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The pdf of a Gaussian random variable is:

f (x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2
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The parameters µ and σ2 correspond to the mean and variance

µ = E[X ]

σ2 = E[X 2]− E[X ]2

The variance is positive.
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Definition
We say that a vector Y = (Y1, . . . ,Yn)

t follows a multivariate
normal distribution if any linear combination of Y follows a normal
distribution:

∀α ∈ Rn, αtY ∼ N

Two examples and one counter-example:
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The pdf of a multivariate Gaussian is:

fY (x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ)tΣ−1(x − µ)

)
.

It is parametrised by
mean vector µ = E[Y ]

covariance matrix
Σ = E[YY t ]− E[Y ]E[Y ]t

(i.e. Σi ,j = cov(Yi ,Yj))
x1

x
2

d
en
sity

A covariance matrix is symmetric Σi ,j = Σj ,i and positive
semi-definite

∀α ∈ Rn, αtΣα ≥ 0.
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Conditional distribution
2D multivariate Gaussian conditional distribution:

p(y1|y2 = α) =
p(y1, α)

p(α)

=
exp(quadratic in y1 and α)

const

=
exp(quadratic in y1)

const

= Gaussian distribution!
x
1

x 2

f
Y

µc

√
Σc

The conditional distribution is still Gaussian!
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3D Example
3D multivariate Gaussian conditional distribution:
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Conditional distribution
Let (Y1,Y2) be a Gaussian vector (Y1 and Y2 may both be
vectors): (

Y1
Y2

)
= N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

The conditional distribution of Y1 given Y2 is:

Y1|Y2 ∼ N (µcond,Σcond)

with µcond = E[Y1|Y2] = µ1 +Σ12Σ
−1
22 (Y2 − µ2)

Σcond = cov[Y1,Y1|Y2] = Σ11 − Σ12Σ
−1
22 Σ21
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Gaussian processes

1 1
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Definition
A random process Z over D ⊂ Rd is said to be Gaussian if

∀n ∈ N,∀xi ∈ D, (Z (x1), . . . ,Z (xn)) is multivariate normal.

⇒ Demo: https://github.com/awav/interactive-gp 9 / 77



We write Z ∼ N (m(.), k(., .)):
m : D → R is the mean function m(x) = E[Z (x)]
k : D × D → R is the covariance function (i.e. kernel):

k(x , y) = cov(Z (x),Z (y))

The mean m can be any function, but not the kernel:

Theorem (Loeve)
k is a GP covariance

m
k is symmetric k(x , y) = k(y , x) and positive semi-definite:

for all n ∈ N, for all xi ∈ D, for all αi ∈ R
n∑

i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0
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Proving that a function is psd is often difficult. However there are a
lot of functions that have already been proven to be psd:

squared exp. k(x , y) = σ2 exp
(
−
(x − y)2

2θ2

)
Matern 5/2 k(x , y) = σ2

(
1 +

√
5|x − y |

θ
+

5|x − y |2

3θ2

)
exp

(
−
√

5|x − y |
θ

)

Matern 3/2 k(x , y) = σ2

(
1 +

√
3|x − y |

θ

)
exp

(
−
√

3|x − y |
θ

)
exponential k(x , y) = σ2 exp

(
−
|x − y |

θ

)
Brownian k(x , y) = σ2 min(x , y)

white noise k(x , y) = σ2δx,y

constant k(x , y) = σ2

linear k(x , y) = σ2xy

When k is a function of x − y , the kernel is called stationary.
σ2 is called the variance and θ the lengthscale.
⇒ Demo: https://github.com/NicolasDurrande/shinyApps
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Examples of kernels in gpflow:
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Associated samples
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Gaussian process regression

We assume we have observed a function f for a set of points
X = (X1, . . . ,Xn):
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x
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4

f

The vector of observations is F = f (X ) (ie Fi = f (Xi ) ).
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Since f in unknown, we make the general assumption that it is the
sample path of a Gaussian process Z ∼ N (0, k):
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The posterior distribution Z (·)|Z (X ) = F :

Is still Gaussian
Can be computed analytically

It is N (m(·), c(·, ·)) with:

m(x) = E[Z (x)|Z (X )=F ]

= k(x ,X )k(X ,X )−1F

c(x , y) = cov[Z (x),Z (y)|Z (X )=F ]

= k(x , y)− k(x ,X )k(X ,X )−1k(X , y)
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A few words on GPR Complexity

Storage footprint: We have to store the covariance matrix
which is n × n.
Complexity: We have to invert the covariance matrix, which
requires is O(n3).

Storage footprint is often the first limit to be reached.

The maximal number of observation points is between 1000 and
10 000.

What if we have more data? ⇒ Talk from Zhenwen this afternoon
What if we need to be faster? ⇒ Talk from Arno on Wednesday
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Samples from the posterior distribution
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It can be summarized by a mean function and 95% confidence
intervals.
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A few remarkable properties of GPR models
They (can) interpolate the data-points.
The prediction variance does not depend on the observations.
The mean predictor does not depend on the variance
parameter.
The mean (usually) come back to zero when predicting far
away from the observations.

Can we prove them?

⇒ Demo https://durrande.shinyapps.io/gp_playground
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We are not always interested in models that interpolate the data.
For example, if there is some observation noise: F = f (X ) + ε. Let

N be a process N (0, n(., .)) that represent the observation noise.
The expressions of GPR with noise are

m(x) = E[Z (x)|Z (X ) + N(X )=F ]

= k(x ,X )(k(X ,X ) + n(X ,X ))−1F

c(x , y) = cov[Z (x),Z (y)|Z (X ) + N(X )=F ]

= k(x , y)− k(x ,X )(k(X ,X ) + n(X ,X ))−1k(X , y)
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Examples of models with observation noise for n(x , y) = τ2δx ,y :
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The values of τ2 are respectively 0.001, 0.01 and 0.1.

What if F = f (X ) + ε isn’t appropriate? ⇒ Talks from Alan and Neil
tomorrow.
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Parameter estimation
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The choice of the kernel parameters has a great influence on the
model. ⇒ Demo https://durrande.shinyapps.io/gp_playground

In order to choose a prior that is suited to the data at hand, we can
search for the parameters that maximise the model likelihood.

Definition
The likelihood of a distribution with a density fX given some
observations X1, . . . ,Xp is:

L =

p∏
i=1

fX (Xi )
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In the GPR context, we often have only one observation of the
vector F . The likelihood is then:

L(σ2, θ) = fZ(X )(F ) =
1

(2π)n/2|k(X ,X )|1/2
exp

(
−1

2
F tk(X ,X )−1F

)
.

It is thus possible to maximise L – or log(L) – with respect to the
kernel’s parameters in order to find a well suited prior.

Why is the likelihood linked to good model predictions? They are
linked by the product rule:

fZ(X )(F ) = f (F1)× f (F2|F1)× f (F3|F1,F2)× · · · × f (Fn|F1, . . . ,Fn−1)
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Model validation
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The idea is to introduce new data and to compare the model
prediction with reality
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Two (ideally three) things should be checked:
Is the mean accurate?
Do the confidence intervals make sense?
Are the predicted covariances right?
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Let Xt be the test set and Ft = f (Xt) be the associated
observations.

The accuracy of the mean can be measured by computing:

Mean Square Error MSE = mean((Ft −m(Xt))
2)

A “normalised” criterion Q2 = 1 −
∑

(Ft −m(Xt))
2∑

(Ft − mean(Ft))2

On the above example we get MSE = 0.038 and Q2 = 0.95.
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The predicted distribution can be tested by normalising the
residuals.

According to the model, Ft ∼ N (m(Xt), c(Xt ,Xt)).

c(Xt ,Xt)
−1/2(Ft −m(Xt)) should thus be independents N (0, 1):

standardised residuals
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When no test set is available, another option is to consider cross
validation methods such as leave-one-out.

The steps are:
1. build a model based on all observations except one
2. compute the model error at this point

This procedure can be repeated for all the design points in order to
get a vector of error.
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Model to be tested:
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Step 1:

0.0 0.2 0.4 0.6 0.8 1.0
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Step 2:
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Step 3:
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We finally obtain:

MSE = 0.24 and Q2 = 0.34.

We can also look at the residual distribution. For leave-one-out,
there is no joint distribution for the residuals so they have to be
standardised independently.

standardised residuals

D
en

si
ty

-2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

S
am

p
le

Q
u
a
n
ti
le
s

35 / 77



Choosing the kernel
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Changing the kernel has a huge impact on the model:

Gaussian kernel: Exponential kernel:
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This is because changing the kernel means changing the prior on f

Gaussian kernel: Exponential kernel:

Kernels encode the prior belief about the function to approximate...
they should be chosen accordingly!
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In order to choose a kernel, one should gather all possible
informations about the function to approximate...

Is it stationary?
Is it differentiable, what’s its regularity?
Do we expect particular trends?
Do we expect particular patterns (periodicity, cycles,
additivity)?

It is common to try various kernels and to asses the model accuracy
(test set or leave-one-out).

Furthermore, it is often interesting to try some input remapping
such as x → log(x), x → exp(x), ...
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We have seen previously:

Theorem (Loeve)

k corresponds to the covariance of a GP
m

k is a symmetric positive semi-definite function

n∑
i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0

for all n ∈ N, for all xi ∈ D, for all αi ∈ R.
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For a few kernels, it is possible to prove they are psd directly from
the definition.

k(x , y) = δx ,y

k(x , y) = 1

For most of them a direct proof from the definition is not possible.
The following theorem is helpful for stationary kernels:

Theorem (Bochner)
A continuous stationary function k(x , y) = k̃(|x − y |) is positive
definite if and only if k̃ is the Fourier transform of a finite positive
measure:

k̃(t) =

∫
R

e−iωtdµ(ω)
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Example

We consider the following measure:

Its Fourier transform gives k̃(t) =
sin(t)
t

:

0.0

0.0

As a consequence, k(x , y) =
sin(x − y)

x − y
is a valid covariance

function.
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Usual kernels

Bochner theorem can be used to prove the positive definiteness of
many usual stationary kernels

The Gaussian is the Fourier transform of itself
⇒ it is psd.

Matérn kernels are the Fourier transforms of 1
(1+ω2)p

⇒ they are psd.
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Unusual kernels

Inverse Fourier transform of a (symmetrised) sum of Gaussian gives
(A. Wilson, ICML 2013):

µ(ω)

0.0

−→
F

k̃(t)

0.0

The obtained kernel is parametrised by its spectrum.
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Unusual kernels

The sample paths have the following shape:
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Making new from old
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Making new from old:

Kernels can be:
Summed together

I On the same space k(x , y) = k1(x , y) + k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1) + k2(x2, y2)

Multiplied together
I On the same space k(x , y) = k1(x , y)× k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1)× k2(x2, y2)

Composed with a function
I k(x , y) = k1(f (x), f (y))

All these operations will preserve the positive definiteness.

How can this be useful?
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Sum of kernels over the same input space

Property

k(x , y) = k1(x , y) + k2(x , y)

is a valid covariance structure.
This can be proved directly from the p.s.d. definition.

Example
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Sum of kernels over the same input space

Z ∼ N (0, k1 + k2) can be seen as Z = Z1 + Z2 where Z1, Z2 are
indenpendent and Z1 ∼ N (0, k1), Z2 ∼ N (0, k2)

k(x , y) = k1(x , y) + k2(x , y)

Example
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Sum of kernels over the same space

Example: The Mauna Loa observatory dataset [GPML 2006]
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.
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Let’s try to predict the concentration for the next 20 years.
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Sum of kernels over the same space
We first consider a squared-exponential kernel:

k(x , y) = σ2 exp
(
−(x − y)2

θ2

)
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The results are terrible!
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Sum of kernels over the same space
What happen if we sum both kernels?

k(x , y) = krbf 1(x , y) + krbf 2(x , y)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300
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The model is drastically improved!
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Sum of kernels over the same space
What happen if we sum both kernels?

k(x , y) = krbf 1(x , y) + krbf 2(x , y)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300

320

340

360

380

400

420

440

460

480

The model is drastically improved!

52 / 77



Sum of kernels over the same space
We can try the following kernel:

k(x , y) = σ2
0x

2y2 + krbf 1(x , y) + krbf 2(x , y) + kper (x , y)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300
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Once again, the model is significantly improved.
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Sum of kernels over the same space
We can try the following kernel:

k(x , y) = σ2
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Sum of kernels over tensor space
Property

k(x, y) = k1(x1, y1) + k2(x2, y2)

is a valid covariance structure.
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Remark:
From a GP point of view, k is the kernel of
Z (x) = Z1(x1) + Z2(x2)
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Sum of kernels over tensor space

We can have a look at a few sample paths from Z :
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⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for
Approximating additive functions
Building models over high dimensional input space
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Sum of kernels over tensor space

Remarks
It is straightforward to show that the mean predictor is additive

m(x) = (k1(x ,X ) + k2(x ,X ))k(X ,X )−1F

= k1(x1,X1)k(X ,X )−1F︸ ︷︷ ︸
m1(x1)

+ k2(x2,X2)k(X ,X )−1F︸ ︷︷ ︸
m2(x2)

⇒ The model shares the prior behaviour.

The sub-models can be interpreted as GP regression models
with observation noise:

m1(x1) = E ( Z1(x1) | Z1(X1) + Z2(X2)=F )
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Sum of kernels over tensor space

Remark

The prediction variance has interesting features

pred. var. with kernel product

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

pred. var. with kernel sum

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

57 / 77



Sum of kernels over tensor space

This property can be used to construct a design of experiment that
covers the space with only cst × d points.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Prediction variance

58 / 77



Product over the same space

Property

k(x , y) = k1(x , y)× k2(x , y)

is valid covariance structure.

Example
We consider the product of a squared exponential with a cosine:

× =
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Product over the tensor space
Property

k(x, y) = k1(x1, y1)× k2(x2, y2)

is valid covariance structure.

Example
We multiply two squared exponential kernels
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Calculation shows we obtain the usual 2D squared exponential
kernels.
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Composition with a function

Property
Let k1 be a kernel over D1 × D1 and f be an arbitrary function
D → D1, then

k(x , y) = k1(f (x), f (y))

is a kernel over D × D.
proof ∑∑

aiajk(xi , xj) =
∑∑

aiajk1(f (xi )︸︷︷︸
yi

, f (xj)︸ ︷︷ ︸
yj

) ≥ 0

Remarks:
k corresponds to the covariance of Z (x) = Z1(f (x))

This can be seen as a (nonlinear) rescaling of the input space
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Example
We consider f (x) = 1

x and a Matérn 3/2 kernel
k1(x , y) = (1 + |x − y |)e−|x−y |.

We obtain:

Kernel
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62 / 77



All these transformations can be combined!

Example
k(x , y) = f (x)f (y)k1(x , y) is a valid kernel.

This can be illustrated with f (x) = 1
x and

k1(x , y) = (1 + |x − y |)e−|x−y |:

Kernel
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Can we automate the construction of the covariance?

Automatic statistician [Duvenaud 2013, Steinruecken 2019]
It considers a set of possible

kernel functions
kernel combinations (+, ×, change-point)

and uses a greedy approach to find the kernel that maximises

BIC = −2 log(L) + #param log(n)

The automatic statistician also generates human readable reports!
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Applying linear operators to GPs
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Effect of a linear operator

Property (Ginsbourger 2013)
Let L be a linear operator that commutes with the covariance, then
k(x , y) = Lx(Ly (k1(x , y))) is a kernel.

Example
We want to approximate a function [0, 1] → R that is symmetric
with respect to 0.5. We will consider 2 linear operators:

L1 : f (x) →

{
f (x) x < 0.5

f (1 − x) x ≥ 0.5

L2 : f (x) → f (x) + f (1 − x)

2
.
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Effect of a linear operator

Example
Associated sample paths are

k1 = L1(L1(k))

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

x

Y

k2 = L2(L2(k))

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

x

Y

The differentiability is not always respected!
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Effect of a linear operator

These linear operator are projections onto a space of symmetric
functions:

H

Hsym

f

L1f

L2f

What about the optimal projection?

⇒ This can be difficult... but it raises interesting questions!

68 / 77



Application to sensitivity analysis
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The analysis of the influence of the various variables of a
d-dimensional function f is often based on the FANOVA:

f (x) = f0 +
d∑

i=1

fi (xi ) +
∑
i<j

fi ,j(xi , xj) + · · ·+ f1,...,d(x)

where
∫

f (xI )dxi = 0 if i ∈ I .

The expressions of the fI are:

f0 =

∫
f (x)dx

fi (xi ) =

∫
f (x)dx−i − f0

fi ,j(xi , xj) =

∫
f (x)dx−ij − fi (xi )− fj(xj) + f0

Can we obtain a similar decomposition for a GP?
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samples with zero integrals
We are interested in building a GP such that the integral of the
samples are exactly zero.

idea: project a GP onto a
space of functions with zero
integrals:

Z

Z0

It can be proved that the orthogonal projection is

Z0(x) = Z (x)−

∫
k(x , s)ds

∫
Z (s)ds∫∫

k(s, t)dsdt
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The associated kernel is:

k0(x , y) = k(x , y)−

∫
k(x , s)ds

∫
k(y , s)ds∫∫

k(s, t)dsdt

Such 1-dimensional kernels are great when combined as ANOVA
kernels:

k(x, y) =
d∏

i=1

(1 + k0(xi , yi ))

= 1 +
d∑

i=1

k0(xi , yi )︸ ︷︷ ︸
additive part

+
∑
i<j

k0(xi , yi )k0(xj , yj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+
d∏

i=1

k0(xi , yi )︸ ︷︷ ︸
full interaction
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10d example
Let us consider the test function f : [0, 1]10 → R with ε ∼ N (0, 1)
observation noise:

x 7→ 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

The steps for approximating f with GPR are:

1 Learn f on a DoE (here LHS maximin with 180 points)
2 get the optimal values for the kernel parameters using MLE,
3 build a model based on kernel

∏
(1 + k0)

The structure of the kernel allows to split m in sub-models.

m(x) =

1 +
∑
i

k0(xi ,Xi ) +
∑
i 6=j

k0(xi ,Xi )k0(xj ,Xj) + . . .

 k(X ,X )−1F

= m0 +
∑

mi (xi ) +
∑
i 6=j

mi,j(xi , xj) + · · ·+m1,...,d(x)
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The univariate sub-models are:

(
we had f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0, 1)

)
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Conclusion: GPR and kernel design in practice
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The various steps for building a GPR model are:

1. Get the Data (Design of Experiment)
I What is the overall evaluation budget?
I What is my model for?

2. Choose a kernel. Do we have any specific knowledge we can
include in it?

3. Estimate the parameters
I Maximum likelihood
I Cross-validation
I Multi-start

4. Validate the model
I Test set
I Leave-one-out to check mean and confidence intervals
I Leave-k-out to check predicted covariances

Remarks

It is common to iterate over steps 2, 3 and 4.
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In practice, the following errors may appear:

• Error: Cholesky decomposition failed
• Error: the matrix is not positive definite

In practice, invertibility issues arise when observation points are
close-by. This is specially true if

the kernel corresponds to very regular sample paths
(squared-exponential for example)
the range (or length-scale) parameters are large

In order to avoid numerical problems during optimization, one can:
add some (very) small observation noise
impose a maximum bound to length-scales
impose a minimal bound for noise variance
avoid using the Gaussian kernel
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