] = k(x, x′)− k(x,Xn)k(Xn,Xn)−1k(Xn, x),

where k(Xn, Xn),=


k(x1, x1) k(x1, x2) ... k(x1, xn)
k(x2, x1) k(x2, x2) ... k(x2, xn)
... ... .... ....

k(xn, x1) ... .... k(xn, xn)

 and k(Xn, x) =


k(x1, x)
k(x2, x)
...

k(xn, x)

 .

For given m and k (possible generalizations to m known up to linear
combination coefficients, cf. Universal Kriging with improper uniform prior), Z
knowing ZXn = zn is a GP with mean mn and covariance kn.
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

A classical test function: Branin-Hoo ( Eqs )
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

GP Interpolation (Kriging) of the Branin-Hoo function

The covariance is here a stationary anisotropic Matérn kernel (ν = 5/2) with
scale σ and range parameters (θ1, θ2) estimated by Maximum Likelihood .
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

Conditional simulations of the Branin-Hoo function
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

A detour through deterministic function approximation

Approximating f based on evaluations at n points is ill-posed without further
assumptions on f . Also in deterministic settings, p.d. kernels play a key role.

Kimeldorf, G. and Wahba, G. (1971)

Some results on Tchebycheffian spline functions
Journal of mathematical analysis and applications 33 (1), 82-95

H. Wendland (2005)
Scattered Data Approximation
Cambridge University Press

Fasshauer, G. E. (2011)

Positive definite kernels: past, present and future
Dolomites Research Notes on Approximation, 4:21-63

Scheuerer, M. and Schaback, R. and Schlather, M. (2013)

Interpolation of spatial data - a stochastic or a deterministic problem?
European Journal of Applied Mathematics, 24, 4, 601-629
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Introduction On kernels and invariances

p.d. kernels, from analysis to GPs and back

Optimal approximation in RKHSs

Theorem (Generalization of Kimeldorf and Wahba’s 1971’s “representer
theorem” by Schölkopf, Herbrich and Smola): Given evaluation results

(x1, z1), . . . , (xn, zn) ∈ D × R,

an arbitrary cost function c : (D ×R2)n −→ R ∪ {∞}, and a strictly increasing
function p on [0,∞), any mn ∈ Hk ( RKHS with kernel k ) minimizing

g ∈ Hk −→ c ((x1, z1, g(x1)), . . . , (xn, zn, g(xn))) + p(||g||Hk )

admits a representation of the form

mn(·) =
n∑

i=1

αik(·, xi ),

with α1, . . . , αn ∈ R (Notes: noiseless or noisy zis; real-valued k here.).

B. Schölkopf, R. Herbrich, A.J. Smola (2001)

A Generalized Representer Theorem
Computational Learning Theory. Lecture Notes in Computer Science 2111:416-426.
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Introduction On kernels and invariances

In RKHS regularization and GP models with known (e.g., constant) mean,
prior assumptions on f are implicitly accounted for through the choice of k .

Classical notions of invariance for k

2nd order stationarity (k invariant wrt simult. translations of x and x′)

Isotropy (k invariant wrt simultaneous rigid motions of x and x′).

We rather investigate some functional properties driven by k , with a main
focus on the stochastic case (+ some links to RKHSs).
This talk follows to a large extent the paper below and references therein:

D. G., O. Roustant and N. Durrande (2016)
On degeneracy and invariances of random fields paths with applications in
Gaussian Process modelling
Journal of Statistical Planning and Inference, 170:117-128.
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Simulating a GP with group-invariant paths
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Towards invariant prediction: set-up
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Predicting with an (argumentwise) invariant kernel
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Invariant conditional simulations
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Some refs on group-invariance in kernel methods

B. Haasdonk, H.Burkhardt (2007).
Invariant kernels for pattern analysis and machine learning
Machine Learning 68, 35-61

D. G., X. Bay, O. Roustant and L. Carraro (2012)
Argumentwise invariant kernels for the approximation of invariant functions
Annales de la Faculté des Sciences de Toulouse, 21(3):501-527

K. Hansen et al. (2013)
Assessment and Validation of Machine Learning Methods for Predicting
Molecular Atomization Energies
Journal of Chemical Theory and Computation 9, 3404-3419

Y. Mroueh, S. Voinea, T. Poggio (2015)
Learning with Group Invariant Features: A Kernel Perspective
Advances in Neural Information Processing Systems, 1558-1566
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Proposition (DG et al. 2016)

Let Z be a measurable random field with paths (a.s.) in some function space
F and T : F −→ F be a linear operator such that for all x ∈ D there exists a
signed measure νx : D −→ R satisfying

T (g)(x) =

∫
g(u)dνx(u).

Assume further that

sup
x∈D

∫
D

√
k(u,u) + m(u)2d|νx|(u) < +∞.

Then the following are equivalent:

a) ∀x ∈ D P(T (Z )x = 0) = 1 (“T (Z ) = 0 up to a modification”)

b) ∀x ∈ D T (m)(x) = 0 and (T ⊗ T (k))(x, x) = 0.

Assuming further that T (Z ) is separable, a) and b) are also equivalent to

c) P(T (Z ) = 0) = P(∀x ∈ D T (Z )x = 0) = 1 (“T (Z ) = 0 a.s.”) .
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Another invariance: random fields with additive paths
Let D =

∏d
i Di where Di ⊂ R. f ∈ RD is called additive when there exists

fi ∈ RDi (1 ≤ i ≤ d) such that f (x) =
∑d

i=1 fi (xi ) (x = (x1, . . . , xd ) ∈ D).

GP models possessing additive paths (with k(x, x′) =
∑d

i=1 ki (xi , x ′i )) have
been considered in Nicolas Durrande’s Ph.D. thesis (2011):
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Introduction On kernels and invariances

Contributions from second order to Gaussian

A few selected references related to additive kernels
N. Durrande (2011)
Étude de classes de noyaux adaptés à la simplification et à l’interprétation des
modèles d’approximation. Une approche fonctionnelle et probabiliste
PhD thesis, Ecole des Mines de Saint-Etienne

D. Duvenaud, H. Nickisch, C. Rasmussen (2011)
Additive Gaussian Processes
Neural Information Processing Systems

N. Durrande, D. G. and O. Roustant (2012)
Additive Covariance kernels for high-dimensional Gaussian Process modeling
Annales de la Faculté des Sciences de Toulouse, 21(3):481-499

D. G., N. Durrande and O. Roustant (2013)
Kernels and designs for modelling invariant functions: From group invariance to
additivity.
In mODa 10 - Advances in Model-Oriented Design and Analysis. Contributions to
Statistics
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Introduction On kernels and invariances

Contributions from second order to Gaussian

A link with RKHSs in the Gaussian case
In Gaussian case, the Loève isometry Ψ between L(Z ) (The Hilbert space
generated by Z ) and the RKHS Hk leads to the following.

Proposition

Let T : F → RD be a linear operator such that T (m) ≡ 0 and T (Z )x ∈ L(Z )
for any x ∈ D. Then, there exists a unique linear T : Hk → RD satisfying

cov(T (Z )x,Zx′) = T (k(·, x′))(x) (x, x′ ∈ D)

and such that T (hn)(x) −→ T (h)(x) for any x ∈ D and hn
H−→ h.

In addition, we have equivalence between the following:

(i) ∀x ∈ D T (Z )x = 0 (almost surely)

(iii) ∀x′ ∈ D T (k(·, x′)) = 0

(iii) T (Hk ) = {0}
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Introduction On kernels and invariances

Contributions from second order to Gaussian

Examples
a) Let ν be a measure on D s.t.

∫
D

√
k(u,u)dν(u) < +∞. Then a centred Z

(Gaussian or not) has centred paths iff
∫

D k(x,u)dν(u) = 0, ∀x ∈ D.

For instance, given any p.d. kernel k , k0 defined by

k0(x, y) = k(x, y) −
∫

k(x,u)dν(u) −
∫

k(y,u)dν(u) +

∫
k(u, v)dν(u)dν(v)

satisfies the above condition.

b) Solutions to the Laplace equation are called harmonic functions. Let us
call harmonic any p.d. kernel solving the Laplace equation argumentwise:
(∆k(·, x′)) = 0 (x′ ∈ D).

An example of such harmonic kernel over R2 × R2 can be found in the recent
literature (Schaback et al. 2009):

kharm(x, y) = exp

(
x1y1 + x2y2

θ2

)
cos

(
x2y1 − x1y2

θ2

)
.
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Example sample paths invariant under various T ’s
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(a) Zero-mean paths of the
centred GP with kernel k0.
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(b) Harmonic path of a GRF
with kernel kharm.
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Some “stability of invariances by conditioning” result

Proposition

Let F ,G be real separable Banach spaces,

µ be a Gaussian measure on B(F) with mean zero and covariance
operator Cµ

T : F −→ F be a bounded linear operator such that TCµT ? = 0F?−→F

A : F −→ G be another bounded linear operator,

and A]µ be the image of µ under A.

Then there exist a Borel measurable mapping m : G −→ F , a Gaussian
covariance R : F? −→ F with R ≤ Cµ and a disintegration (qy )y∈G of µ on
B(F) with respect to A such that for any fixed y ∈ G, qy is a Gaussian
measure with mean m and covariance operator R satisfying T (m) = 0F and
TRT ? = 0F?−→F .
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GP prediction with invariant kernels: example a)
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(a) GPR with kernel k
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(b) GPR with kernel k0

Figure: Comparison of two GP models. The left one is based on a
Gaussian kernel. The right one incorporates the zero-mean property.
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GP models with invariant kernels: example b)

(a) Mean predictor and 95%
prediction intervals
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(b) prediction error

Figure: Example of GP model based on a harmonic kernel.
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1 Introduction
p.d. kernels, from analysis to GPs and back

2 On kernels and invariances
Contributions from second order to Gaussian
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Numerical applications and discussion

Numerical application: maximum of a harmonic f
Here we consider approximating a harmonic function (left/right:
Gaussian/harmonic kernels) and estimating its maximum by GRF modelling.
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Extracted from “On degeneracy and invariances of random fields paths with
applications in Gaussian Process modelling” (DG, O.Roustant & N.Durrande,
Journal of Statistical Planning and Inference, 170:117-128, 2016)
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Numerical application: maximum of a harmonic f

Prediction errors (left/right: Gaussian/harmonic kernels).
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Numerical application: maximum of a harmonic f
Prediction errors (left/right: Gaussian/harmonic kernels).

3.5 4.5 5.5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

θ

Te
m

pe
ra

tu
re

3.5 4.5 5.5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

θ

Te
m

pe
ra

tu
re

36 / 42



Introduction On kernels and invariances

Numerical applications and discussion

Numerical application: maximum of a harmonic f
Conditional simulations of the maximum under the two GRF models.
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Numerical application: recovering a symmetry axis
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Numerical application 2: recovering a symmetry axis
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Discussion

Function approximation approaches based on p.d. kernels enable
incorporating degeneracies and invariances under linear operators including

Symmetries and further invariances under group actions

Additivity and further multivariate sparsity properties towards
high-dimensional GRF modelling (See, e.g., MCQMC2014 paper)

Harmonicity but also, e.g., divergence-free properties for vector fields
(See, e.g., Scheuerer and Schlather 2012)

In the Gaussian set up, such properties are inherited by conditional
distributions, which is clearly convenient but also comes withs risks.
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Perspectives

Developing further the inference of degeneracy/invariance properties
based on data and investigating consistency,

Creating classes of kernels that incorporate some invariant components
and non-invariant components,

Explore further the potential of invariant kernels based on real-world
applications (e.g., from physics, biology, engineering).

Thank you very much for your attention!
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Further references
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What do we assume about f in GP modelling?

In Gaussian Process (GP) modelling, probabilistic concepts are used to
model the deterministic function f .

Let us first focus on an arbitrary point x ∈ D and think of the unknown
response value f (x) as a Gaussian random variable, denoted here Zx.

Of course, how the mean and variance of Zx are specified is crucial. A simple
option is to set them to constant values (e.g. 0 mean and σ2 > 0 variance) . . .

. . . However, a white noise assumption would not be very constructive! The
crux in GP modelling is to assume that the Zx’s for different x’s are correlated.
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Reminder: n-dimensional Gaussian distribution

More precisely, we will appeal to the multivariate Gaussian distribution. Let
us forget about x for now and consider a random vector Z = (Z1, . . . ,Zn).

Z is said to be multivariate Gaussian distributed when
∑n

i=1 aiZi is Gaussian
distributed whatever n ≥ 1 and a1, . . . , an ∈ R.

Such Z is characterized by its mean µ ∈ Rn and covariance matrix K ∈ Rn×n

(with E[Zi ] and Cov[Zi ,Zj ] = E[(Zi − µi )(Zj − µj )] entries, respectively).
We use the notation:

Z ∼ N (µ,K ).

Note that while µ can take any value, K must be symmetric positive
semi-definite (i.e. symmetric with non-negative eigenvalues).
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Reminder: n-dimensional Gaussian distribution
In case of invertible K , Z possesses the probability density function:

pN (µ,K )(z) = (2π)−n/2 det(K )−1/2 exp

(
−1

2
(z − µ)′K−1(z − µ)

)

Besides that, denoting by Z a and Z b two subvectors of Z such that
Z = (Z a,Z b), by µa,µb the corresponding means, and defining the
corresponding blocks of Z ’s covariance matrix by

K =

(
Ka Kab

Kba Kb

)
,

then (assuming invertibility of Ka), the conditional probability distribution of Z b

knowing that Z a = za is (multivariate) Gaussian with

L(Z (b)|Z a = za) = N (µb + KbaK−1
a (za − µa),Kb − KbaK−1

a Kab).
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Priors on functions?

Let us now come back to our function approximation problem. We are
interested in having a prior distribution on functions, not just on a
finite-dimensional vector!

Good news from probability theory (Kolmogorov’s extension theorem):
random processes on D (a.k.a. random fields in case of multivariate D) can
be defined through finite-dimensional distributions, i.e. through distributions
of the random vectors (Zx1 , . . . ,Zxn ) for any finite set of points x1, . . . , xn.

Gaussian Processes (a.k.a. Gaussian Random Fields)

A GP (GRF) Z with index set D is a collection of random variables (Zx)x∈D

(defined over the same probability space (Ω,A,P)) such that for any finite set
of points x1, . . . , xn ∈ D, (Zx1 , . . . ,Zxn ) is multivariate Gaussian

5 / 47
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Mean and covariance functions of a GP

Hence a GP is Z defined by specifying the mean and the covariance matrix
of any random vector of the form (Zx1 , . . . ,Zxn ), so that Z is characterized by

µ : x ∈ D −→ µ(x) = E[Zx] ∈ R
k : (x, x′) ∈ D × D −→ k(x, x′) = Cov[Zx,Zx′ ] ∈ R

While µ can be any function, k is constrained since (k(xi , xj ))1≤i≤n,1≤j≤n

must be symmetric positive semi-definite for any set of points.

k satisfying such property are referred to as p.d. kernels.

Remark: Assuming µ ≡ 0 for now, k accounts for a number of properties of
Z , including pathwise properties, i.e. functional properties of the paths

x ∈ D −→ Zx(ω) ∈ R,
for ω ∈ Ω (paths are also called “realizations”, or “trajectories”).
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Z , including pathwise properties, i.e. functional properties of the paths

x ∈ D −→ Zx(ω) ∈ R,
for ω ∈ Ω (paths are also called “realizations”, or “trajectories”).
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Some GRF R simulations (d=1) with DiceKriging
Here k(t , t ′) = σ2 (1 + |t ′ − t |/`+ (t − t ′)2/(3`2)

)
exp (−|t ′ − t |/`)

(Matérn kernel with regularity parameter 5/2) where ` = 0.4 and σ = 1.5.
Furthermore, here trend is a trend µ(t) = −1 + 2t + 3t2.
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Some GRF R simulations (d=2) with DiceKriging
Now take a tensorized version of Matérn kernel and a constant trend µ = 0.
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Approximating functions using GP models

Let us now consider a deterministic function f : D −→ R, which response
values are measured at n points Xn = (x1, . . . , xn) ∈ Dn.

Putting a GP prior Z on f and updating it with respect to f ’s values at the xi

points, we can work out a posterior distribution.

Indeed, finite-dimensional distributions of this posterior can be obtained by
looking at the conditional distribution of (Zxn+1 , . . . ,Zxn+q ) knowing
(Zx1 , . . . ,Zxn ) for arbitrary points xn+1, . . . , xn+q ∈ D.

By Gaussianity, it turns out that such conditional distributions are Gaussian
and so the posterior Z | measurements is a GRF.

NB: the same applied in noisy cases when considering
(Zx1 + ε1, . . . ,Zxn + εn) with Gaussian εi ’s independent of Z ).
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About the estimation of covariance parameters

The previous equations were at given µ and k . In practice, however, trend
and/or covariance parameters often have to be estimated. Let us consider
the case of known µ and k that depends on a vector of “hyperparameters” ψ.

Several approaches do exist for dealing with the unknown ψ: Maximum
Likelihood Estimation (MLE), Cross-validation (CV), but also Bayesian
approaches involving sampling algorithms such as McMC, SMC, etc.

Let us present a brief overview of the MLE approach, probably the most
implemented (although not necessarily the most robust) option.
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A brief overview of MLE ( back to Branin)
Let us denote by K (ψ) the covariance matrix of responses, say k(X n,X n;ψ),
under the assumption of covariance hyperparameters with value ψ.

The principle of MLE is to search for a value of ψ under which it would have
been the most likely to observe the responses zn.

Under GP model assumptions, Z Xn ∼ N (µ(X n),K (ψ)). The likelihood then
writes as the probability density of Z Xn at point zn, seen as a function of ψ:

L(ψ; zn) = (2π)−n/2 det(K (ψ))−1/2 exp

(
−1

2
(zn − µ(X n))′K (ψ)−1(zn − µ(X n))

)

Solving MLE is typically addressed by equivalently minimizing the function

`(ψ; zn) = log(det(K (ψ))) + (zn − µ(X n))′K (ψ)−1(zn − µ(X n)).
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A brief overview of MLE

Minimizing ` is usually analytically intractable, and numerical optimization
algorithms are employed.

An elegant trick exists to estimate σ2 ∈ (0,+∞) in
case k writes as σ2 × r where r is a given kernel depending on parameters θ.

Writing K (ψ) = σ2R(θ) where ψ = (σ2, θ), one can derive the “optimal” σ2 as
a function of θ. A swift calculation leads indeed to

σ2?(θ) =
1
n

(zn − µ(X n))′R(θ)−1(zn − µ(X n)).

Re-injecting the latter equation into `, MLE then boils down to minimizing a
function depending solely on θ, the so-called profile (or “concentrated”) `:

`p(θ; zn) = log(det(σ2?(θ)R(θ)))
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Towards Universal Kriging
Another situation where an elegant concentration of ` is feasible is when k
depends on ψ and µ linearly depends on p basis functions f1, . . . , fp:

µ(x) =

p∑
i=1

βi fi (x),

where β = (β1, . . . , βp)′ is assumed unknown.

Then, setting
F = (fj (xi ))1≤i≤n,1≤j≤p, we have µ(X n) = Fβ, and maximizing the likelihood
with respect to β at fixed covariance parameters (say ψ again) leads to:

β?(ψ) = (F ′K (ψ)−1F )−1F ′K (ψ)−1zn.

Plugging-in β?(ψ) in the predictor and inflating the conditional (co)variance
accordingly leads to the “Universal Kriging” equations (See also particular
case of “Ordinary Kriging”, where p = 1 and µ is a constant; Eqs ).

NB: In a Bayesian set-up where an improper uniform prior is put on β, one
even recovers a GP posterior distribution.
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Some examples of p.d. kernels and GPs

Let us start by a very classical example (for d = 1): the Brownian motion
W = (Wt )t∈D over D = [0,+∞). Let us define W (in distribution) as follows:

W0 = 0,
for any t ∈ D and h > 0, Wt+h −Wt ∼ N (0, h),
and for any t1, t2, t3, t4 ∈ D with t1 ≤ t2 ≤ t3 ≤ t4, the increments
Wt4 −Wt3 and Wt2 −Wt1 are independent.

Such conditions define a GP; there remains to work out its expectation and
covariance functions. First, for t ∈ D the two first conditions imply that

m(t) = E[Wt ] = E[W0 + Wt −W0] = E[W0] + E[Wt −W0] = 0 + 0 = 0.

Second, taking two points t , t ′ ∈ D (assuming, say, that t < t ′), the third
condition implies that Wt′ −Wt is independent of Wt −W0. Consequently,

kBM (t , t ′) = E[WtWt′ ] = E[(Wt −W0)(Wt −W0 + Wt′ −Wt )]

= E[(Wt −W0)2] + E[(Wt −W0)(Wt′ −Wt )] = t + 0 = t = min(t , t ′).
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Examples of covariance kernels and GPs (cont’d)

Another famous covariance function stems from the so-called “Brownian
Bridge” (ending in 0) B = (Bt )t∈[0,1]. Let us first restrict W to D = [0, 1],
obtaining a centred process with covariance k(t , t ′) = min(t , t ′) over [0, 1]2.

The distribution of B is then obtained by conditioning W on W1 = 0, thus
obtaining the mean mB(t) = 0 and covariance kernel

kBB(t , t ′) = min(t , t ′)− tt ′ = min(t , t ′)(1−max(t , t ′)).

Another covariance function of interest can be obtained by integrating W .
Defining (It )t∈D (with D = [0,+∞) again) by It =

∫ t
0 Budu, we obtain a new

centred GP with covariance

kIBM (t , t ′) =

∫ t

0

∫ t′

0
min(u, v)dudv

= min(t , t ′)3/3 + (max(t , t ′)−min(t , t ′)) min(t , t ′)2/2.
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Examples of covariance kernels and GPs (cont’d)

Without entering into much detail, let us list a few further examples of
1-dimensional GPs / associated covariance kernels:

For D = [0, 1] and H ∈ (0, 1), kfBM (t , t ′) = 1
2 (|t |2H + |t ′|2H − |t − t ′|2H) is

the covariance kernel of the fractional (or “fractal”) Brownian Motion
with Hurst coefficient H,

ktriang(t , t ′) = (1− |t − t ′|)+ is the “triangular” kernel over D = R,

Defining Zt = ζ1 cos(ωt) + ζ2 sin(ωt), where ζ1, ζ2 ∼ N (0, σ2)
independently (σ > 0) and ω > 0, one obtains k(t , t ′) = cos(ω(t ′ − t)),

kOU(t , t ′) = e−|t−t′| is called exponential kernel and characterizes the
Ornstein-Uhlenbeck process.

k(t , t ′) = e−|t−t′|2 is the squared-exponential kernel.
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Examples of covariance kernels and GPs (cont’d)

Previous k ’s from real-valued one-dimensional settings can be generalize in
a number of ways. Let us review a few simple examples.

One obtains an admissible k on [0,+∞)d × [0,+∞)d by taking
k(x, x′) =

∏d
i=1 min(xi , x ′i ) where the x (′)

i ’s are the coordinates of x(′).
The associated centred GP over [0,+∞)d is called “Brownian Sheet”.

The exponential and Gaussian kernels can be generalized to Rd × Rd

by taking k(x, x′) = exp(−||x− x′||) and k(x, x′) = exp(−||x− x′||2),
respectively, where || · || refers to the Euclidean norm on Rd .

From a different perspective, one can define a particular
complex-valued GP by taking Zx = ζ exp−i〈x,ω〉 where ζ ∼ N (0, σ2)
(σ > 0) and ω ∈ Rd . Such Z is centred and has (complex) covariance

k(x, x′) = Cov(Zx ,Z ′x ) = E[ZxZx′ ] = σ2 exp−i〈x,ω〉 expi〈x′,ω〉 = exp−i〈x−x′,ω〉.
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A necessary and sufficient condition of admissibility

A common point about all kernels reviewed so far is that, for ad hoc D, if one
takes any n ≥ 1 and arbitrary points x1, . . . , xn and complex numbers
a1, . . . , an ∈ C, the following holds:

0 ≤ Var

[
n∑

i=1

aiZxi

]
=

n∑
i=1

n∑
j=1

aiajk(xi , xj ).

This property is indeed necessary for k to be an admissible covariance.
Furthermore, it turns out that any k possessing this property is a covariance
kernel (there exists some (Gaussian) random process with this k).
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kernel (there exists some (Gaussian) random process with this k ).
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From p.d. kernels to function approximation

For an introduction to the mathematical foundations of p.d. kernels and their
use in function approximation, see notably the following references:

C. Berg, J. P. R. Christensen and P. Ressel (1984)
Harmonic Analysis on Semigroups. Theory of Positive Definite and Related
Functions
Springer-Verlag

A. Berlinet, C. Thomas-Agnan (2004)
Reproducing Kernel Hilbert Spaces in Probability and Statistics
Kluwer Academic Publishers
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Choosing p.d. kernels?

In practice, choosing an adapted k for an objective f (about which limited
information may be available) is both a crucial and difficult task.

Typically, k is chosen among some well-known p.d. kernel families, often
among “shift-invariant” (a.k.a. “stationary”) kernels, i.e. functions of x− x′.

Examples: Generalized Exponential (including Gaussian) kernels, Matérn
kernels, and more generally kernels obtained via the Bochner theorem.
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Bochner theorem

By a slight abuse of notation, we denote stationary kernels on D = Rd

(d ≥ 1) by k : h ∈ Rd −→ k(h) ∈ C.

Theorem (Bochner’s theorem)

A continuous k : h ∈ Rd −→ k(h) ∈ C is positive definite if and only if it is the
Fourier transform of a finite non-negative Borel measure ν on Rd , i.e.

k(h) = ν̂(h) = (2π)−d/2
∫
Rd

e−i〈h,ω〉dν(ω)

See for instance Wendland 2005 (Chap. 6) for a proof.

By playing on the “spectral measure” ν one can hence generate all
continuous stationary p.d. kernels on Rd . For the case of a measure ν
admitting a density q(ω) = dν

dλ (ω) w.r.t. the Lebesgue measure λ, k is hence
characterized by its spectral density q.
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A few 1-dimensional examples

Triangular: k(h) := c(a− |h|)+
(
q(ω) ∼ c(1−cos(aω))

πω2

)
Matérn ν = 3/2: k(h) ∼ α−3e−α|t|(1 + α|t |) (q(ω) ∼ (α2 + ω2)−2)

Gauss: k(h) ∼ e−( t
θ

)2
(q(ω) ∼ e−θ

2ω2
)

M. Stein (Springer, 1999)

Interpolation of Spatial Data. Some Theory for Kriging
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More on spectral densities of Matérn kernels (d ≥ 1)

Matérn kernels can be characterized using the Hancock and Wallis
parametrization (1994) mentioned in Stein (1999) (here σ = 1):

q(ω) =
c(ν, ρ)(

4ν
ρ2 + ||ω||2

)ν+d/2

where c(ν, ρ) =
Γ(ν+ d

2 )(4ν)ν

πd/2Γ(ν)ρ2ν .

The corresponding (“isotropic”) p.d. kernel is

k(h) =
1

2ν−1Γ(ν)

(
2ν1/2||h||

ρ

)ν
Kν
(

2ν1/2||h||
ρ

)
where Kν is a modified Bessel function of the third kind. More tractable
expressions can be obtained for ν = 1

2 ,
3
2 ,

5
2 . . . See Stein (1999) for more on

this class and Wendland (2005) –chap. 5– for more on Bessel functions.
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More on isotropic p.d. kernels in Rd

The Matérn (class of) kernels considered previously are one among many
isotropic p.d. kernels on Rd , i.e. p.d. kernels that write as

k(x, x′) = κ(r)

where r = ||x− x′||Rd , and κ : R+ −→ R is also often (by a slight abusive of
language) referred to as positive definite. Such k ’s are also called radial .

Definition (Cf. Wendland 2005): A function Φ : Rd −→ R is said to be radial
if there exists φ : [0,+∞) −→ R such that Φ(h) = φ(||h||2) for all h ∈ Rd .

A number κ leading to radial p.d. kernels in Rd do exist and have been
studied by generations of mathematicians. Some depend on d , some do not!
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More on isotropic p.d. kernels in Rd

Let us review of few examples.

κ(r) = e−rp
(0 < p ≤ 2) ”Generalized exponential”

κ(r) = (c2 + r 2)−β (c, β > 0) ”Inverse multiquadrics”

κ(r) = (1− r)`+ where (x)+ = max(0, x) ”Truncated power kernel”)

While the two first kernels are (strictly) positive definite for all d ≥ 1, for the
third one one needs to restrict to ` ≥ bd/2c+ 1 to get this property.

Is it possible to characterize radial p.d. functions defined in terms of one κ
valid in any dimension? Yes, thanks to completely monotone functions!
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More on isotropic p.d. kernels in Rd

Definition (Cf. Wendland 2005): A function φ is called completely monotone
on (0,+∞) if it satisfies φ ∈ C∞(0,+∞) and

(−1)`φ(`)(r) ≥ 0

for all ` ∈ N and all r > 0. The function φ is called completely monotone on
[0,+∞) if it is in addition in C[0,+∞).

Theorem (Schoenberg, Cf. Wendland 2005)

A function φ : [0,+∞) −→ R is completely monotone on [0,+∞) if and only
if Φ := φ(|| · ||22) is positive definite on every Rd .

Application: the inverse multiquadrics is p.d. in any dim. for c, β > 0.
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Nota Bene: geometric anisotropy

Starting from any isotropic p.d. kernel, it is always possible to generalize it
and obtain (geometric) anisotropic p.d. kernels through orthogonal
transformations and dilatations, by defining

k(x, x′) = κ
(

(x− x′)T Σ(x− x′)
)

where Σ is a real-valued symmetric (strictly!) positive definite matrix.
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Other ways of defining p.d. kernels: overview

Kernels that write as functions of 〈x, x′〉 (as the previously presented radial
p.d. kernels on the sphere) are also called zonal kernels in G. E. Fasshauer’s
review paper below, were examples of zonal kernels are discussed:

Fasshauer, G. E. (2011)
Positive definite kernels: past, present and future
Dolomites Research Notes on Approximation, 4:21-63

The following paper also includes alternative classes of p.d. kernels:

T. Hofmann, B. Schölkopf, A.J. Smola (2008)
Kernel methods in machine learning
The Annals of Statistics, Vol. 36, No. 3, 1171-1220.

Overall, the notion of scalar product plays a crucial role in p.d. kernels.
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Other ways of defining p.d. kernels: Mercer theorem
For continuous p.d. kernels –say real-valued, defined on a compact set
D ⊂ Rd – a fruitful approach is to consider the following operator Tk on L2(D):

g −→ Tk (g)(·) =

∫
D

g(x′)k(·, x′)dλ(x′)

where λ refers to the Lebesgue measure (generalizations do exist) on Rd .

Under our continuity and compactness conditions on Tk there exist (ϕj (·))j∈N∗

forming an orthonormal system of L2(D) and (λj )j∈N∗ non-negative such that

∀j ∈ N Tk (ϕj ) = λjϕj

and this leads to the Mercer decomposition (1909):

k(x, x′) =
∞∑
j=1

λjϕj (x)ϕj (x′).

See Adler & Taylor, Steinwart and more for detail on the convergence, etc.
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Basic principle of the Karhunen-Loève expansion

Assuming D compact and k continuous, the Mercer theorem ensures the
existence of an orthonormal basis (ϕj )j≥1 of L2(D) such that

k(x, x′) =
+∞∑
j=1

λjϕj (x)ϕj (x′)

The KL expansion of a GRF Z then consists in representing it under the form

Zx =
+∞∑
j=1

√
λjζjϕj (x)

where the ζj ’s are i.i.d. standard Gaussian random variables.
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Deriving the eigenfunctions: a Fredholm problem

Given a GRF Z of covariance kernel k , finding the basis functions ϕj (j ≥ 1)
is the key to the KL decomposition of Z .

This is done by solving the following integral equation:∫
D

k(x, x′)g(x)dµ(x) = λg(x′),

called a Fredholm problem.

When possible, the latter is solved analytically by using calculus.

34 / 47



About GPs and their use in function modelling Examples of GPs and generalities on p.d. kernels Miscellanea

Deriving the eigenfunctions: a Fredholm problem

Given a GRF Z of covariance kernel k , finding the basis functions ϕj (j ≥ 1)
is the key to the KL decomposition of Z .

This is done by solving the following integral equation:∫
D

k(x, x′)g(x)dµ(x) = λg(x′),

called a Fredholm problem.

When possible, the latter is solved analytically by using calculus.

34 / 47



About GPs and their use in function modelling Examples of GPs and generalities on p.d. kernels Miscellanea

Example: KL expansion of the Brownian Motion

For the covariance kernel of the BM, k(t , t ′) = min(t , t ′), the eigenvalues and
eigenfunctions are solutions to the following Fredholm problem:∫ 1

0
min(t , t ′)ϕ(t)dt = λϕ(t ′)

It can be shown by solving a differential equation that the solutions are

λj =
1

π2(j − 1
2 )2

ϕj (t) =
√

2 sin

((
j − 1

2

)
× πt

)

R.J. Adler and J.E. Taylor (Springer, 2007)

Random Fields and Geometry
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Example: KL expansion of the Brownian Motion

Let us simulate the Brownian Motion using a truncated KL expansion:

m <- 10000
t <- seq(0,1,,m)
v <- function(t,k){sqrt(2)*sin((k-0.5)*pi*t)}
lambda <- function(k){1/(pi*(k-0.5))ˆ2}

q <- 1000
KL <- rep(0,m)
for(i in seq(1,q)){
KL <- KL + sqrt(lambda(i))*rnorm(1)*v(t,i)}
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Example: KL expansion of the Brownian Motion
Here are two simulation results based on the truncated KL expansion of the
Brownian Motion, respectively with q = 50 and q = 1000:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Approximate BM simulation by truncated KL expansion (q=50)

t

z

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Approximate BM simulation by truncated KL expansion (q=1000)

t

z

The simulations are not exact, but can be performed at a continuous set. The
ζj ’s can be stored, and the corresponding path evaluated at a new point later.
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A few selected references

M.L. Stein (1999).
Interpolation of Spatial Data, Some Theory for Kriging
Springer

M. Scheuerer (2009).
A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis
PhD thesis of Georg-August Universität Göttingen

C. E. Rasmussen and C.K.I. Williams (2006).
Gaussian Processes for Machine Learning
MIT Press

R. Adler and J. Taylor (2007).
Random Fields and Geometry
Springer

I. Steinwart (2017).

Convergence Types and Rates in Generic Karhune–Loève Expansions with Applications to Sample Path
Properties
arXiv:1403.1040v3 [math.PR]
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Outline

3 About GPs and their use in function modelling

4 Examples of GPs and generalities on p.d. kernels

5 Miscellanea
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Further properties of p.d. kernels ( back )
Further general properties can be derived for p.d. kernels, including:

Products of p.d. kernels are p.d. kernels
If σ : D −→ D is a bijection, k(x, x′) is a p.d. kernel if and only if
k(σ(x), σ(x′)) is a p.d. kernel
For all x, x′ ∈ D |k(x, x′)| ≤

√
k(x, x)

√
k(x′, x′)

The function

dk : (x, x′) ∈ D2 −→ dk (x, x′) =
√

k(x, x) + k(x′, x′)− 2<(k(x, x′))

defines a (pseudo-)distance on D.

Note also that positive definiteness can be generalized as follows:
k : (x, x′) ∈ D2 −→ C is called conditionally positive definite (c.p.d.) if it is
hermitian and

∑n
i=1

∑n
j=1 aiajk(xi , xj ) ∈ [0,+∞) for all n ≥ 1, x1, . . . , xn ∈ D

and a1, . . . , an ∈ C s.t
∑n

i=1 ai = 0. C.n.d. is defined similarly with (−∞, 0].
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Note also that positive definiteness can be generalized as follows:
k : (x, x′) ∈ D2 −→ C is called conditionally positive definite (c.p.d.) if it is
hermitian and

∑n
i=1

∑n
j=1 aiajk(xi , xj ) ∈ [0,+∞) for all n ≥ 1, x1, . . . , xn ∈ D

and a1, . . . , an ∈ C s.t
∑n

i=1 ai = 0. C.n.d. is defined similarly with (−∞, 0].
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RKHS

Reproducing Kernel Hilbert Spaces (RKHS) offer a very convenient
framework for function approximation. Here

Definition: A Hilbert space of functions D −→ C, (H, 〈·, ·〉H), is a RKHS if for
all x ∈ D, the evaluation functional ex : f ∈ H −→ f (x) ∈ C are continuous.

From the so-called Riesz representation theorem, for all x ∈ D there exists an
element of H, denoted here kx, such that f (x) = 〈f , kx〉H.

From such a RKHS and the collection of Riesz evaluation representers kx,
the “kernel” k : D × D −→ C associated with H can be defined as follows:

k : (x, x′) ∈ D × D −→ k(x, x′) = 〈kx′ , kx〉H

Easy to check: k is a p.d. kernel.
Less easy to check: any p.d. kernel defines a unique RKHS
→ Moore-Aronszajn theorem (Published 1950 :-)
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Representing RKHSs based on the Mercer theorem

For simplicity, let us consider here a RKHS Hk associated with a real-valued
Mercer kernel k . Hk can be represented more concretely as follows.

Hk =

f =
∞∑
j=1

αj
√
λjφj , α ∈ RN :

+∞∑
j=1

α2
j <∞


with 〈

∑∞
j=1 αj

√
λjφj ,

∑∞
j=1 βj

√
λjφj〉H :=

∑∞
j=1 αjβj .

Comparing this with the K-L expansion of a GP with kernel k , we find that in
the case of an infinite number of non-zero eigenvalues, the paths of Z are not
in Hk with probability 1 (Parzen-Kallianpur-LePage theorem, as discussed in
Lukić and Beder 2001). However, it can be shown that in general GP paths
belong to bigger RKHSs (See, e.g., Steinwart 2017 for more detail).
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Some properties of GRFs and kernels

Back to centred Z for simplicity, one can define a (pseudo-)metric dZ on D by

d2
Z (x, x′) = E

[
(Zx − Zx′)

2)
]

= k(x, x) + k(x′, x′)− 2k(x, x′)

A number of properties of Z are driven by dZ .

For instance,

Theorem (Sufficient condition for the continuity of GRF paths)

Let (Zx)x∈D be a separable Gaussian random field on a compact index set
D ⊂ Rd . If for some 0 < C <∞ and δ, η > 0,

d2
Z (x, x′) ≤ C∣∣ log ||x− x′||

∣∣1+δ

for all x, x′ ∈ D with ||x− x′|| < η, then the paths of Z are almost surely
continuous and bounded.

See, e.g., M. Scheuerer’s PhD thesis (2009) for details.
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Some properties of GRFs and kernels

Starting from p.d. kernels notably obtained via Bochner’s theorem, an
appealing approach to enrich them is by operations conserving symmetric
positive definiteness.

Classical operations of that kind notably encompass:

Non-negative linear combinations of p.d. kernels

Products and tensor products of p.d. kernels

Multiplication by σ(x)σ(x′) for σ : x ∈ D −→ [0,+∞)

Deformations/warpings: k(g(x), g(x′)) for g : D −→ D

Convolutions, etc. . .

See, e.g., Section “making new kernels from old” of the book Gaussian
Processes for Machine Learning (cited earlier).
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The Branin-Hoo function

The rescaled Branin-Hoo function f is defined over [0, 1]2 by

f (x1, x2) = fBH(15x1 − 5, 15x2),

where

fBH : (x1, x2) ∈ [−5, 10]× [0, 15] −→ a(x2−bx2
1 +cx1− r)+s(1− t) cos(x1)+s,

with a = 1, b = 5/(4π2), c = 5/π, r = 6, s = 10 and t = 1/(8π) back .
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Ordinary Kriging Equations –for completeness!–

Assume Z has a covariance kernel k , and constant mean µ ∈ R


mn(x) = k(Xn, x)T k(Xn,Xn)−1zn + µ̂n(1− k(Xn, x)T k(Xn,Xn)−1

1n)

kn(x, x′) = k(x, x′)− k(Xn, x)T k(Xn,Xn)−1k(Xn, x′)

+
(1−1T

n k(Xn,Xn)−1k(Xn,x))(1−1T
n k(Xn,Xn)−1k(Xn,x′))

(1T
n k(Xn,Xn)−11n)

where µ̂n =
1

T
n k(Xn,Xn)−1zn

(1T
n k(Xn,Xn)−11n)

.

Under standard conditions, mn and kn are Z ’s conditional mean and
covariance and

L(Z |ZXn = zn) = GRF
(
mn(·), kn(·, ·′)

)
back
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Heterogeneously noisy OK Equations


mn(x) = µ̂n + kn(x)T (k(Xn,Xn)+∆n)−1 (z̃n − µ̂n1n

)
kn(x, x′) = k(x, x′)− k(Xn, x)T (k(Xn,Xn)+∆n)−1k(Xn, x′)

+
(1−1T

n (k(Xn,Xn)+∆n)−1k(Xn,x))(1−1T
n (k(Xn,Xn)+∆n)−1k(Xn,x′))

(1T
n (k(Xn,Xn)+∆n)−11n)

where µ̂n =
1

T
n (k(Xn,Xn)+∆n)−1 z̃n

(1T
n (K+∆n)−11n)

.

Under usual assumptions, and if Z and the ε′i s are independent:

L(Z |Ãn) = N
(
mn(·), kn(·, ·′)

)
back
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