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This is what | do
















Distance to horizon 6.2km
Hidden height 125.6m















Learning Theory

F space of functions

A learning algorithm

S - {(ley].)a DRI (XN,)/N)}
S~ P(X xY)
U(Ax(S), x,y) loss function



Statistical Learning

e(S, A, F) = Eprx,yy) [L(AF(S), x, y)]



Statistical Learning

6(87 A, J:) - EP({X,J)}) [f(.A]:(S), X, )/)]

M
1
~ 17 D UAF(S), xn yn)
n=1

We can come up with a combination of {S, A, F} that makes
e(S, A, F) take an arbitary value



Assumptions: Algorithms
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Statistical Learning

Ax(S)



Assumptions: Biased Sample

PEARSONR = -0S5: P = S2E-Ug

Statistical Learning

Ax(S)



Assumptions: Hypothesis space

Statistical Learning

Ax(S)

10



Data and Knowledge

oo

ASSUMPTIONS

DATA



IUDICIUM POSTERIUM DISCIPULUS EST PRIORIS!

1The posterior is the student of the prior
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Gaussian Processes



Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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The Gaussian Identities

p(x1, x2)
p(x2)

p(x1, x2) p(X1)=/p(X1,Xz)dX p(xilxe) =

Gaussian ldentities
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https://github.com/carlhenrikek/COMS30007/blob/master/Lectures/gaussianidentities.pdf

Unsupervised Learning with GPs



Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Priors
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Priors

ply) = / p(y|F)p(F|x)p(x)df dx

(x
(v)

~—

o

p(xly) = p(ylx)

il

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. Now lets churn the handle

34



Relationship between x and data

ply) = / p(y|F)p(F|x)p(x)df dx
e GP prior

p(flx) ~ N (0, K) ox e 377K )

Ki = e—(xi—x) T MTM(xi—x;)

35


https://en.wikipedia.org/wiki/Nonelementary_integral

Relationship between x and data

ply) = / p(y|F)p(F|x)p(x)df dx

e GP prior
p(flx) ~ N(0,K) o e~ 2" K1)

K’J = e_(Xi_Xj)TMTM(X,'—xj)
e Likelihood

p(y|F) ~ N(y|f, B) o e 250 =N =)
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https://en.wikipedia.org/wiki/Nonelementary_integral

Relationship between x and data

ply) = / p(y|F)p(F|x)p(x)df dx

e GP prior
p(flx) ~ N (0, K) ox e 377K )

K’J = e_(Xi_Xj)TMTM(X,'—xj)
o Likelihood
p(y|F) ~ N(y|f, B) o e 250 =N =)

e Analytically intractable (Non Elementary Integral) and
infinitely differientiable

35


https://en.wikipedia.org/wiki/Nonelementary_integral

Laplace Integration

"Nature laughs at the difficulties of integrations”
— Simon Laplace
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Approximate Inference




ML/MAP?

% = argmax, [ ply|F)p(F1x)do(x)

1 _ 1
= argm|nX§yTK 'y + §|K| — log p(x)

?Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis
with Gaussian process latent variable models.

37



GP-LVM

e Li, W., Viola, F., Starck, J., Brostow, G. J., & Campbell, N.
D. (2016). Roto++: accelerating professional rotoscoping
using shape manifolds. (In proceeding of ACM SIGGRAPH'16)

e Grochow, K., Martin, S. L., Hertzmann, A., & Popovi\'c,
Zoran (2004). Style-based inverse kinematics. SIGGRAPH '04:
SIGGRAPH 2004

e Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D people
tracking with Gaussian process dynamical models. Computer
Vision and Pattern Recognition, 2006
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Font Demo

Please drag the black and white circle around the heat map to explore the 2D font
manifold.

Select Character: b i

Unlikely Probability Likely

URL
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http://cs.bath.ac.uk/~nc537/projects_fonts.html#interactive_demo

Bayesian GP-LVM*

e Challenges with ML estimation

e How to initialise x?
e What is the dimensionality g7

e Qur assumption on the latent space does not reach the data

3Titsias, M. (2009). Variational learning of inducing variables in sparse

Gaussian processes.
“Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent
Variable Model

40



Bayesian GP-LVM*

e Challenges with ML estimation

e How to initialise x?
e What is the dimensionality g7

e Qur assumption on the latent space does not reach the data

e Approximate integration!3

3Titsias, M. (2009). Variational learning of inducing variables in sparse

Gaussian processes.
“Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian Process Latent
Variable Model

40
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Variational Bayes

p(y)
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Variational Bayes

log p(y)
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Variational Bayes
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log p(y) = log p(y) + / log

i
—
28
<
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Variational Bayes
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Variational Bayes

p(xly)
p(xly)

= / q(x)log p(y)dx + / q(x)log PXY) g,

p(x
_ Ooe PEYIPY) 4
= | atanog 2220

log p(y) = log p(y) + / log

=

42



Variational Bayes

log p(y) = log p(y) + / log ggji;

= [ atyog ply)ax+ [ atetos 2 ax

— | alloe PEWIPY) o
_/q( R E
1

:/q(x)log %dx%—/q(x)log p(x,y)dx+/ q(x) log ————dx

p(xly)
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Variational Bayes

log p(y) = log p(y) + / log Zg:i;

= / q(x)log p(y)dx + / q(x)log p(jy)dx

B Aloe PEWIPY)
= [ atog PP

= (0] (X)X X )10 X X O 1 X
—/ ()lgq(x)d +/q()1gp(7y)d +/ q(x) log (‘y)d

q(x)

— [ a1og aGax + [ aGato plx,yax-+ [ qx) o o)
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The log term

KL(a(llately)) = [ a0 tog 00
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The log term

Ktla(latxy)) = [ a0 log 905 ax
|

|
— | ot 100 PO 4,
B /q()lgq(X)d
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The log term

KL(g(x)]|a(x]y)) = / al) og 22
= — X O p(X
= / q(x) log .

> —log/p(x|y)dx = —logl=0
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ELBO

log p(y) = KL(q(x)||p(x]y)) + Eq(x) llog p(x,y)] — H(q(x))
ELBO

> Eq(x) [log p(x,y)] — H(a(x)) = L(q(x))

e if we maximise the ELBO we,

e find an approximate posterior
e get an approximation to the marginal likelihood

o maximising p(Y) is learning

e finding p(X|Y) = g(X) is prediction

44



Why is this useful?

Why is this a sensible thing to do?

e If we can't formulate the joint distribution there isn't much we
can do

— Ryan Adams®

5Talking Machines Season 2, Episode 5

45


http://www.thetalkingmachines.com/blog/2016/3/10/ivpi7nd68oln8kk9lz2o4nyibvfyqd

Why is this useful?

Why is this a sensible thing to do?

e If we can't formulate the joint distribution there isn't much we

can do

e Taking the expectation of a log is usually easier than the

expectation

— Ryan Adams®

5Talking Machines Season 2, Episode 5

45


http://www.thetalkingmachines.com/blog/2016/3/10/ivpi7nd68oln8kk9lz2o4nyibvfyqd

Why is this useful?

Why is this a sensible thing to do?

e If we can't formulate the joint distribution there isn't much we
can do

e Taking the expectation of a log is usually easier than the
expectation

e We are allowed to choose the distribution to take the
expectation over

— Ryan Adams®

5Talking Machines Season 2, Episode 5

45


http://www.thetalkingmachines.com/blog/2016/3/10/ivpi7nd68oln8kk9lz2o4nyibvfyqd

e [ o0 (™)

®Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)

46



B p(Y,F,X)
£= X,F 9(X) log < q(X) )

p(Y|F)p(FX)p(X)
/X,F 9(X)log < a(X) )

®Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)

46



B o p(Y,F,X)
£= X,F"(X)'g( a(X) >
P(YIF)p(FIX)p(X)
R e
_ q9(X)
= [ 909z pYIFIR(FIX) — [ ax)og TS

®Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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) og (PLEX)
L= X,Fq(X)l g( a(X) >
p(Y|F)p(F|X)p(X)
/X,F q(X) log ( a(X) )
’ ) B oz IX)
- /F,x q(X) log p(Y |F)p(F|X) /xq(x)' ® p(X)

— £~ KL(q(X) | p(X))

®Damianou, A. C. (2015). Deep Gaussian Processes and Variational
Propagation of Uncertainty (Doctoral dissertation)
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= / 4(X) log p(Y|F)p(F|X)
i

)

e Has not eliviate the problem at all, X still needs to go through
F to reach the data

e Idea of sparse approximations’

"Quinonero-Candela, Joaquin, & Rasmussen, C. E. (2005). A unifying view of
sparse approximate Gaussian process regression & Snelson, E., & Ghahramani,
Z. (2006). Sparse Gaussian processes using pseudo-inputs
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e Add another set of samples from the same prior

d

p(U12) = [[ M(u.j/0. K)

Jj=1

48



e Add another set of samples from the same prior
d
p(U1Z) = [[ NV (u.jl0.K)
j=1
e Conditional distribution

p(f:,ja u:,j|xv Z) = p(f:,j‘u:,jv X, Z)p(u:,j‘z)

= N (. j|Kp(Kuu) " u. g, K — Ka(Kuw) ™ Kur) NV (u25]0, Kyy)

48



d
p(Y,F,U,X|Z) = Hp y:ilf.j)p(F jlu. j, X)p(u.;|Z)
j=1

e we have done nothing to the model, just added halucinated
observations

49



d
p(Y.F,U,X|Z) = HP y:jlf:j)p(f.jlu. j, X)p(u. ;| Z)
j=1

e we have done nothing to the model, just added halucinated
observations

e however, we will now interpret U and X, not as random
variables but variational parameters

49



d
p(Y.F,U,X|Z) = HP y:jlf:j)p(f.jlu. j, X)p(u. ;| Z)
j=1

e we have done nothing to the model, just added halucinated
observations

e however, we will now interpret U and X, not as random
variables but variational parameters

e i.e. parametrise approximate posterior using these parameters
(remember sparse motivation)

49



e Variational distributions are approximations to intractable

posteriors,
q(U) = p(U[Y, X, Z,F)
q(F) ~ p(FIU,X,Z,Y)
q(X) = p(X]Y)

50



e Variational distributions are approximations to intractable

posteriors,
q(U) = p(U[Y, X, Z,F)
q(F) ~ p(FIU,X,Z,Y)
q(X) = p(X]Y)

e Assume that we can find U that completely represents F, i.e.
U is sufficient statistics of F,

q(F) ~ p(FIU,X,Z,Y) = p(F|U, X, Z)

50



p(Y,F,U|X,Z)

i = /X L, APV ™ e

51



¥
Il

p(Y,F,U|X,Z)
o q(F)q(U)q(X) log ~4(FlaU)

I Py I )p(F jlu.j, X, Z)p(u. ;|Z)
Fu q(F)q(U)q(X) log q(F)q(L)

T x—
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p(Y,F,UX,Z)
7F’Uq(F)q(U)q(X)log 2(F1a(U)

1_.[_] 1 P(y:lIf)p(f jlu.,
_, A(Fa(U)a() og )

(¥
Il

X, Z)p(u.j|Z)

X X

e Assume that U is sufficient statistics for F

q(F)a(U)a(X) = p(F|U, X, Z)q(U)q(X)

51



d
£ :/ [ p(F.jlu.j. X, Z)g(u. j)a(X)
X.FU

T1 p(y:4If.5)p(Fjlu. s, X, Z)p(u.|Z)

Hjc'!:l p(f:,j|u2,j7 X7 Z)q(u,_[)
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d
/- / T] p(F.jlu.j, X, Z)q(u.)q(X)
XFU

Hj‘lzl p(Y:,j|f:,j)p(f:1j|u:,j) X, Z)p(u:J|Z)

[T, p(F.jlu., X, Z)q(u.,)
B 2 L . Hle P(Y:,j|f:,j)P(u:,j|Z)
- /x T p(F-jlu-, X, Z)q(u. ;)q(X) log

= Eq(F),qx),a(u) [P(Y[F)] = KL (q(U)[[p(U[Z))

52



Eq(F),qx).qu) [P(Y[F)] = KL (g(U)[|p(U[Z)) — KL (q(X)||p(X))

e Expectation tractable (for some co-variances)

e Reduces to expectations over co-variance functions know as W
statistics

e Allows us to place priors and not "regularisers" over the latent

representation

53



Latent space priors




Latent space priors®

Eq(F),a(x),qu) [P(Y[F)] = KL (q(U)[[p(U[Z)) — KL (q(X)[|p(X))

e Importantly p(X) appears only in KL term

e Allows us to express stronger assumptions about the model

8Damianou, A. C., Titsias, M., & Lawrence, Neil D, Variational Inference for
Uncertainty on the Inputs of Gaussian Process Models (2014)
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The Gaussian blob

ouo |
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Automatic Relevance Determination

D 2
k(xi7 X_]) = oe Zd O‘d'(xi,dij,d)

RBF(...,ARD=True)
Matern32(...,ARD=True)

56



ply, f,x|t) = p(y|f)p(flx) p(x|t)

~N(0,L1)
9Urtasun, R., Fleet, D. J., & Fua, P., 3d people tracking with gaussian process

dynamical models, CVPR(2006)
Damianou, A. C., Titsias, M., & Lawrence, N. D., Variational Gaussian

Process Dynamical Systems, 2011 >



Latent space structures




Explaining Away
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Explaining Away
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Factor Analysis

y = f(x1,x2,x3) + €

59






Alignments

<> H
<>
<->H
K <> H
5>l
[§<->H
<> H
BHe->H

60



Alignments

V¢ A
B<--->H
<----»>H
He---- » P

60



Alignments

B <o K
H<->H
L DRSS
He->H
E] <> £
H<-->H
K <> 2
H<->H

60



(2]}
L
=
)
S
=
20
<

—X

60



Alignments
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Alignments
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IBFA with GP-LVM!!

(=) ‘@

E—C]
=]

yi=f(wix) y» = f(wyx)

"Damianou, A., Lawrence, N. D., & Ek, C. H. (2016). Multi-view learning as
a nonparametric nonlinear inter-battery factor analysis

61



|

LI N I ]

te [1,T)]
-
e

de[1,D]
n € [1,N]

12| awrence, A. R., Ek, C. H., & Campbell, N. W., DP-GP-LVM: A bayesian

GP-DP: ARD Weights for Dataset (3)

Y-Dimension

non-parametric model for learning multivariate dependency structures, ICML

(2019)
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Constrained Latent Space®®

y=1f(g(y)) te

13Lawrence, N. D., & Quinonero-Candela, Joaquin, Local distance preservation
in the gp-lvm through back constraints, ICML, 2006
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Latent GP-Regression!*

P(YIX) = [ B(YIF) p(FIX, X() p(X()) dF dX(©),

Bodin, E., Campbell, N. D. F., & Ek, C. H., Latent Gaussian Process
Regression (2017).
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Discrete
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Continous
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Composite Functions




Deep Gaussian Processes!®

Cr—B—(—0—@

e Place a GP as a warping function, that is warped, ...

SDamianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian Processes
63



Composite Functions

y = fil(fe—1(. .. fo(x))) = fx o fy—1 0 --- 0 f1(x)

69



Composite Functions

Diff Levels of Abstraction

* Hierarchical Learning Feature representation

* Natural progression from low 3rd layer
level to high level structure "Objects”
as seen in natural complexity

+ Easier to monitor what is 2nd layer
being learnt and to guide the “Object parts”
machine to better subspaces

1st layer

* A good lower level “Edges”
representation can be used
for many distinct tasks Pixels

27
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Composite functions

0= 1.00 =
o5 075
00 0.50 =
0.25 =|
o5
——— T
-2 A ° )

0.00 =|

y = fk(fkfl(- o0 fb(X))) = fk @) fk*l O0:--0 fl(X)
Kern(fi) C Kern(fy_10...0fhof;) CKern(fyofy_10...0fof)

Im(fy ofy_yo...ohofy) Clm(fyofy_10...0h)C ... CIm(f)
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Change of Variables

Theorem (Change of Variable)

Let x € X C R" be a random vector with a probability density
function given by px(x), and let y € Y C R" be a random vector
such that 1(y) = x, where the function v : Y — X is bijective of
class of C* and | 7 ¥(y)| > 0,Vy € ). Then, the probability
density function py(-) induced in Y is given by

py(y) = px (¥ () 7 ¥ (¥)l

where s7v(-) denotes the Jacobian of ¢(-), and | - | denotes the
determinant operator.

72



Sampling

35 =)

30 =

15 =

20 =|

15 =

1w =

os =

00 =l
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o0 o1 ou 06 o8 w0

73



Sampling
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Sampling

o8 =

00 =
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Change of Variables

Theorem (Change of Variable)

Let x € X C R" be a random vector with a probability density
function given by px(x), and let y € Y C R" be a random vector
such that 1(y) = x, where the function v : Y — X is bijective of
class of C* and | 7 ¥(y)| > 0,Vy € ). Then, the probability
density function py(-) induced in Y is given by

py(y) = px (¥ () 7 ¥ (¥)l

where s7v(-) denotes the Jacobian of ¢(-), and | - | denotes the
determinant operator.
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables

200 =
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Change of Variables

200 =
- 175 =
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When do | want Composite Functions

y:fkofk_lo--'ofl(x)

1. My generative process is composite
e my prior knowledge is composite
2. | want to "re-parametrise" my kernel in a learning setting

e i have knowledge of the re-parametrisation

85
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o Effectiveness of modern windfarm
e 25-60% (of Betz Limit)
e Turbine has several parameters

e angle and direction of blades
e gear
e etc.

87



o Effectiveness of modern windfarm
e 25-60% (of Betz Limit)
e Turbine has several parameters

e angle and direction of blades
e gear
e etc.

e How can we maximise the efficiency of a windfarm?

87
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The Wind Turbine

HYRAULIC SHRINK DISK
HUB CONTROLLER
SEVIVE CRANE Gearbo Ol Coller
CONTROLLER . | ow SPEED SHAFT FITCH CAMOER]
ANEMOMETER

GEAR BOX

HYDRAULIC UNIT

BLADE HUB
BEARING, MOTOR
GENERATOR |\ o\ coeery PITCH GEARS.
TRANSFORMERS SHAFT
‘GENERATOR COOLER YAW DRIVE WA SHATL
BRake | BEARING
ROTOR LOCK SYSTEM

VAW RING
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Model: Alignment

) — >.

wi(t) = wa(a(t))

92
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Model: Windturbine

v — <—’

Yd = 8d(fa)
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Model: Graphical Model '

Zo oB

<L—oo~<t

®Kaiser, M., Otte, C., Runkler, T., & Ek, C."H., Bayesian alignments of
warped multi-output gaussian processes, NIPS, 2018
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Alignment Learning
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Unaligned functions

96



Alignment Learning!’

7Kazlauskaite, 1., Ek, C. H., & Campbell, N. D. F., Gaussian Process Latent

Variable Alignment Learning, AISTATS 2019 97



Kernel Re-Parametrisation

k(x1,%5) = k(f(x1), f(x2)) = k([x1, 1], [x2, 22])
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Composition: priors
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Composition: priors!®
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(a) GP (b) 2 layers (c) 4layers

(d) Hidden spaces for 4 layer model

18SJides by James Hensman
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Propagation of Uncertainty

10.0 75 5.0 25 0.0 25 5.0 75 10.0
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Composition: uncertainty
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Composition: uncertainty
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Composition: uncertainty
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Composition: uncertainty
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e Unsupervised learning is very hard!®

e [ts actually not, its really really easy.
e Relevant assumptions needed to learn anything useful

e Strong assumptions needed to learn anything from "sensible"
amounts of data

e Stochastic processes such as GPs provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to

make relevant assumptions

191 would argue that there is no such thing
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Summary lI

e Composite functions cannot model more things

e However, they can easily warp the input space to model less
things

e This leads to high requirments on data

e Even bigger need for uncertainty propagation, we cannot
assume noiseless data

e Intuitions needs to change, we need to think of priors over
hierarchies

e We need to think about correlated uncertainty, not marginals
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