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This where I live
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This is what I do
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Distance to horizon 6.2km

Hidden height 125.6m
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Learning Theory

• F space of functions

• A learning algorithm

• S = {(x1, y1), . . . , (xN , yN)}
• S ∼ P(X × Y)

• `(AF (S), x , y) loss function
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Statistical Learning

e(S,A,F) = EP({X ,Y}) [`(AF (S), x , y)]
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Statistical Learning

e(S,A,F) = EP({X ,Y}) [`(AF (S), x , y)]

≈ 1
M

M∑
n=1

`(AF (S), xn, yn)

No Free Lunch

We can come up with a combination of {S,A,F} that makes
e(S,A,F) take an arbitary value
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Assumptions: Algorithms

Statistical Learning

AF (S)
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Assumptions: Biased Sample

Statistical Learning

AF (S)
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Assumptions: Hypothesis space

Statistical Learning

AF (S)
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Data and Knowledge
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GPSS

IUDICIUM POSTERIUM DISCIPULUS EST PRIORIS1

1The posterior is the student of the prior
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Today

September 11, 2019
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South West

Neill Campbell, Carl Henrik Ek, David Fernandes, Ivan Ustyuzhaninov,

Aidan Scannell, Emelie Barman, Erik Bodin, Andrew Lawrence, Markus

Kaiser, Alessandro di Martino, Ieva Kazlauskaite, Akshaya Thippur
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Gaussian Processes
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Conditional Gaussians
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Gaussian Processes
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Gaussian Processes
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The Gaussian Identities

p(x1, x2) p(x1) =

∫
p(x1, x2)dx p(x1|x2) =

p(x1, x2)

p(x2)

Gaussian Identities
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Unsupervised Learning with GPs



Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Priors
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Priors

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

p(x |y) = p(y |x)
p(x)

p(y)

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. Now lets churn the handle
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Relationship between x and data

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

• GP prior
p(f |x) ∼ N (0,K ) ∝ e−

1
2 (f

TK−1f )

Kij = e−(xi−xj )
TMTM(xi−xj )

• Likelihood

p(y |f ) ∼ N(y |f , β) ∝ e−
1
2β tr(y−f )T(y−f )

• Analytically intractable (Non Elementary Integral) and
infinitely differientiable

35

https://en.wikipedia.org/wiki/Nonelementary_integral


Relationship between x and data

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

• GP prior
p(f |x) ∼ N (0,K ) ∝ e−

1
2 (f

TK−1f )

Kij = e−(xi−xj )
TMTM(xi−xj )

• Likelihood

p(y |f ) ∼ N(y |f , β) ∝ e−
1
2β tr(y−f )T(y−f )

• Analytically intractable (Non Elementary Integral) and
infinitely differientiable

35

https://en.wikipedia.org/wiki/Nonelementary_integral


Relationship between x and data

p(y) =

∫
p(y |f )p(f |x)p(x)df dx

• GP prior
p(f |x) ∼ N (0,K ) ∝ e−

1
2 (f

TK−1f )

Kij = e−(xi−xj )
TMTM(xi−xj )

• Likelihood

p(y |f ) ∼ N(y |f , β) ∝ e−
1
2β tr(y−f )T(y−f )

• Analytically intractable (Non Elementary Integral) and
infinitely differientiable

35

https://en.wikipedia.org/wiki/Nonelementary_integral


Laplace Integration

"Nature laughs at the difficulties of integrations"
– Simon Laplace
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Approximate Inference



ML/MAP2

x̂ = argmaxx

∫
p(y |f )p(f |x)dfp(x)

= argminx
1
2
yTK−1y +

1
2
|K| − log p(x)

2Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis
with Gaussian process latent variable models.

37



GP-LVM

• Li, W., Viola, F., Starck, J., Brostow, G. J., & Campbell, N.
D. (2016). Roto++: accelerating professional rotoscoping
using shape manifolds. (In proceeding of ACM SIGGRAPH’16)

• Grochow, K., Martin, S. L., Hertzmann, A., & Popovi\’c,
Zoran (2004). Style-based inverse kinematics. SIGGRAPH ’04:
SIGGRAPH 2004

• Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D people
tracking with Gaussian process dynamical models. Computer
Vision and Pattern Recognition, 2006
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Font Demo

URL
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http://cs.bath.ac.uk/~nc537/projects_fonts.html#interactive_demo


Bayesian GP-LVM4

• Challenges with ML estimation
• How to initialise x?
• What is the dimensionality q?

• Our assumption on the latent space does not reach the data

• Approximate integration!3

3Titsias, M. (2009). Variational learning of inducing variables in sparse
Gaussian processes.
4Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent

Variable Model
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ELBO

x

y y

x

y

p(y) =

∫
x
p(y|x)p(x) =

p(y|x)p(x)

p(x|y)

x

y

θ

qθ(x) ≈ p(x|y)
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Variational Bayes

p(y)
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Variational Bayes

log p(y)
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Variational Bayes

log p(y) = log p(y) +

∫
log

p(x |y)

p(x |y)
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Variational Bayes

log p(y) = log p(y) +

∫
log

p(x |y)

p(x |y)

=

∫
q(x)log p(y)dx +

∫
q(x)log

p(x |y)

p(x |y)
dx
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Variational Bayes

log p(y) = log p(y) +

∫
log

p(x |y)

p(x |y)

=

∫
q(x)log p(y)dx +

∫
q(x)log

p(x |y)

p(x |y)
dx

=

∫
q(x)log

p(x |y)p(y)

p(x |y)
dx

=

∫
q(x)log

q(x)

q(x)
dx +

∫
q(x)log p(x , y)dx +

∫
q(x) log

1
p(x |y)

dx
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Variational Bayes

log p(y) = log p(y) +

∫
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The log term

KL(q(x)||q(x |y)) =

∫
q(x) log

q(x)

p(x |y)
dx
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The log term

KL(q(x)||q(x |y)) =

∫
q(x) log

q(x)

p(x |y)
dx

= −
∫

q(x) log
p(x |y)

q(x)
dx

43



The log term

KL(q(x)||q(x |y)) =

∫
q(x) log

q(x)

p(x |y)
dx

= −
∫

q(x) log
p(x |y)

q(x)
dx

≥ −log
∫

p(x |y)dx = −log1 = 0
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ELBO

log p(y) = KL(q(x)||p(x |y)) + Eq(x) [log p(x , y)]− H(q(x))︸ ︷︷ ︸
ELBO

≥ Eq(x) [log p(x , y)]− H(q(x)) = L(q(x))

• if we maximise the ELBO we,
• find an approximate posterior
• get an approximation to the marginal likelihood

• maximising p(Y) is learning

• finding p(X|Y) ≈ q(X) is prediction

44



Why is this useful?

Why is this a sensible thing to do?

• If we can’t formulate the joint distribution there isn’t much we
can do

• Taking the expectation of a log is usually easier than the
expectation

• We are allowed to choose the distribution to take the
expectation over

– Ryan Adams5

5Talking Machines Season 2, Episode 5

45

http://www.thetalkingmachines.com/blog/2016/3/10/ivpi7nd68oln8kk9lz2o4nyibvfyqd
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Lower Bound6

L =

∫
X,F

q(X) log

(
p(Y,F,X)

q(X)

)

6Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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q(X) log
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Lower Bound6

L =

∫
X,F

q(X) log

(
p(Y,F,X)

q(X)

)
∫

X,F
q(X) log

(
p(Y|F)p(F|X)p(X)

q(X)

)
=

∫
F,X

q(X) log p(Y|F)p(F|X)−
∫

X
q(X) log

q(X)

p(X)

= L̃ − KL (q(X) ‖ p(X))

6Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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Lower Bound

L̃ =

∫
F,X

q(X) log p(Y|F)p(F|X)

• Has not eliviate the problem at all, X still needs to go through
F to reach the data

• Idea of sparse approximations7

7Quinonero-Candela, Joaquin, & Rasmussen, C. E. (2005). A unifying view of
sparse approximate Gaussian process regression & Snelson, E., & Ghahramani,
Z. (2006). Sparse Gaussian processes using pseudo-inputs
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Lower Bound

• Add another set of samples from the same prior

p(U|Z) =
d∏

j=1

N (u:,j |0,K)

• Conditional distribution

p(f:,j ,u:,j |X,Z) = p(f:,j |u:,j ,X,Z)p(u:,j |Z)

= N
(
f:,j |Kfu(Kuu)−1u:,j ,Kff −Kfu(Kuu)−1Kuf

)
N (u:,j |0,Kuu) ,

48
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Lower Bound

p(Y,F,U,X|Z) = p(X)
d∏

j=1

p(y:,j |f:,j )p(f:,j |u:,j ,X)p(u:,j |Z)

• we have done nothing to the model, just added halucinated
observations

• however, we will now interpret U and Xu not as random
variables but variational parameters

• i.e. parametrise approximate posterior using these parameters
(remember sparse motivation)
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Lower Bound

• Variational distributions are approximations to intractable
posteriors,

q(U) ≈ p(U|Y,X,Z,F)

q(F) ≈ p(F|U,X,Z,Y)

q(X) ≈ p(X|Y)

• Assume that we can find U that completely represents F, i.e.
U is sufficient statistics of F,

q(F) ≈ p(F|U,X,Z,Y) = p(F|U,X,Z)
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Lower Bound

L̃ =

∫
X,F,U

q(F)q(U)q(X) log
p(Y,F,U|X,Z)

q(F)q(U)
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Lower Bound

L̃ =

∫
X,F,U

d∏
j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=
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Lower Bound

L̃ =

∫
X,F,U

d∏
j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X)

log

∏d
j=1 p(y:,j |f:,j )p(f:,j |u:,j ,X,Z)p(u:,j |Z)∏d

j=1 p(f:,j |u:,j ,X,Z)q(u:,j )
=

=

∫
X,F,U

p∏
j=1

p(f:,j |u:,j ,X,Z)q(u:,j )q(X) log

∏p
j=1 p(y:,j |f:,j )p(u:,j |Z)∏p

j=1 q(u:,j )

= Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))
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Summary

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Expectation tractable (for some co-variances)

• Reduces to expectations over co-variance functions know as Ψ

statistics

• Allows us to place priors and not "regularisers" over the latent
representation
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Latent space priors



Latent space priors8

Eq(F),q(X),q(U) [p(Y|F)]−KL (q(U)||p(U|Z))−KL (q(X)||p(X))

• Importantly p(X) appears only in KL term

• Allows us to express stronger assumptions about the model

8Damianou, A. C., Titsias, M., & Lawrence, Neil D, Variational Inference for
Uncertainty on the Inputs of Gaussian Process Models (2014)
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The Gaussian blob

p(X) ∼ N (0, I )

55



Automatic Relevance Determination

k(xi , xj ) = σe−
∑D

d αd ·(xi,d−xj,d )
2

GPy

Code

RBF(...,ARD=True)
Matern32(...,ARD=True)
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Dynamic Gaussian Processes9, 10

p(y , f , x |t) = p(y |f )p(f |x) p(x |t)︸ ︷︷ ︸
∼N (0,t)

9Urtasun, R., Fleet, D. J., & Fua, P., 3d people tracking with gaussian process
dynamical models, CVPR(2006)
10Damianou, A. C., Titsias, M., & Lawrence, N. D., Variational Gaussian
Process Dynamical Systems, 2011
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Latent space structures



Explaining Away

y

x ε

y = f (x) + ε
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Explaining Away

y

x ε

y − ε = f (x)
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Factor Analysis

y

x2x1 x3

ε

y = f (x1, x2, x3) + ε
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Alignments
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Alignments

{duck}
{cat}
{duck}
{cat}
{duck}
{cat}
{duck}
{cat}

60



Alignments

{duck}
{cat}
{duck}
{cat}
{duck}
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{cat}

Relevant

Irrelevant Ambiguous

60



IBFA with GP-LVM11

y1 y2

f1 f2

w1 x w3

θ1 θ2

D1 D2

y1 = f (wT
1 x) y2 = f (wT

2 x)

11Damianou, A., Lawrence, N. D., & Ek, C. H. (2016). Multi-view learning as
a nonparametric nonlinear inter-battery factor analysis
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GP-DP12

12Lawrence, A. R., Ek, C. H., & Campbell, N. W., DP-GP-LVM: A bayesian
non-parametric model for learning multivariate dependency structures, ICML
(2019)
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Constrained Latent Space13

y

x

ε

y = f (g(y)) + ε
13Lawrence, N. D., & Quinonero-Candela, Joaquin, Local distance preservation
in the gp-lvm through back constraints, ICML, 2006
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Geometry

64



Latent GP-Regression14

p(Y|X) =

∫
p(Y|F) p(F|X,X(C)) p(X(C)) dF dX(C).

14Bodin, E., Campbell, N. D. F., & Ek, C. H., Latent Gaussian Process
Regression (2017).
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Discrete
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Continous
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Composite Functions



Deep Gaussian Processes15

yf1x1f2x2

• Place a GP as a warping function, that is warped, . . .

15Damianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian Processes
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Composite Functions

y = fk (fk−1(. . . f0(x))) = fk ◦ fk−1 ◦ · · · ◦ f1(x)
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Composite Functions
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Composite functions

y = fk (fk−1(. . . f0(x))) = fk ◦ fk−1 ◦ · · · ◦ f1(x)

Kern(f1) ⊆ Kern(fk−1 ◦ . . . ◦ f2 ◦ f1) ⊆ Kern(fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1)

Im(fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) ⊆ Im(fk ◦ fk−1 ◦ . . . ◦ f2) ⊆ . . . ⊆ Im(fk )
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Change of Variables

Theorem (Change of Variable)
Let x ∈ X ⊆ Rn be a random vector with a probability density
function given by px (x), and let y ∈ Y ⊆ Rn be a random vector
such that ψ(y) = x , where the function ψ : Y → X is bijective of
class of C1 and | 5 ψ(y)| > 0, ∀y ∈ Y. Then, the probability
density function py (·) induced in Y is given by

py (y) = px (ψ(y))| 5 ψ(y)|

where 5ψ(·) denotes the Jacobian of ψ(·), and | · | denotes the
determinant operator.
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Sampling
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Sampling
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Sampling
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class of C1 and | 5 ψ(y)| > 0, ∀y ∈ Y. Then, the probability
density function py (·) induced in Y is given by

py (y) = px (ψ(y))| 5 ψ(y)|

where 5ψ(·) denotes the Jacobian of ψ(·), and | · | denotes the
determinant operator.

76
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Change of Variables
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MacKay plot
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When do I want Composite Functions

y = fk ◦ fk−1 ◦ · · · ◦ f1(x)

1. My generative process is composite
• my prior knowledge is composite

2. I want to "re-parametrise" my kernel in a learning setting
• i have knowledge of the re-parametrisation
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Windfarms
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Problem

• Effectiveness of modern windfarm
• 25-60% (of Betz Limit)

• Turbine has several parameters
• angle and direction of blades
• gear
• etc.

• How can we maximise the efficiency of a windfarm?
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Windfarm
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Windfarm
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The Wind Turbine
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Model
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Model: Alignment

w1(t) = w2(a(t))
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Model: Windfront

fd (x) =
R∑

r=1

∫
Td ,r (x − z) · wr (z)

d
dz
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Model: Windturbine

yd = gd (fd )
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Model: Graphical Model 16

Xd ad fd mf
d mf

d′ fd′ ad′ Xd′

ma
d

gd mg
d mg

d′ gd′ ma
d′

yd yd′

w1 . . . wR

16Kaiser, M., Otte, C., Runkler, T., & Ek, C.~H., Bayesian alignments of
warped multi-output gaussian processes, NIPS, 2018
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Alignment Learning
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Alignment Learning17

17Kazlauskaite, I., Ek, C. H., & Campbell, N. D. F., Gaussian Process Latent
Variable Alignment Learning, AISTATS 2019 97



Kernel Re-Parametrisation

k(x ′1, x
′
2) = k(f (x1), f (x2)) = k([x1, z1], [x2, z2])
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Composition: priors

Y

f1

f2

X
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Composition: priors18

18Slides by James Hensman

100



Propagation of Uncertainty

101



Composition: uncertainty
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Composition: uncertainty
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Composition: uncertainty
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Composition: uncertainty
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Composition: uncertainty
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Summary



Summary

• Unsupervised learning is very hard19

• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes such as GPs provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

19I would argue that there is no such thing
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Summary II

• Composite functions cannot model more things

• However, they can easily warp the input space to model less
things

• This leads to high requirments on data

• Even bigger need for uncertainty propagation, we cannot
assume noiseless data

• Intuitions needs to change, we need to think of priors over
hierarchies

• We need to think about correlated uncertainty, not marginals
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