
Scalable Gaussian Processes

Zhenwen Dai

Amazon

9 September 2019 @GPSS 2019

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 1 / 46

Gaussian process
Input and Output Data:

y = (y1, . . . , yN), X = (x1, . . . ,xN)>

p(y|f) = N
(
y|f , σ2I

)
, p(f |X) = N (f |0,K(X,X))

0.4 0.5 0.6 0.7 0.8 0.9 1.0

−6

−4

−2

0

2

4

6

8

10 Mean

Data

Confidence

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 2 / 46

Behind a Gaussian process fit

Maximum likelihood estimate of the hyper-parameters.

θ∗ = arg max
θ

log p(y|X, θ) = arg max
θ

logN
(
y|0,K + σ2I

)
Prediction on a test point given the observed data and the optimized
hyper-parameters.

p(f∗|X∗,y,X, θ) =

N
(
f∗|K∗(K + σ2I)−1y,K∗∗ −K∗(K + σ2I)−1K>∗

)

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 3 / 46

How to implement the log-likelihood (1)

Compute the covariance matrix K:

K =

k(x1,x1) · · · k(x1,xN)
...

. . .
...

k(xN ,x1) · · · k(xN ,xN)


where k(xi,xj) = γ exp

(
− 1

2l2
(xi − xj)

>(xi − xj)
)

The complexity is O(N2Q).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 4 / 46

How to implement the log-likelihood (2)

Plug in the log-pdf of multi-variate normal distribution:

log p(y|X) = logN
(
y|0,K + σ2I

)
=− 1

2
log |2π(K + σ2I)| − 1

2
y>(K + σ2I)−1y

=− 1

2
(||L−1y||2 +N log 2π)−

∑
i

log Lii

Take a Cholesky decomposition: L = chol(K + σ2I).

The computational complexity is O(N3 +N2 +N). Therefore, the overall
complexity including the computation of K is O(N3).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 5 / 46

A quick profiling (N=1000, Q=10)

Time unit is microsecond.

Line # Time % Time Line Contents

2 def log_likelihood(kern, X, Y, sigma2):

3 6.0 0.0 N = X.shape[0]

4 55595.0 58.7 K = kern.K(X)

5 4369.0 4.6 Ky = K + np.eye(N)*sigma2

6 30012.0 31.7 L = np.linalg.cholesky(Ky)

7 4361.0 4.6 LinvY = dtrtrs(L, Y, lower=1)[0]

8 49.0 0.1 logL = N*np.log(2*np.pi)/-2.

9 82.0 0.1 logL += np.square(LinvY).sum()/-2.

10 208.0 0.2 logL += -np.log(np.diag(L)).sum()

11 2.0 0.0 return logL

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 6 / 46

Empirical analysis of computational time
I collect the run time for N = {10, 100, 500, 1000, 1500, 2000}.
They take 1.3ms, 8.5ms, 28ms, 0.12s, 0.29s, 0.76s.

0 500 1000 1500 2000 2500

data size (N)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ti

m
e

(s
ec

on
d

)
Mean

Data

Confidence

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 7 / 46

What if we have 1 million data points?

The mean of predicted computational time is 9.4× 107 seconds ≈ 2.98 years.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 8 / 46

What about waiting for faster computers?

Computational time = amount of work
computer speed

If the computer speed increase at the pace of 20% year over year:
I After 10 years, it will take about 176 days.
I After 50 years, it will take about 2.9 hours.

If we double the size of data, it takes 11.4 years to catch up.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 9 / 46

What about parallel computing / GPU?

Ongoing works about speeding up
Cholesky decomposition with multi-core
CPU or GPU.

Main limitation: heavy communication
and shared memory.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 10 / 46

Other approaches

Apart from speeding up the exact computation, there have been a lot of works on
approximation of GP inference.

These methods often target at some specific scenario and provide good
approximation for the targeted scenarios.

Provide an overview about common approximations.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 11 / 46

Big data (?)

lots of data 6= complex function

In real world problems, we often collect a lot of data for modeling relatively simple
relations.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−10

−5

0

5

10

15

20

Mean

Data

Confidence

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 12 / 46

Data subsampling?

Real data often do not evenly distributed.

We tend to get a lot of data on common cases and very few data on rare cases.

−0.25 0.00 0.25 0.50 0.75 1.00 1.25
−10

−5

0

5

10

15

20

Mean

Data

Confidence

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 13 / 46

Covariance matrix of redundant data

With redundant data, the covariance matrix becomes low rank.

What about low rank approximation?

0 20 40 60 80 100

0

200

400

600

800

1000

1200

1400

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 14 / 46

Low-rank approximation

Let’s recall the log-likelihood of GP:

log p(y|X) = logN
(
y|0,K + σ2I

)
,

where K is the covariance matrix computed from X according to the kernel
function k(·, ·) and σ2 is the variance of the Gaussian noise distribution.

Assume K to be low rank.

This leads to Nyström approximation by Williams and Seeger [Williams and Seeger,
2001].

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 15 / 46

Approximation by subset

Let’s randomly pick a subset from the training data: Z ∈ RM×Q.

Approximate the covariance matrix K by K̃.

K̃ = KzK
−1
zz K>z , where Kz = K(X,Z) and Kzz = K(Z,Z).

Note that K̃ ∈ RN×N , Kz ∈ RN×M and Kzz ∈ RM×M .

The log-likelihood is approximated by

log p(y|X, θ) ≈ logN
(
y|0,KzK

−1
zz K>z + σ2I

)
.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 16 / 46

Efficient computation using Woodbury formula

The naive formulation does not bring any computational benefits.

L̃ = −1

2
log |2π(K̃ + σ2I)| − 1

2
y>(K̃ + σ2I)−1y

Apply the Woodbury formula:

(KzK
−1
zz K>z + σ2I)−1 = σ−2I− σ−4Kz(Kzz + σ−2K>z Kz)

−1K>z

Note that (Kzz + σ−2K>z Kz) ∈ RM×M .

The computational complexity reduces to O(NM2).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 17 / 46

Nyström approximation

The above approach is called Nyström approximation by Williams and Seeger
[2001].

The approximation is directly done on the covariance matrix without the concept of
pseudo data.

The approximation becomes exact if the whole data set is taken, i.e.,
KK−1K> = K.

The subset selection is done randomly.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 18 / 46

Gaussian process with Pseudo Data (1)

Snelson and Ghahramani [2006] proposes the idea of having pseudo data, which is
later referred to as Fully independent training conditional (FITC).

Augment the training data (X, y) with pseudo data u at location Z.

p

([
y
u

]
|
[
X
Z

])
=N

([
y
u

]
|0,
[
Kff + σ2I Kfu

K>fu Kuu

])
where Kff = K(X,X), Kfu = K(X,Z) and Kuu = K(Z,Z).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 19 / 46

Gaussian process with Pseudo Data (2)

Thanks to the marginalization property of Gaussian distribution,

p(y|X) =

∫
u

p(y,u|X,Z).

Further re-arrange the notation:

p(y,u|X,Z) = p(y|u,X,Z)p(u|Z)

where p(u|Z) = N (u|0,Kuu),
p(y|u,X,Z) = N

(
y|KfuK

−1
uuu,Kff −KfuK

−1
uuK>fu + σ2I

)
.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 20 / 46

FITC approximation (1)

So far, p(y|X) has not been changed, but there is no speed-up, Kff ∈ RN×N in
Kff −KfuK

−1
uuK>fu + σ2I.

The FITC approximation assumes

p̃(y|u,X,Z) = N
(
y|KfuK

−1
uuu,Λ + σ2I

)
,

where Λ = (Kff −KfuK
−1
uuK>fu) ◦ I.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 21 / 46

FITC approximation (2)

Marginalize u from the model definition:

p̃(y|X,Z) = N
(
y|0,KfuK

−1
uuK>fu + Λ + σ2I

)
Woodbury formula can be applied in the sam way as in Nyström approximation:

(KzK
−1
zz K>z + Λ + σ2I)−1 = A−AKz(Kzz + K>z AKz)

−1K>z A,

where A = (Λ + σ2I)−1.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 22 / 46

FITC approximation (3)

FITC allows the pseudo data not being a subset of training data.

The inducing inputs Z can be optimized via gradient optimization.

Like Nyström approximation, when taking all the training data as inducing inputs,
the FITC approximation is equivalent to the original GP:

p̃(y|X,Z = X) = N
(
y|0,Kff + σ2I

)
FITC can be combined easily with expectation propagation (EP). Bui et al. [2017]
provides an overview and a nice connection with variational sparse GP.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 23 / 46

Model Approximation vs. Approximate Inference

When the exact model/inference is intractable, typically there are two types of
approaches:

Approximate the original model with a simpler one such that inference becomes
tractable, like Nyström approximation, FITC.

Keep the original model but derive an approximate inference method which is often
not able to return the true answer, like variational inference.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 24 / 46

Model Approximation vs. Approximate Inference

A problem with model approximation is that

when an approximated model requires some tuning, e.g., for hyper-parameters, it is
unclear how to improve it based on training data.

In the case of FITC, we know the model is correct if Z = X, however, optimizing Z
will not necessarily lead to a better location.

In fact, optimizing Z can lead to overfitting. [Quiñonero-Candela and Rasmussen,
2005]

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 25 / 46

Variational Sparse Gaussian Process (1)

Titsias [2009] introduces a variational approach for sparse GP.

It follows the same concept of pseudo data:

p(y|X) =

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

where p(u|Z) = N (u|0,Kuu),
p(y|u,X,Z) = N

(
y|KfuK

−1
uuu,Kff −KfuK

−1
uuK>fu + σ2I

)
.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 26 / 46

Variational Sparse Gaussian Process (2)

Instead of approximate the model, Titsias [2009] derives a variational lower bound.

Normally, a variational lower bound of a marginal likelihood, also known as
evidence lower bound (ELBO), looks like

log p(y|X) = log

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

≥
∫
f ,u

q(f ,u) log
p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u)
.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 27 / 46

Special Variational Posterior

Titsias [2009] defines an unusual variational posterior:

q(f ,u) = p(f |u,X,Z)q(u), where q(u) = N (u|µ,Σ) .

Plug it into the lower bound:

L =

∫
f ,u

p(f |u,X,Z)q(u) log
p(y|f)(((((((

p(f |u,X,Z)p(u|Z)

(((((((
p(f |u,X,Z)q(u)

= 〈log p(y|f)〉p(f |u,X,Z)q(u) − KL (q(u) ‖ p(u|Z))

=
〈
logN

(
y|KfuK

−1
uuu, σ2I

)〉
q(u)
− KL (q(u) ‖ p(u|Z))

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 28 / 46

Special Variational Posterior

There is no inversion of any big covariance matrices in the first term:

−N
2

log 2πσ2 − 1

2σ2

〈
(KfuK

−1
uuu− y)>(KfuK

−1
uuu− y)

〉
q(u)

The overall complexity of the lower bound is O(NM2).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 29 / 46

Tighten the Bound

Find the optimal parameters of q(u):

µ∗,Σ∗ = arg max
µ,Σ

L(µ,Σ).

Make the bound as tight as possible by plugging in µ∗ and Σ∗:

L = logN
(
y|0,KfuK

−1
uuK>fu + σ2I

)
− 1

2σ2
tr
(
Kff −KfuK

−1
uuK>fu

)
.

The overall complexity of the lower bound remains O(NM2).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 30 / 46

Variational sparse GP

Note that L is not a valid log-pdf,
∫
y

exp(L(y)) ≤ 1, due to the trace term.

As inducing points are variational parameters, optimizing the inducing inputs Z
always leads to a better bound.

The model does not “overfit” with too many inducing points.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

−6

−4

−2

0

2

4

6

8

10 Mean

Inducing

Data

Confidence

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 31 / 46

Are big covariance matrices always (almost) low-rank?

Of course, not.

A time series example
y = f(t) + ε

The data are collected with even time interval continuously.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 32 / 46

A time series example: 10 data points

When we observe until t = 1.0:

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 33 / 46

A time series example: 100 data points

When we observe until t = 10.0:

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 34 / 46

A time series example: 1000 data points

When we observe until t = 100.0:

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 35 / 46

Banded precision matrix

For the kernels like the Matern family, the precision matrix is banded.

For example, given a Matern1
2

or known as exponential kernel:

k(x, x′) = σ2 exp(− |x−x′|
l2

).

This slide is taken from Nicolas Durrande [?].

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 36 / 46

Closed form precision matrix

The precision matrix of Matern kernels can be computed in closed form.

The lower triangular matrix from the Cholesky decomposition of the precision
matrix is banded as well.

log(y|X) = −1

2
log |2π(LL>)−1| − 1

2
tr
(
yy>LL>

)
where L is the lower triangular matrix from the Cholesky decomposition of the
precision matrix Q, Q = LL>.

The computational complexity becomes O(N).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 37 / 46

Other approximations

deterministic/stochastic frequency approximation

distributed approximation

conjugate gradient methods for covariance matrix inversion

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 38 / 46

Q & A!

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 39 / 46

Parallel Sparse Gaussian Process

Beyond Approximate the inference method, maybe we could exploit parallelization.

For Gaussian process, it turns out to be very hard, because parallel Cholesky
decomposition is very difficult.

Dai et al. [2014] and Gal et al. [2014] proposes a parallel inference method for
sparse GP.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 40 / 46

Data Parallelism

Consider a training set: D = {(x1, y1), . . . , (xN , yN)}.
Assume there are C computational cores/machines.

A data parallelism algorithm divides the data set into C partitions as evenly as
possible: D =

⋃C
c=1Dc.

The parallelism happens in the way that the function running on each core only
requiring the data from the local partition.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 41 / 46

A simple example: neural network regression

l =
N∑
n=1

||yn − fθ(xn)||2 =
C∑
c=1

∑
nc∈Dc

||ync − fθ(xnc)||2

1 Each core computes its local objective lc =
∑

nc∈Dc
||ync − fθ(xnc)||2.

2 Each core computes the gradient of its local object ∂lc/∂θ.

3 Aggregate all the local objectives and gradients l =
∑C

c=1 lc and

∂l/∂θ =
∑C

c=1 ∂lc/∂θ.

4 Take a step along the gradient following a gradient descent algorithm.

5 Repeat Step 1 until converge.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 42 / 46

Data Parallelism for Sparse GP

The variational lower bound (after applying Woodbury formula) is

L =− N

2
log 2πσ2 +

1

2
log

|Kuu|
|Kuu + σ−2Φ| −

1

2σ2
y>y

+
1

2σ4
y>Kfu(Kuu + Φ)−1K>fuy −

1

2σ2
φ+

1

2σ2
tr
(
K−1
uuΦ

)
where Φ = K>fuKfu and φ = tr (Kff).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 43 / 46

Data Parallelism for Sparse GP

The lower bound is not fully distributable like in the simple example.

All the terms involving data can be written as a sum across data points:

y>y =
N∑
n=1

y2
n, y>Kfu =

N∑
n=1

ynKfnu, Φ =
N∑
n=1

K>fnuKfnu

φ =
N∑
n=1

Kfnfn ,where Kfnu = K(xn,Z), Kfnfn = K(xn,xn).

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 44 / 46

Data Parallelism for Sparse GP

1 [local] Compute all the data related terms locally: y>c yc, y>c Kfcu, Φc and φc.

2 [global] Aggregate all the local terms and compute the lower bound L on one
node.

3 [global] Compute the gradient of the bound w.r.t. the model parameters.

4 [global] Compute the gradient w.r.t. the local terms ∂L/∂Kfcu, ∂L/∂Φc and
∂L/∂φc and broadcast to individual nodes.

5 [local] Compute the gradient contribution of the local terms and aggregate the
local gradients into the final gradient.

6 [global] Take a gradient step and repeat Step 1.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 45 / 46

Data Parallelism for Sparse GP

0 10000 20000 30000 40000 50000 60000 70000
number of datapoints

0

5

10

15

20

25

30

35

40

a
v
e
ra

g
e
 t

im
e
 p

e
r

it
e
ra

ti
o
n
 (

se
co

n
d
s)

1 CPUs

2 CPUs

4 CPUs

8 CPUs

16 CPUs

32 CPUs

1 GPUs

2 GPUs

4 GPUs

0 10000 20000 30000 40000 50000 60000 70000
number of datapoints

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

p
e
rc

e
n
ta

g
e
 o

f
in

d
is

tr
ib

u
ta

b
le

 c
o
m

p
u
ta

ti
o
n
a
l
ti

m
e

1 cpu cores

2 cpu cores

4 cpu cores

8 cpu cores

16 cpu cores

32 cpu cores

1 GPUs

2 GPUs

4 GPUs

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 46 / 46

Thang D Bui, Josiah Yan, and Richard E Turner. A unifying framework for gaussian process
pseudo-point approximations using power expectation propagation. Journal of Machine Learning
Research, 18:3649–3720, 2017.

Zhenwen Dai, Andreas Damianou, James Hensman, and Neil D. Lawrence. Gaussian process models
with parallelization and gpu acceleration. In NIPS workshop Software Engineering for Machine
Learning, 2014.

Yarin Gal, Mark van der Wilk, and Carl Edward Rasmussen. Distributed variational inference in sparse
gaussian process regression and latent variable models. In Advances in Neural Information
Processing Systems 27, pages 3257–3265, 2014.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate
gaussian process regression. Journal of Machine Learning Research, 6:1939—-1959, 2005.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In Advances
in Neural Information Processing Systems, pages 1257–1264. 2006.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Proceedings
of the Twelth International Conference on Artificial Intelligence and Statistics, pages 567–574, 2009.

Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems, pages 682–688. 2001.

Zhenwen Dai (Amazon) Scalable Gaussian Processes 9 September 2019 @GPSS 2019 46 / 46

	References

